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We present a verifiable and blind protocol for assisted universal quantum computing on continuous-variable
(CV) platforms. This protocol is experimentally-friendly to the client, as it only requires Gaussian-operation ca-
pabilities from the latter. Moreover, the server is not required universal quantum-computational power either, its
only function being to supply the client with copies of a single-mode non-Gaussian state. Universality is attained
based on state-injection of the server’s non-Gaussian supplies. The protocol is automatically blind because the
non-Gaussian resource requested to the server is always the same, regardless of the specific computation. Verifi-
cation, in turn, is possible thanks to an efficient non-Gaussian state fidelity test where we assume identical state
preparation by the server. It is based on Gaussian measurements by the client on the injected states, which is
potentially interesting on its own. The division of quantum hardware between client and server assumed here is
in agreement with the experimental constraints expected in realistic schemes for CV cloud quantum computing.

Quantum computers promise computational speedups for
crucial classically-intractable problems. This includes the
simulation of complex many-body quantum systems [1–3],
searching through unstructured databases [4], machine learn-
ing and artificial intelligence [5–8] and cryptography [9, 10].
Similarly to the early classical computers, full quantum-
computing capabilities are initially expected only at a few re-
mote locations. Cloud quantum computing will then offer a
means for clients to delegate their computations to a distant
server with more powerful quantum hardware.

Delegating a computation, however, raises important secu-
rity and privacy issues, which motivated verifiable and blind
assisted quantum computing. Ideally, the client, Alice, would
like to delegate a computation to an untrusted server, Bob,
while maintaining the privacy of her computation. At the
same time, Alice needs a reliable certificate of the correctness
of the computational output. The former property is known
as blindness and the latter as verifiability [11]. After the first
proposals [12–14], which required repeated rounds of interac-
tion between Alice and Bob, several improvements and varia-
tions followed [15–28]. Importantly, preliminary experimen-
tal studies of assisted quantum computing have also been con-
ducted [29–32].

All of these developments have taken place in the qubit
regime. In contrast, blind quantum computing on continuous-
variable (CV) hardware is a much less explored territory
[33, 34]. To the best of our knowledge there is a single pro-
posal reported [33] that allows the client to hide her input, out-
put and her computation [72]. CV degrees of freedom offer a
competitive alternative to encode quantum information [35–
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37], with some remarkable advantages over qubit-based plat-
forms with highly desirable features for assisted computations
[73]. CV schemes have also been explored in a variety of
settings [38–44]. Unfortunately, the seminal protocol of [33]
puts a huge burden on Alice’s shoulders in terms of experi-
mental requirements and, in addition, requires repeated inter-
action between Alice and Bob.

More precisely, the protocol of [33] requires that Alice per-
forms single-mode non-Gaussian operations, while delegat-
ing the Gaussian entangling gates to Bob. However, single-
mode non-Gaussian operations are among the most experi-
mentally challenging ones [45–48]. On the contrary, Gaussian
operations –including maximally entangling gates– are the
most experimentally accessible ones for CV systems [37, 49].
They play a role analogous to Clifford operations in qubit
systems. Like Clifford group operations on stabilizer states,
any Gaussian CV computation can be efficiently simulated
classically [50], while any single non-Gaussian operation is
enough to boost Gaussian quantum computations to universal
ones [51]. Up to now, no CV scheme for blind quantum com-
puting has been reported which is experimentally friendly to
the client.

In this letter we fill this gap. We derive a verifiable and
blind scheme for universal quantum computation on CV sys-
tems that requires only Gaussian quantum hardware on Al-
ice’s side. In addition, it requires neither repeated interaction
between Alice and Bob nor universal quantum hardware on
Bob’s side. Bob only needs to prepare one kind of single-
mode non-Gaussian state, e.g. the celebrated cubic phase state
created by applying cubic phase gates [45–48] onto the vac-
uum. We assume an honest Bob is restricted to preparing
identical copies of the cubic phase state. The difference in
quantum hardware between Alice and Bob considered here
reflects more fairly the actual constraints of real-life experi-
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ments. With this, our protocol lays the theoretical groundwork
for realistic CV quantum cloud computing schemes.

Preliminaries–For a multimode CV state, let x̂k and p̂`
be the position and momentum operators of the kth and `th

modes respectively. These then satisfy the commutation re-
lations [x̂k, p̂`] = iδk,`. A quantum operation is said to be
Gaussian when it is generated by a unitary U = exp(−iH),
where the Hamiltonian H is a second-order polynomial in
the mode operators. An example is single-mode squeezing
S(s) = ei log(s)(x̂p̂+p̂x̂) for s ∈ R. Gaussian states are cre-
ated by applying Gaussian operations onto the vacuum state.
Gaussian measurements are an important subset of Gaussian
operations and yield Gaussian distributed outcomes when ap-
plied to Gaussian states. These include homodyne detection
which consists of the measurement of the quadrature x̂ or p̂ of
a mode.

To implement an arbitrary U , acting on an m-mode state
|Ψin〉, one requires only the set of Gaussian operations, G,
including Gaussian measurements M, and just one type of
non-Gaussian operation [51]. Thus, U can be divided into se-
quences of Gaussian operations and non-Gaussian gates of the
form 11k ⊗ C(γ) ⊗ 11m−k−1, where 0 ≤ k ≤ m − 1. Here
11k ≡ 11⊗k where 11 is the single-mode identity operator.

