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Based on a generic quantum open system model, we study the geometric nature of decoherence by
defining a complex-valued geometric phase through stochastic pure states describing non-unitary,
non-cyclic and non-adiabatic evolutions. The ensemble average of the complex geometric phases for
the pure stochastic states yields a conventional geometric phase together with an amplitude factor.
We show that the decoherence process described by the decaying amplitude can be a geometric
quantity independent of the system’s dynamics. It is a remarkable fact that the geometric phase of
a quantum system can serve as an ideal realisation of quantum gates due to its robustness against
dynamical errors, however, in this paper we show that, for some open quantum systems, a desirable
geometric phase may be accompanied by an unwanted robust geometric decoherence factor. Two
exactly solvable models are studied to demonstrate that, while the decoherence is a purely dynamical
effect for a dephasing two-level model, the decoherence in a dissipative two-level model can be a
geometric process. Finally, we show that such a geometric decoherence effect may be eliminated by
a non-perturbative control scheme.

I. INTRODUCTION

The dynamics and decoherence processes of quantum
open systems have been under intense research [1] in var-
ious different fields, most prominently in quantum foun-
dation [2, 3], quantum optics [4] and quantum informa-
tion [5]. The decoherence process is mostly understood
as a dynamical process due to the coupling to an exter-
nal environment. As all quantum systems are interact-
ing with their surroundings to some degree, the theory
of open system dynamics provides a complete description
of the quantum system under consideration [6, 7]. The
environment or bath that the system is embedded in is
commonly modelled as a set of bosons, fermions or spins,
and the initial state of the bath along with other details
such as the modes’ frequencies and coupling strengths
can be encoded in a bath correlation function, summa-
rizing the profile of the bath to account for its influences
on the system being studied. The quantum open system
models can be treated in many different ways, giving rise
to different decoherence effects. One of the major moti-
vations of this paper is to identify under what conditions
the quantum decoherence may be described as a geomet-
ric quantity varying with time and to quantify the geo-
metric decoherence for different types of environmental
noises. A primitive approach to quantum open systems
is to treat the bath as essentially memory-less, where the
dynamics of the system is not influenced by the history
of the bath, and is generally known as the Markovian ap-
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proximation. While it is a somewhat valid approximation
for weakly-coupled systems, it has been realized that for
more general cases, this Markovian description is inade-
quate, and fails to capture some very interesting mem-
ory effects. To fully describe the open system dynamics,
many approaches have been developed to deal with the
non-Markovian open systems [1], such as the path inte-
gral approach and the stochastic Schrödinger equation
approach. A very notable example of the latter is the
quantum state diffusion equation [8], which has been sys-
tematically developed to deal with systems linearly cou-
pled to bosonic as well as fermionic baths, without spec-
ifying the exact details of the system Hamiltonian or the
coupling mechanism. Exact or approximate analytical
solutions can be derived for many interesting systems [8–
12]. Exact master equations may also be obtained [13],
and various numerical methods have also been proposed
to deal with arbitrary systems [14–16].

The geometric phase associated with quantum evo-
lutions [17–19] has offered a lot of insight into many
interesting phenomena such as quantum phase transi-
tions [20] and the spin Hall effects [21]. The geometric
phase is an observable quantity that’s dependent only
on the path traced out by the state in the parametric
manifold, or in the projective Hilbert space, and is inde-
pendent of other details such as speed of the evolution
or the equation of motion, which does not need to be
a Schrödinger-like equation [19, 22, 23]. Over the last
decades, various extensions to the original adiabatic ge-
ometric phase have been proposed, including the non-
adiabatic AA phase [24], non-cyclic or non-Hermitian
case [22, 25, 26], as well as non-Abelian systems [27, 28],
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where one may get a matrix-valued extension of the geo-
metric phase, which is under very active scrutiny due to
its potential use in holonomic quantum computation [29–
31]. Mathematically, the geometric phase can best be un-
derstood via a parallel transport using a connection on a
fiber bundle [19, 22] or as the holonomy transform [32].
The purpose of this paper is to discuss the geometric pro-
cesses of a quantum open system coupled to a quantum
environment modelled by a set of bosons. Our stochas-
tic Schrödinger equation based on a general quantum
open system allows for a versatile treatment of gener-
alized complex geometric phases in the presence of vari-
ous environmental noises ranging from non-Markovian to
Markov noises beyond the general non-unitary quantum
dynamics [22, 25]. Our method can easily identify the
decoherence process associated with the open system’s
evolution being geometric or dynamic. It should be noted
that other types of open systems extensions of the geo-
metric phase are also discussed using either a purification
scheme to deal with mixed states [33], Markovian trajec-
tories [34, 35] or considering adiabatic evolutions [36],
and a recent extension to non-Markovian systems where
the environments have memory effects [37]. In this paper,
by using stochastic pure states generated by the stochas-
tic Schrödinger equation, we systematically study the ge-
ometry of decoherence of open systems with a complex
geometric phase [38–42], whose imaginary contribution
is interpreted as a decoherence factor [43]. For this pur-
pose, our focus is primarily on the decaying amplitude
information. One of the advantages of our method is
that we can directly take into account the environment
information such as memory times, coupling strengths
and correlations between two environments.