An example of a non-Gaussian operation that is needed
for universality is the single-mode cubic phase gate C(γ) =

eiγx̂
3

, where γ ∈ R. When |0〉 is the single-mode vacuum
state, this gives rise to the following non-Gaussian state

|γ̃〉s = C(γ̃)S(s)|0〉 =
eiγ̃x̂

3

e−x̂
2/(2s2)

√
sπ1/4

∫
dx|x〉. (1)

This is a finitely squeezed variant of the originally proposed
cubic phase state [52]. We will later employ these as Bob’s
resource states for our assisted computation protocol.

We now discuss three important notions for an assisted
computation protocol: correctness, blindness and verifiabil-
ity. In contrast to the discrete-variable case, here even if Bob
is honest and there is no noise, the outcome is intrinsically
probabilistic due to the fact that the resource state is finitely-
squeezed. Hence, we must adapt the following definitions of
correctness and verifiability to account for this.

Definition 1 (δ-correctness). Let |Ψout(y)〉 denote the m-
mode state that is the outcome of the intended computation
that Alice wants to perform, where y denotes the string of
measurement results of the computation device that the out-
come could depend on. Then Πcorrect = |Ψout(y)〉〈Ψout(y)|
is the projector onto the correct outcome of Alice’s compu-
tation. Let σout(y) be the outcome of Alice’s computation
when she delegates part of her computation to Bob and Bob is
honest. Then we say our delegation protocol is δ-correct for
0 ≤ δ ≤ 1 [74] when the average probability of σout(y) being
projected onto the correct outcomes satisfies∫

dyTr(Πcorrectσout(y))P (σout(y)) ≥ δ , (2)

where P (σout(y)) is the probability of obtaining measurement
result y if Bob is honest. So if Bob is honest, Alice obtains

the correct outcome to her computation with high probability
if δ is large.

Definition 2 (Blindness). A delegation protocol is said to
be blind if the input state, the operations performed and the
output state remain hidden from Bob (see [11] and references
therein for a formal definition).

Definition 3 (ε-verifiability). Let ρout(y) be the result-
ing outcome of this computation. The probability of ρout(y)
projecting onto incorrect outcomes of the computation is de-
noted P (incorrect) = Tr(Πincorrectρout(y)), where Πincorrect =
11m − |Ψout(y)〉〈Ψout(y)|. Let P (accept) be the probability
that Alice accepts the resource state given by Bob, accord-
ing to her verification test. Then the assisted computation is
said to be ε-verifiable (for 0 ≤ ε ≤ 1) if the average joint
probability

∫
dyP (incorrect∩ accept)P (y) ≤ ε, where P (y)

is the probability of obtaining measurement result y for the
accepted resource state.

Blind delegation and verification protocol – Alice wishes
to perform an arbitrary CV quantum computation with out-
put U |Ψin〉, where U is a generic CV unitary operation and
|Ψin〉 the m-mode Gaussian input state. Alice only requests
the same cubic phase state from Bob. Thus, blindness is an
intrinsic, built-in feature of the scheme and only an upper
bound on the number of cubic phase gates in the computation
is revealed to Bob. Verification, in turn, is based on a novel
non-Gaussian state fidelity witness specially tailored for the
cubic phase state, inspired by the witnesses of [53]. This is
measured by Alice on a subset of Bob’s supplied states, used
as test set. Remarkably, the witness requires only Gaussian
measurements on at most four homodyne-detection bases per
test mode, which is interesting in its own right. In addition,
to estimate the expectation value of the witness, we use im-
portance sampling techniques [54], which allow the test-set
size required for verifiability to scale only quadratically with
the number of cubic phase states consumed by the computa-
tion. Hence, our protocol is not only experimentally friendly
to Alice but also efficient in the number of single-mode non-
Gaussian resource states required. We summarise our blind
delegation and verification protocol below.

Protocol 1. Verified and blind assisted CV quantum compu-
tation

0. Alice’s resources

(a) A m-mode Gaussian state, |Ψin〉 which is the in-
put state for her computation.

(b) A circuit description representing Gaussian mea-
surements and a unitary operation, U , that is de-
composed into Gaussian gates and M cubic phase
gates.

(c) Parameters chosen for the verification test: thresh-
old fidelity FT < 1 (minimum fidelity permitted
for the fidelity between states σ and ρ defined be-
low), significance level β (i.e., maximum failure
probability of the test), and an estimation error η
(with respect to the quantity Flow defined below)
that satisfies η ≤ (1− FT )/2.



3

1. Alice requests (N + 1) copies of the pure state σ =
(|γ̃〉s〈γ̃|s)⊗M from Bob. We will see later how N
scales with M , β and η.

2. Bob sends to Alice (N + 1) copies of an M -mode state
ρ. If he is honest, ρ = σ. If Bob is dishonest, he sends
Alice the state ρ⊗(N+1) where ρ 6= σ and we assume
he cannot send more general states.

3. Alice retains the state ρ for her computation and runs
the verification test on the remainingN copies of ρ. For
the verification test, Alice makes an estimate F (est)

low of
the quantity Flow ≡ Tr(Wρ). The observable W is a
fidelity witness for the state σ, given in Eq. (5). The
quantity Flow is a lower bound on the fidelity F (σ, ρ)
between ρ and σ. It can be estimated up to precision η
with homodyne detection on ρ⊗N , following the details
of the importance sampling method in Appendix D. We
say Alice rejects ρ⊗N if F (est)

low < FT + η and accepts
otherwise.

4. If Alice accepts, she uses the remaining state ρ for her
computation. More precisely, she uses ρ to perform M
cubic phase gates on her input state |Ψin〉 by means of a
gate teleportation protocol [75]. See Figs. 1 and 2.

When Bob is honest, gate teleportation and Gaussian oper-
ations allow Alice to approximately implement C(γ) on any
desired mode of her input state |Ψin〉. This protocol is both
δ-correct and blind as shown by the following theorem.

FIG. 1: Universal CV quantum computation. To implement an arbi-
trary CV computationU |Ψin〉, one requires only Gaussian operations
and at least one non-Gaussian operation. The non-Gaussian opera-
tion can be implemented by Alice when she uses Bob’s non-Gaussian
state resource ρ and applies unitary Gaussian operations G and Gaus-
sian measurementsM. See Fig. 2 and the text for more details.

Theorem 1. Our assisted computation protocol is δ-correct
with δ = 1 and reveals to Bob only an upper bound on the
number of cubic phase states used.

Proof. Our assisted computation protocol relies on the gate
teleportation protocol in Fig. 2. If the m-mode input state
in the top register is |Ψin〉, then the m-mode output state

in the top register is |Ψout〉s = (11k ⊗ gs/r(y/r)C(γ) ⊗
11m−k−1)|Ψin〉, where gs(y) = e−(x̂+y)

2/(2s2) and y is the
measurement result in the bottom register. The gate telepor-
tation protocol thus enables the application of a non-Gaussian
operation on |Ψin〉. More specifically, it applies a cubic phase
gate on the (k+ 1)th mode of |Ψin〉 up to a Gaussian factor for
k = 0, 1, ...,m − 1 [52, 55]. For this protocol we can write
Πcorrect = |Ψout〉s〈Ψout|s. Thus Tr(Πcorrect|Ψout〉s〈Ψout|s) = 1.
Then

∫
dyTr(Πcorrectσout(y))P (σout(y)) = 1 and we have

perfect correctness, i.e., δ = 1 in Eq. 2. See Appendix A
for more details.

We note that if Bob’s resource state is the infinitely
squeezed version of the cubic phase state, the output state of
Fig. 2 becomes exactly the cubic phase gate applied to the
initial state |Ψin〉, since s→∞ implies gs(y)→ 1. Although
finite s gives a correction term to the cubic phase gate, this
does not change our correctness argument since we only de-
sire to perform a fixed non-Gaussian gate and not necessarily
exactly the cubic phase gate.

To show blindness in the sense that Bob can only learn the
upper bound on the number of cubic states used, we first note
that Bob has no access to any Gaussian part of the compu-
tation, which includes the input state |Ψin〉 and the results of
the (Gaussian) measurements. Furthermore, he cannot recon-
struct the exact value of the parameters γ used by Alice during
the computation since Alice decides the squeezing parameter
r = (γ/γ̃)1/3 used. This means the only useful information
Bob obtains is the number of resource states that Alice re-
quests, which is an upper bound on the size of the computa-
tion.

FIG. 2: Alice’s circuit to implement a cubic phase gate. Alice im-
plements an approximation to the cubic phase gate 11k ⊗ C(γ) ⊗
11m−k−1 acting on the state |Ψin〉 by using the resource state |γ̃〉s
given by Bob. Here C(γ) acts on the (k + 1)th mode of |Ψin〉 and
the resource state is on the (m+ 1)th mode. Here S(r) is the single-
mode squeezing operator with r = (γ/γ̃)1/3, where the value r is
only known to Alice. The initial gate S1 ≡ 11k ⊗ S(r) ⊗ 11m−k−1

and final gate S2 ≡ 11k ⊗ S†(r)G−1(y) ⊗ 11m−k−1 acting on
the top register are used to hide the value of γ from Bob. Here
G−1(y) = e−iγ̃y

3

e−3iγ̃yx̂(x̂+y) is a Gaussian operator and y is the
measurement outcome on the lower register of the operator x̂.

Now we describe Alice’s verification test, which is based
on the notion of fidelity witnesses [53, 54, 56, 57]. These wit-
nesses bypass the need for full state tomography [58] of Bob’s
state. They allow for verification in the general setting of
independent and identically distributed (i.i.d) states and also
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non-i.i.d scenarios in the discrete-variable setting [59]. We
assume that Alice has access to identical copies of Bob’s re-
source state (the i.i.d setting). Our specific test relies on two
ingredients. The first is to show a relationship between the
fidelity between the final ideal and real m-mode states of Al-
ice’s computation and the fidelity between the ideal and real
injected M -mode resource states. The second is to obtain a
tight lower bound on the latter fidelity by means of a proper
fidelity witnessW using only Gaussian measurements, which
Alice can perform. Finally, Alice’s accept/reject decision is
based on whether the value of the latter lower bound is high
enough in comparison with the chosen threshold FT .

We start with the first ingredient. We call the initial
ideal state that Alice possesses (on both input and injected
modes) σin = |Ψin〉〈Ψin| ⊗ σ, where σ = (|γ̃〉s〈γ̃|s)⊗M is
the ideal resource state. The outcome of Alice’s intended
computation consists of an m-mode pure state (for each
measurement outcome) that can be expressed as σout(y) =
Ey(σin)/Tr(Ey(σin)). If Bob gives Alice ρ, her real initial
state is ρin = |Ψin〉〈Ψin| ⊗ ρ and her output state would be
ρout(y) = Ey(ρin)/Tr(Ey(ρin)). Linearity of Ey then implies
the following lemma, proved in Appendix B.