The organization of this paper is as follows. In Sec. II,
we define the complex geometric phase of a general open
quantum system based on the stochastic pure states gov-
erned by a diffusive stochastic Schrödinger equation. To
see its connection to geometry in a more transparent way,
we rewrite the complex phase as a connection one form.
The ensemble average of the pure state trajectories will
yield the desired information on the geometric dynamics
of the open quantum systems. In Sec. III, we study two
exactly solvable models consisting of a two-level system
embedded in a non-Markovian multi-mode bosonic bath.
It is found that the decoherence of a single two-level pure
dephasing model is a purely dynamical effect, namely, the
imaginary part of the geometric phase vanishes. How-
ever, for the dissipative model, the geometric component
describing the decoherence process can be efficiently iden-
tified. We show the geometric decaying factor persists in
various environmental memory time scales including the
Markovian limit. In Sec. IV, we show how to combat
the adversary geometric decoherence effect of the bath,
where a non-perturbative control known as the Leakage
elimination operator (LEO) [44] is utilized to correct the
open system trajectory so that the state stays close to the
closed system evolution. As a result, we get a geometric
phase that’s close to the target closed system one, while

correcting for the detrimental influence of the environ-
ment. We conclude in Sec. V, while some useful material
can be found in Appendix A.

II. COMPLEX GEOMETRIC PHASE FOR

OPEN QUANTUM SYSTEMS

Let us consider a generic quantum system embedded
in a bosonic bath (T = 0), with the total Hamiltonian
being (setting ~ = 1)

H = Hs +
∑

k

(gkL
†bk + g∗kLb

†
k) +

∑

k

ωkb
†
kbk, (1)

whereHs is the system Hamiltonian, L is called the Lind-
blad operator describing the system-bath coupling mech-

anism, and bk(b
†
k) is the annihilation (creation) operator

of the k-th bath mode. The influences of the bath on the
open system is encoded in a bath correlation function
α(t, s) =

∑

k |gk|
2e−iωk(t−s). In the Markovian case, the

correlation function becomes a δ function, but the Marko-
vian approximation may not be a valid choice for many
realistic physical systems and can fail to correctly predict
the properties of the system under consideration. In the
case of decoherence process, the decoherence time may
take place on time scales that can be of the same order
as the correlation time of the environment, then the stan-
dard Markov approximation is not valid anymore. The
general non-Markovian dynamics of the open quantum
system may be obtained systematically through a projec-
tion onto the coherent state basis |z〉 = |z1〉 ⊗ |z2〉 ⊗ . . .
of the bath modes in the interaction picture with respect
to the bath. We can then get a stochastic Schrödinger
equation living in the system Hilbert space known as the
non-Markovian quantum state diffusion (NMQSD) equa-
tion [8]

∂t|ψz∗(t)〉 =
[

−iHs + Lz∗t − L†Ō(t, z∗)
]

|ψz∗(t)〉

= Heff |ψz∗(t)〉, (2)

where z∗t = −i
∑

k gkz
∗
k exp(iωkt), Ō(t, z∗) =

∫ t

0 α(t, s)
δ

δz∗

s
is the average of the functional derivative

weighted by the memory function, and the pure state
|ψz∗(t)〉 is called a quantum trajectory. Defining an en-
semble average M(F) =

∫

d2z|z|2F/π, we can see that
M(ztz

∗
s ) = α(t, s) and the reduced density operator of

the system is given by ρ = M(|ψz∗(t)〉〈ψz(t)|). For
many systems, the Ō operator can be analytically ob-
tained, giving an exact non-Markovian description of the
dynamics of the system. Furthermore, an exact master
equation can also be obtained. For general systems, var-
ious numerical techniques have been developed to tackle
the problem. The stochastic Schrödinger equation (2)
dictates the dynamics of the pure state trajectory evolv-
ing under an effective non-Hermitian Hamiltonian. Es-
pecially in the Markovian regime, this equation describes
the conditioned system state when the bath is continu-
ously measured [45].
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For the open system described by (2), a stochastic
complex geometric phase can be defined for the pure
state |ψz∗(t)〉. It has been known that for an arbitrary
pure state |ψ〉 governed by an effective Hamiltonian Heff ,

there exists an adjoint state |ψ̃〉 evolving under H†
eff so

that the norm 〈ψ̃|ψ〉 is conserved during evolution. One
then tracks this pair of states in the projective Hilbert
space, which gives, in general, a complex-valued geomet-
ric phase. This approach has the advantage of tracking
the geometric effects of non-Hermitian evolutions. Since
in the NMQSD approach, the reduced density operator
is given by the ensemble average of |ψz∗〉〈ψz |, changes in
the norm of the trajectories may be understood as the
weight pi of some normalized pure state decomposition
of the density operator ρ =

∑

i pi|ψi〉〈ψi|. Accordingly,
we can track the geometric component of the dissipation
by using the complex-valued extension of the geometric
phase.
We start by reviewing the complex geometric phase

formulation for non-unitary, non-cyclic evolutions. Con-
sider a generic quantum state |ψ(t)〉 evolving under H(t)
(here H(t) is a generic non-Hermitian operator) and its

adjoint |ψ̃(t)〉 evolving under H†(t). One first defines
the complex phase between two states |a〉, |b〉 with their
respective adjoints [46],

exp[iϕ] =

√

〈ã|b〉

〈b̃|a〉
. (3)

In this setting, the dynamical phase can be written as

βdyn = −
∫ T

0
ds〈ψ̃(s)|H(s)|ψ(s)〉. To prove this, we may

remove the dynamical phase to form a horizontal vector
|ψh(t)〉 = exp[−iβdyn]|ψ(t)〉 and its corresponding ad-

joint |ψ̃h(t)〉 = exp[−iβ∗
dyn]|ψ̃(t)〉. It can be checked that

the parallel transport condition 〈ψ̃h(t)|∂t|ψh(t)〉 is satis-
fied so that the generalized phase it acquires is purely
geometric. Formally, one may write the geometric phase
as the total phase minus the dynamical phase,

β = βtot − βdyn

= −i log

[

√

〈ψ̃(0)|ψ(t)〉

〈ψ̃(t)|ψ(0)〉

]

+ i

∫ t

0

ds〈ψ̃(s)|∂s|ψ(s)〉.

(4)

Based on our stochastic Schrödinger equation approach,
one can identify |ψ(t)〉 = |ψz∗(t)〉 and the correspond-

ing adjoint |ψ̃(t)〉 = |ψ̃z(t)〉 evolving under the effective

Hamiltonian H†
eff = Hs − iL†zt + iŌ†(t, z)L to obtain

the complex-valued geometric phase for a single quan-
tum trajectory |ψz∗〉. Following [25] to define a general-
ized reference section on the appropriate bundle

|χ(t)〉 =

√

〈ψ̃(t)|ψ(0)〉

〈ψ̃(0)|ψ(t)〉
|ψ(t)〉 ≡ exp[−iϕ(t)]|ψ(t)〉 (5)

This reference section satisfies the following conditions

(i) The initial wave function |ψ(0)〉 and the initial ref-
erence section coincide.

(ii) π[|ψ(t)〉] = π[|χ(t)〉], where π[. . .] is the map to the
projective Hilbert space P . This means that both
wave functions project to the same curve in P .