Lemma 1. The fidelity between the final states σout(y) and
ρout(y) satisfies the bound

F (σout(y), ρout(y)) ≥ F (σ, ρ)
Tr(Ey(σin))

Tr(Ey(ρin))
. (3)

Here we note that, in the case of finite squeezing, in gen-
eral Tr(Ey(σin))/Tr(Ey(ρin)) 6= 1. However, as we will see
later from Theorem 2, this inequality is sufficient to imply ε-
verifiability independent of the amount of squeezing s.

We now focus on the second ingredient: efficient estima-
tion the observable lower bound Flow ≡ Tr(Wρ) to the fidelity
F (σ, ρ) by measuring an adequate fidelity witnessW . A Her-
mitian observable W is a fidelity witness with respect to the
target state σ if it has the properties that

Flow ≡ Tr(Wρ) ≤ F (σ, ρ) (4)

for all ρ (universal lower bound) and Flow = 1 for ρ = σ
(tightness). Our specific witness is given by the following:

Lemma 2. The observable

W =

(
1 +

M

2

)
11M −

M−1∑
k=0

11k ⊗ wk+1 ⊗ 11M−k−1 , (5)

is a fidelity witness with respect to the target state σ, where
wk+1 = (s2/2)(x̂2k+1 + 9γ̃2x̂4k+1) + (1/(2s2))(p̂2k+1 +

2γ̃p̂3k+1) + (1/(2s2))γ̃((x̂k+1 − p̂k+1)3 − (x̂k+1 + p̂k+1)3).
Thus W is composed entirely of O(M) terms accessible
through Gaussian measurements alone [76]

Proof. See Appendix C.
Finally, we consider the accept/reject criterion of the verifi-

cation test. A threshold fidelity 0 < FT < 1 and a significance
level 0 < β < 1 means that Alice must, with probability at

least 1 − β, reject the state ρ if F (σ, ρ) < FT . To this end,
the number N of copies of ρ she asks Bob for must be high
enough for her to estimate Flow up to precision η and with
failure probability at most β. In other words, the probability
obeys P (|F (est)

low − Flow| < η) ≥ 1 − β. With this, she then
rejects whenever F (est)

low < FT + η and accepts otherwise. This
guarantees the desired reject condition above. Conversely, if
ρ is accepted (i.e., if F (est)

low ≥ FT + η), she knows that, with
probability at least 1− β, that F (σ, ρ) ≥ FT .

The exact scaling of N with respect to M , η and β defines
the so-called sample complexity of the test, which depends
on the specific measurement scheme chosen. Our method of
directly estimating Flow is to use importance sampling tech-
niques [54, 60, 61]. The basic idea of the importance sampling
method is to choose the observables to measure probabilisti-
cally according to their importance forW . The relative impor-
tance of each observable, given by the size of the coefficients
λi, dictates the frequency with which it is measured, with less
important observables measured less frequently. This opti-
mises the total number of measurements required.

We begin by inserting Eq. (5) into Eq. (4) to find Flow = 1+

M/2 +
∑6M
j=0 λiTr(f̂iρ), where λi are coefficients depending

only on s and γ̃ and f̂i = 11k ⊗ x̂′nk+1 ⊗ 11M−k−1, where n =

1, 2, 3, 4 and x̂′ = x̂, p̂, x̂±p̂ [77]. We can always rewrite f̂i =∫
dffP̂i where f = (x′k+1)n, P̂i = |x′1, ..., x′M 〉〈x′1, ..., x′M |

is the projection onto quadratures x̂′l in modes l = 1, ...,M ,
x′k+1 is the eigenvalue of the operator f̂i and df ≡ dx′1...dx′M .
We note that even though f̂i are operators up to fourth order
in the quadratures x̂′, Gaussian measurements are sufficient to
find the eigenvalues f = (x′k+1)n since the eigenvalues x′k+1

can be found by Gaussian projective measurements P̂i.
Then to estimate Flow, we can rewrite

∑6M
j=0 λiTr(f̂iρ) =∑6M

j=0

∫
dfp(i, f)Fi,f ≡ 〈F〉 where F is a random variable

taking the value Fi,f =
∑6M
j=0 |λj |sign(λi)f with probabil-

ity p(i, f) = Tr(P̂iρ)|λi|/
∑6M
j=0 |λj |. See Appendix D for a

derivation. To sample from F, we begin by sampling the in-
dex iwith probability |λi|/(

∑6M
j=0 |λj |). Then given this i, we

find the eigenvalue f corresponding to f̂i, which occurs with
probability Tr(P̂iρ). From this f value, Fi,f can be sampled
with probability p(i, f).

For the gth sampling trial, where g = 1, ..., N , let the value
of the corresponding Fi,f be denoted F (g). For each gth trial, a
single copy of ρ is consumed. We can then obtain the estimate
F (est)

low = (1/N)
∑N
g=1 F

(g) by using N copies of ρ. In the
limit N → ∞, F (est)

low will output the exact value Flow. With
this method, we can obtain the following upper bound for N
to certify our cubic phase state.

Lemma 3. (Sampling complexity of the verification protocol)
If the number of copies of ρ used in our verification test satis-
fies

N ∼ O
(
M2

η2
ln

(
1

β

))
, (6)
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then P (|F (est)
low − Flow| < η) ≥ 1− β.

Proof. We use Hoeffding’s inequality that leads to a sam-
ple complexity exponentially better in β compared to previous
scalings based on Chebyshev’s inequality [62]. For details of
the proof see Appendix E.

This result provides an upper bound to the sample complex-
ity of our verification test and relies on the physical assump-
tion of finite energy available per mode of ρ. This also makes
N efficient in the number of cubic phase states consumed by
the computation.

Next, we shall show that our assisted protocol is ε-
verifiable, given the above results.