(iii) |χ(t)〉 stays in phase with with |χ(0)〉 at all times,
where the phase is defined under Eq. (3).

With a corresponding adjoint reference section

〈χ̃(t)| = 〈ψ̃(t)|

√

〈ψ̃(0)|ψ(t)〉

〈ψ̃(t)|ψ(0)〉
, (6)

the complex non-cyclic geometric phase may now be
given by a integral of a connection one-form

β = i

∫

〈χ̃(s)|∂s|χ(s)〉ds. (7)

It can also be proved that the reference section and
hence the complex geometric phase is gauge-invariant
under a transformation |ψ(t)〉 → exp[iθ(t)]|ψ(t)〉, where
θ(t) may be complex. This definition does not need an
explicitly closed curve in the projective Hilbert space,
but one can still join both ends with a geodesic to form
a closed curve, so that one can formally write the geo-
metric phase as a surface integral over a solid angle to
highlight its geometric nature. To see this is the case,
consider the covariant derivativeDs = ∂s−As, where the
connection is given by As = 〈ϕ̃(s)|∂s|ϕ(s)〉. By letting
|u′〉 = Ds|ϕ(s)〉, one has an inner product 〈ũ′|u′〉 that
is gauge-invariant under |ψ(t)〉 → exp[iθ(t)]|ψ(t)〉. This
gives a metric on the projective space dl2 = 〈ũ′|u′〉ds2,
where dl2 is the square distance between points π[|ϕ(s)〉]
and π[|ϕ(s+ ds)〉]. Using a variation procedure, one can
derive the following geodesic equation (See Appendix A)

Ds|u
′〉 = D2

s |ϕ〉 = [∂2s − ∂sAs −As∂s +A2
s]|ϕ〉 = 0, (8)

Formally, a similar one exists for the adjoint. Using the
parallel transport condition and the gauge-invariance,
one can show that the connection one-form Eq. (7) dis-
appears along this geodesic. It is worth pointing out
that this set of NMQSD equations are invariant under
the gauge transformation L → Leiϕ [35, 47], since the
phase factor can be absorbed into the coupling strength
gk → gke

iϕ. The noise in the NMQSD equation trans-
forms accordingly as z∗t → w∗

t = eiϕz∗t , and the Ō op-
erator becomes the functional derivative with respect to
the transformed noise w∗

t . Also note that the ensem-
ble average M[wtw

∗
s ] = M[ztz

∗
s ] = α(t, s) is only de-

pendent on the norm |gk|
2 and is gauge-invariant under

such transform, meaning wt and zt represent the same
set of stochastic processes. Therefore, the transformed
equation represents the same set of equations as Eq. (2),
and the geometric phase we obtain from them inherits
this gauge invariance. The same argument also holds for
the model with multiple Lindblad operators Lm, where
the phase transformation is given by L′

m = Lme
iϕm ,

(m = 1, 2, . . . , N) [48].
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III. EXAMPLES

After introducing a complex geometric phase for a
generic quantum open system (4), the imaginary part
of this complex phase factor will give rise to a geomet-
ric amplitude, which is expected to describe quantum
decoherence process. By definition, this amplitude fac-
tor is purely geometric. We now illustrate the complex-
valued geometric phase under the NMQSD to highlight
the geometry of the decoherence process. Consider an
exactly solvable model, the two-level dissipative model
with system Hamiltonian Hs = ω

2 σz and coupling oper-
ator L = λσ−. This model is exactly solvable [8, 10].

Choosing a bosonic bath with a Lorentz spectrum, the
bath correlation function is given by an exponential func-
tion,

α(t, s) =
γΓ

2
exp [−γ|t− s|] exp[−iω0(t− s)], (9)

and in this case, the Ō operator is given by Ō(t) =

F (t)σ− where Ḟ (t) = γλ
2 − [γ + i(Ω− ω)]F (t) + λF (t)2.