Theorem 2. Let N , η, β and FT be respectively the num-
ber of copies of the M -mode state ρ, the precision, the failure
probability and threshold fidelity used in Protocol 1. Assum-
ing finite energy available per mode of ρ, our assisted protocol
is ε-verifiable, where ε = 1− (1− β)FT , where β and N are
related by Lemma 3.

Proof. Our aim is to bound
∫
dyP (incorrect∩accept)P (y),

which is the probability that Alice accepts ρ from Bob yet ob-
tains an incorrect outcome to her computation. From Bayes’
rule and P (accept) ≤ 1, we have P (incorrect ∩ accept) =
P (incorrect|accept)P (accept) ≤ P (incorrect|accept).
This means

∫
dyP (incorrect ∩ accept)P (y) ≤∫

dyP (incorrect|accept)P (y).
Thus, to show ε-verifiability, it suffices to

find an upper bound for the average condi-
tional probability

∫
dyP (incorrect|accept)P (y) =∫

dyTr(Πincorrectρout(y))P (y), where Tr(Πincorrectρout(y)) =
1 − Tr(σout(y)ρout(y)) = 1 − F (σout(y), ρout(y)),
ρout(y) = Ey(|Ψin〉〉Ψin| ⊗ ρ) and P (y) = P (ρout(y))
if Alice accepts ρ.

Suppose σout(y) = Ey(σin)/Tr(Ey(σin)) is the output state
of Alice’s circuit (with honest Bob) which includes projective
measurements. For finite-squeezing this would also depend on
measurement results y. This is a pure state, so we can write

P (incorrect|accept) =
Tr((1m − σout(y))(Ey(ρin)

Tr(Ey(ρin))

= Tr((1m − σout(y))ρout(y)). (7)

This means
∫
dyP (incorrect|accept)P (y) = 1 −∫

dyTr(σout(y)ρout(y))P (y), where P (y) = Tr(Ey(ρin))
is the probability of Alice’s outcome state having measure-
ment outcomes y if Alice accepts ρin.

We can now show the upper-bound∫
dyP (incorrect|accept) ≤ ε to demonstrate that our

scheme is ε-verifiable, where ε = 1− (1− β)FT .
The first step is to compute P (incorrect|accept, y) by ex-

panding the RHS of Eq. (7)

P (incorrect|accept) = 1−F(σout(y), ρout(y)). (8)

In our Lemma 1, we showed that, without any ex-
tra assumptions, that the fidelity between the final states
σout(y) and ρout(y) satisfies the bound F (σout(y), ρout(y)) ≥
F (σ, ρ)Tr(Ey(σin))/Tr(Ey(ρin). To simplify notation, we can
write Tr(Ey(σin)) = py(σin) and Tr(Ey(ρin)) = P (y) which

correspond to the probabilities of the final states of the de-
vice giving measurements results y for input states σin and
ρin respectively. Then inserting Lemma 1 into Eq. (8) we ar-
rive atP (incorrect|accept) ≤ 1−F(σ, ρ)py(σin)/P (y), which
means ∫

dyP (incorrect|accept)P (y)

≤
∫
dy(1−F(σ, ρ)

py(σin)

P (y)
)P (y)

= 1−F(σ, ρ), (9)

since
∫
dypy(σin) = 1. Alice’s accept condition implies that

F (σ, ρ) ≥ FT with probability at least 1− β. This means we
can now write ρ = (1−β′)(F ′σ+(1−F ′)σ⊥)+β′σ′, where
F ′ ≥ FT , β′ ≤ β, Tr(σσ⊥) = 0 and σ′ is a q uantum state.
This implies F (σ, ρ) = Tr(σρ) ≥ (1 − β′)F ′ ≥ (1 − β)FT .
Thus from Eq. (9), we have∫

dyP (incorrect|accept)P (y) ≤ 1− (1− β)FT .

Choosing ε = 1−(1−β)FT gives us the bound we need. This
is true for finite-squeezing as well as infinite-squeezing.

As a final remark, it is important to point out that the i.i.d as-
sumption for Bob’s state preparation can actually be removed.
This relies on Serfling’s bound, which is an improvement over
Hoeffding’s bound as it does not require the i.i.d assumption
(it considers sampling without replacement) [63]. CV stabi-
lizer states can be verified using a binary-outcome test based
on the fact that they are extremal on stabilizer operators [64].
Since such a test defines a two-dimensional random variable,
it can be handled with Serfling’s bound. Remarkably, a simi-
lar test can be designed for the single-mode cubic phase state,
as it is extremal on the fidelity witness W = 3/2 − w intro-
duced in Eq. (5). More precisely, the cubic phase state is, by
construction, a unique eigenstate ofW with (maximal) eigen-
value 1. This allows us to safely relax the i.i.d assumption. We
leave the details of this fascinating prospect for future work.
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Appendix A: Gate teleportation protocol for the cubic phase
gate

We begin with the circuit in Fig. 2 with initial state (11m−1⊗
S(r)⊗ 11)|Ψ〉in ⊗ |γ̃〉s, where we choose k = m− 1 here for
simplicity. The results generalise easily for any other k =
0, ..,m. Let x = (x1, . . . , xm). We can write the m-mode
state as |Ψin〉 =

∫
dnxψ(x)|x〉, for some bounded function

ψ(x), then (11m−1⊗S(r))|Ψin〉 =
∫
dmxψr(x)|x〉. We apply

the control operator 11m−1 ⊗ exp(ix̂ ⊗ p̂) on the initial state,
and measure x̂ in the last register with outcome y. The final
state becomes

|Ψ〉s ⊗ |y〉 (A1)

=(11m ⊗ |y〉〈y|)(11m−1 ⊗ eix̂⊗p̂)
× (11m−1 ⊗ S(r)⊗ 11)(|Ψin〉 ⊗ |γ̃〉s)

=
11m ⊗ |y〉〈y|√

sπ1/4
(11m−1 ⊗ eix̂⊗p̂)

∫
dmx

∫
dxψr(x)

× eiγ̃x
3

e−x
2/(2s2)|x, x〉

=
11m ⊗ |y〉〈y|√

sπ1/4
(11m ⊗ eixmp̂)

∫
dmx

∫
xψr(x)

× eiγ̃x
3

e−x
2/(2s2)|x, x〉

=
11m ⊗ |y〉〈y|√

sπ1/4

∫
dmx

∫
dxeiγ̃x

3

e−x
2/(2s2)ψr(x)

× |x, x− xm〉

=
(11m−1 ⊗G(y)eiγ̃x̂

3

gs(y)S(r)⊗ 11)|Ψin〉 ⊗ |y〉√
sπ1/4

,

(A2)
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where G(y) ≡ exp(iγ̃y3) exp(3iγ̃yx̂(y + x̂)) is a uni-
tary Gaussian correction in the operator x̂, and gs(y) =
exp(−(x̂ + y)2/(2s2)) is a smearing operation that applies
a Gaussian envelope, with width ∼ 1/s2 centered on y, onto
the state it acts upon.

Using S†(r)x̂S(r) = rx̂, we can rewrite the above state as
|Ψ〉s = G(y)eiγ̃x̂

3

S(r)|Ψ̃in〉, where |Ψ̃in〉 = gs/r(y/r)|Ψin〉
is now a Gaussian-smeared state where the Gaussian envelope
has width ∼ s/r centered on y/r. Note that this Gaussian en-
velope is of the same type that appears in the usual CV cluster
state computation [65].

Then Alice applies a unitary Gaussian 11⊗(m−1) ⊗
S†(r)G−1(y) onto |Ψ〉s to obtain

|Ψout(y)〉s = eiγx̂
3

gs/r(y/r)|Ψin〉 , (A3)

where r = (γ/γ̃)1/3.
Note that in the infinite squeezing s → ∞ limit, we obtain

the exact cubic phase gate operation |Ψout〉s→∞ = eiγx̂
3 |Ψin〉

which is independent of y.

Instead of the teleportation circuit in Fig. 2, it is also
possible to use either the passive linear optics circuit in [47]
or an alternative circuit in [66], which both have as inputs
cubic phase states as the non-Gaussian resource state. Since
our results only depend on having stand-alone cubic phase
states and Gaussian channels, our main results equally apply
for these circuits too.

To clarify, for the finite squeezing scenario, the ideal out-
come is defined in Eq. (A3), which depends on measurement
outcomes. This in turn means that P (incorrect), which is
related to one minus the overlap between the actual and
ideal outcome, is generally not zero even if the probability
of getting a particular homodyne measurement outcome
has measure zero. The case is even simpler in the infinite
squeezing limit where the ideal outcome does not depend on
measurement outcomes at all.

We note that in continuous-variable quantum computation
it is possible for finite squeezing effects to limit the effective
length of the computation (e.g., see [67]), depending on the
amount of squeezing available. This is an important issue
concerning all continuous-variable schemes, certainly worth
future investigations, but it is outside the scope of this current
work.

Finally, we know that currently a high amount of squeezing
may not be necessarily easier to experimentally achieve
compared to non-Gaussian resources like single-photon
states and photon-number resolving detection. How-
ever, we do not consider the latter non-Gaussian resources,
as it is not obvious how to design simple gates with them [55].

Appendix B: Proof of Lemma 1

First, we show that, for any mixed state ρin and any pure
state σin, there exists a density matrix σ⊥ such that

ρin = F (σin, ρin)σin + (1− F (σin, ρin))σ⊥ (B1)

and F (σ⊥, σin) = 0. In our delegation protocol, σin is
an m + M -mode state |Ψin〉〈Ψin| ⊗ σ, where σ is a pure
M -mode product state. Given that F (σin, ρin) = Tr(σinρin),
we can interpret this fidelity to be the projection of ρin onto
the subspace spanned by σin. This is because the trace of
the product of two matrices is a valid Hilbert-Schmidt inner
product. All the other components of ρin must be in the
orthogonal subspace to σin, σ⊥. Thus Eq. (B1) must hold
while satisfying F (σ⊥, σin) = 0.

Next, we demonstrate σ⊥ is a valid density matrix.
There are two requirements: Tr(σ⊥) = 1, and σ⊥ is positive
semidefinite. The first condition follows directly by taking the
trace on both sides of Eq. (B1). To show the latter, we rewrite
σ⊥ = OρinO†, whereO = (11m+M−σin)/

√
1− F (σin, ρin),

which we note satisfies the requisite Tr(σinσ
⊥) = 0. Since

ρin is positive semidefinite, it can be written as ρin = A†A,
for some matrix A. Thus σ⊥ is also positive semidefinite
because we can write σ⊥ = (AO†)†(AO†).

Recall that σin = |Ψin〉〈Ψin| ⊗ σ, where σ is a pure state,
and the actual initial state to be tested is ρin = |Ψin〉〈Ψin| ⊗
ρ, where ρ is in general a mixed state. Then, using these in
Eq. (B1) gives us

ρin = F (σ, ρ)σin + (1− F (σ, ρ))σ⊥ , (B2)

where F (σin, σ
⊥) = 0. Applying the linear operator Ey that

represents the teleportation circuit to Eq. (B2),

Ey(ρin) = F (σ, ρ)Ey(σin) + (1− F (σ, ρ))Ey(σ⊥) . (B3)

Since σout(y) is a pure state (where in the case of performing
a single cubic gate σout(y) = |Ψout(y)〉s〈Ψout(y)|s), we can
write the fidelity between σout(y) and ρout(y) as

F (σout(y), ρout(y)) = Tr(σout(y)ρout(y)) . (B4)

The fidelity between the final states σout(y) and ρout(y) then
satisfies the bound

F (σout(y), ρout(y)) =
Tr(Ey(σin)Ey(ρin))

Tr(Ey(σin))Tr(Ey(ρin))

=
F (σ, ρ)Tr(Ey(σin)2) + (1− F (σ, ρ))Tr(Ey(σin)Ey(σ⊥))

Tr(Ey(σin))Tr(Ey(ρin))

≥ F (σ, ρ)
Tr(Ey(σin)2)

Tr(Ey(σin))Tr(Ey(ρin))
= F (σ, ρ)

Tr(Ey(σin))

Tr(Ey(ρin))
.

(B5)

In the third line we used the fact that 1 − F (σ, ρ) ≥ 0 and
Tr(Ey(σin)Ey(σ⊥)) ≥ 0 and Ey(σ⊥) is positive semidefinite.
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In the last equality we used the fact that Ey(σin)/Tr(Ey(σin))
is a pure normalised state, so Tr(Ey(σin)2)/(Tr(Ey(σin)))2 =
1. Note that in the infinite squeezing limit we have
Tr(Ey(σin)) = Tr(Ey(ρin)), so F (σout(y), ρout(y)) ≥
F(σ, ρ).

Appendix C: Deriving Flow

We can write our ideal M -mode resource state as σ =
(|γ̃〉s〈γ̃|s)⊗M = V ⊗M |0〉M 〈0|M (V †)⊗M , where V =
C(γ̃)S(s) and |0〉M is theM -mode vacuum state. This means
we can rewrite the squared quantum fidelity as

F (σ, ρ) = Tr(σρ) = Tr(|0〉M 〈0|M ((V †)⊗MρV ⊗M )) .
(C1)

To find a lower bound to this quantity, we first note that

|0〉M 〈0|M ≥ 11M −
M−1∑
k=0

11k ⊗ n̂k+1 ⊗ 11M−k−1 , (C2)

where n̂k is the number operator acting on the kth mode.
We can see this inequality by acting the left and right-hand
side with the Fock states |n1, ..., nM 〉, where n1, ..., nM are
non-negative integers. These Fock states form a complete
eigenbasis. When using the Fock state |0〉M , the inequality
above becomes an equality. Otherwise, the inequality implies
0 ≥ 1− (n1 + ...+ nM ), which always holds.

Since (V †)⊗MρV ⊗M is positive semidefinite, then
Eqs. (C1) and (C2) gives the lower bound to the fidelity

F (σ, ρ) ≥ Tr(Wρ) ≡ Flow , (C3)

where the fidelity witnessW is

W = 11M −
M−1∑
k=0

11k ⊗ V †n̂k+1V ⊗ 11M−k−1 . (C4)

The implication of this simple relation is that by writing
V n̂V † in terms of x̂ and p̂, we can find a lower bound on
fidelity by just measuring those quadratures of a given state ρ
to find how close it is to our true cubic phase state. Note that
this is a tight bound. This means if σ = ρ, then F = 1 = Flow.

To compute Flow, we find V n̂V † in terms of x̂ and p̂ by first
using

S(s)n̂S(s)† = a†a(2cosh2(log(s))− 1)

+ cosh(log(s))sinh(log(s))(a†a† + aa) + sinh2(log(s))11 ,
(C5)

where number operator n̂ = a†a can be defined in terms of
the creation and annihilation operators a† = (1/

√
2)(x̂ −

ip̂) and a = (1/
√

2)(x̂ + ip̂) respectively. By also using
exp(iγ̃x̂3)a† exp(−iγ̃x̂3) = (exp(iγ̃x̂3)a exp(−iγ̃x̂3))† =

(1/
√

2)(x̂+ 3iγ̃x̂2 − ip̂), we find

V n̂V † = −1

2
11 +

s2

2
(x̂2 + 9γ̃2x̂4) +

1

2s2
(p̂2 − 6γ̃x̂p̂x̂)

= −1

2
11 +

s2

2
(x̂2 + 9γ̃2x̂4) +

1

2s2
(p̂2 + 2γ̃p̂3)

+
1

2s2
γ̃((x̂− p̂)3 − (x̂+ p̂)3) , (C6)

where we used 2x̂p̂x̂ = p̂x̂2 + x̂2p̂ in the first line. Inserting
Eq. (C6) into Eq. (C4) we can write

W =

(
1 +

M

2

)
11M −

M−1∑
k=0

11k ⊗ wk+1 ⊗ 11M−k−1 , (C7)

where wk+1 = (s2/2)(x̂2k+1+9γ̃2x̂4k+1)+(1/(2s2))(p̂2k+1+

2γ̃p̂3k+1) + (1/(2s2))γ̃((x̂k+1 − p̂k+1)3 − (x̂k+1 + p̂k+1)3).
Then we can write Flow as the sum

Flow = 1 +
M

2
+

6M∑
i=0

λiTr(f̂iρ) , (C8)

where λi are real coefficients and f̂i are tensor-products of
quadrature operators with unit coefficients obtained by insert-
ing Eq. (C6) into Eqs. (C3) and (C4). Thus λ1+6k = −s2/2,
λ2+6k = −9γ̃2s2/2, λ3+6k = −1/(2s2), λ4+6k = −γ̃/s2,
λ5+6k = −γ̃/(2s2), λ6+6k = γ̃/(2s2) and f̂1+6k =

11k ⊗ x̂k+1 ⊗ 11M−k−1, f̂2+6k = 11k ⊗ x̂4k+1 ⊗ 11M−k−1,
f̂3+6k = 11k ⊗ p̂2k+1 ⊗ 11M−k−1, f̂4+6k = 11k ⊗ p̂3k+1 ⊗
11M−k−1, f̂5+6k = 11k ⊗ (x̂k+1 − p̂k+1)3 ⊗ 11M−k−1,
f̂5+6k = 11k ⊗ (x̂k+1 + p̂k+1)3 ⊗ 11M−k−1, where
k = 0, 1, 2, ... with a maximum value of M − 1.

We note that state certification can also be achieved us-
ing state tomography by implementing homodyne detection
[68, 69]. However, this requires homodyning all (in principle
infinitely many) quadratures instead of just four of them per
mode as in our method here.

Appendix D: Importance sampling method

Here we include more details on how Flow can be estimated
using importance sampling techniques [54, 60, 61].

From Eq. (C8) we defined Flow = 1 + M/2 +∑6M
i=0 λiTr(f̂iρ) and f̂i = 11k ⊗ x̂′nk+1 ⊗ 11M−k−1, where

n = 1, 2, 3, 4 and x̂′ = x̂, p̂, x̂ ± p̂. Since M is known,
we only need to estimate the quantity

∑6M
i=0 λiTr(f̂iρ). We

then define a random variable F which takes the values
Fi,f ≡

∑6M
j=0 |λj |sign(λi)f , where f are the eigenvalues of

the quadrature operators f̂i =
∫
dffP̂i, where f = (x′k+1)n,

Pi = |x′1, ..., x′M 〉〈x′1, ..., x′M | is the projection onto quadra-
tures x̂′l in modes l = 1, ...,M , x′k+1 is the eigenvalue of the
operator f̂i and df ≡ dx′1...dx′M .
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We can also define a probability density p(i, f) =

p(i)p(f |i) for F, where p(i) = |λi|/
∑6M
j=0 |λj |. The con-

ditional probability term p(f |i) = Tr(P̂iρ). This means we
can rewrite Flow − 1 −M/2 =

∑6M
i=0

∫
dfp(i, f)Fi,f , which

we show below

Flow − 1−M/2 =

6M∑
i=0

λiTr(f̂iρ)

=

6M∑
i=0

|λi|∑6M
j=0 |λj |

Tr(sign(λi)

6M∑
k=0

|λk|f̂iρ)

=

6M∑
i=0

|λi|∑6M
j=0 |λj |

Tr(sign(λi)

6M∑
k=0

|λk|
∫
dffP̂i,fρ)

=

6M∑
i=0

∫
df

|λi|∑6M
j=0 |λj |

Tr(P̂i,fρ)

6M∑
k=0

|λk|sign(λi)f

=

6M∑
i=0

∫
dfp(i, f)Fi,f ≡ 〈F〉 . (D1)

In this way, we can consider Flow as the expectation value of
the random variable F which takes on the values Fi,f with
probability p(i, f).

Appendix E: Sample complexity

We know from Appendix D that F is a random variable
which takes value Fi,f with probability p(i, f). Due to finite
energy constraints in real experiments, this variable is always
bounded in the interval [minFi,f ,maxFi,f ]. Then from Ho-
effding’s inequality, if we sample Fi,f values N times, the

probability |F (est)
low − Flow| ≥ η is true is upper bounded by

P (|F (est)
low − Flow| ≥ η) ≤ e−2Nη

2/(minFi,f−maxFi,f )
2

. (E1)

Thus the minimal number of copies of ρ required to ensure
P (|F (est)

low − Flow| < η) ≥ 1 − β is N ∼ O(((minFi,f −
maxFi,f )2/η2) ln(1/β))). In the following, we derive the up-
per bound to (minFi,f − maxFi,f )2 ≤ KM2, where K is a
bounded constant independent of M .

From Appendix D we know we can write
Fi,f =

∑6M
j=0 |λj |sign(λi)f , which means maxFi,f ≤∑6M

j=0 |λj ||f | ≤ 6Mmax(|λj |)max(|f |) and minFi,f ≥
−6Mmax(|λj |)max(|f |). Thus

(minFi,f −maxFi,f )2 ≤ 4(6M)2max(|λj |)2max(|f |)2.
(E2)

We note that λj depends only on the squeezing s and γ̃ and
under physical assumptions of finite energy available to Al-
ice and Bob, |λj | is bounded from above and is independent
of M . Also, f̂j are all local quadrature operators polynomial
in x̂ and p̂ up to order 4. Since the operators are local, the
maximum values of |f | do not depend on M and can be re-
lated to an upper bound of the energy of ρ per mode when the
quadrature operators are quadratic. Otherwise, we can assume
finite upper bounds of the higher moments of the quadrature
operators. So (minFi,f − maxFi,f )2 ≤ KM2, where K is a
bounded constant independent of M . Therefore, if

N ∼ O
(
M2

η2
ln

(
1

β

))
, (E3)

then P (|F (est)
low − Flow| < η) ≥ 1− β.
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