The initial state here is characterized by the Bloch angle
θ, |ϕ〉 = [cos θ/2, sin θ/2]T . The total phase, after taking
the ensemble average, is given by

β̄tot = M

[

−i log

√

〈ψ̃(0)|ψ(t)〉

〈ψ̃(t)|ψ(0)〉

]

= −
i

2
log

[

g(t)
(

g(t)(cos(θ) + 1)− (cos(θ)− 1)eiωt
)

−g(t)(cos(θ)− 1) + (cos(θ) + 1)eiωt

]

, (10)

where g(t) = exp
[

−λ
∫ t

0
F (s)ds

]

[46]. The averaged dy-

namical contribution is given by

β̄dyn(t) = −

∫ t

0

ds

[

ω

2
cos θ −

iλF (s)

2
(cos θ + 1)

]

. (11)

The geometric phase can then be readily calculated. In
Fig. 1 we show the imaginary part of the geometric phase
as a function of the initial state parameter θ and the bath
memory parameter γ as well as the coupling strength λ.
Here the oscillatory behavior of the phase is beginning
to show itself when γ or λ is not too small. However, in
the regime where λ or γ is indeed small, then the imag-
inary geometric phase becomes invisible indicating that
the dissipation in the regime is dictated by a dynamical
effect. To get a clearer picture of this oscillatory behav-
ior, we plot the imaginary geometric phase as a function
of the coupling strength λ and the memory parameter γ
in Fig. 2 Then one easily sees that there exists a region
with small λ or γ and the imaginary part (amplitude) is
small. Moreover, we can expand the geometric phase in
terms of the power of λ and see that (choosing ω0 = 0
and ω = 1)

β̄ ≈
t

2
cos θ + arg

(

cos
t

2
− i cos θ sin

t

2

)

−
iγ

(

eit − 1
)2

sin2 θ
2 cos θ(cos θ + 1)e−γt

8(γ − i)2
(

cos2 θ sin2 t
2 + cos2 t

2

) ×

[

1 + e(γ−i)t(γt− it− 1)
]

λ2 +O
(

λ4
)

. (12)

The first two terms are clearly independent of λ corre-
sponding to the closed quantum system case. The terms
containing O(λ) do not exist and the first-order term is
represented by O(λ2). We may also expand the geomet-
ric phase in the powers of γ. In addition to the similar

closed system terms, the first order reads

−
2λ2 sin2 t

2 (t− sin t+ i cos t− i)

cos 2θ + 2 sin2 θ cos t+ 3
×

sin2
θ

2
cos θ(cos θ + 1)γ +O

(

γ2
)

. (13)

In the Markov limit γ → ∞, we recover the standard
Markovian case, F (t) = λ/2, and the complex geometric
phase becomes

β̄M =π −
1

2
i

[

− 2 tanh−1

(

cos θ tanh
πλ2

2

)

+ π cos θ
(

λ2 + 2i
)

]

(14)

at t = 2π/ω, which can generally be complex. When the
coupling strength λ ∼ 0, we return to the closed system
case as expected. Indeed, the imaginary part of βM is on
the order of λ2.

On the other hand, one can consider an analytically
solvable example of a two-level system in a pure dephas-
ing environment, that is, the total Hamiltonian (1) con-
tains the system Hamiltonian Hs = ωσz/2 and the cou-
pling operator L = λσz . The Ō operator for this model

is just
∫ t

0 α(t, s)dsL. Choosing an initial state character-

ized by the Bloch angle θ, |ϕ〉 = [cos θ/2, sin θ/2]T , one
can analytically solve the NMQSD equation (2) and its

dual adjoint evolving under H†
eff = Hs− iL

†zt+ iŌ(t)
†L,

and use Eq. (4) to obtain the phase. The total phase for
a particular trajectory in this model is explicitly given
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(a)

(b)

FIG. 1. (Color online) The imaginary part of the geometric
phase βI as a function of the initial state condition θ and
(a) the non-Markovian parameter γ of the bath correlation
function with λ = 1, (b) the coupling strength λ with γ =
1, at t = 2π/ω. Oscillatory behavior can be observed as θ
changes when γ or λ are big enough. With small γ or λ, the
imaginary part can be very close to zero.

by

βtot =− i log

[

√

〈ψ̃z∗(0)|ψz∗(t)〉

〈ψ̃z∗(t)|ψz∗(0)〉

]

=iλ2
∫ t

0

A(s) ds

−
1

2
i log

[

(cos θ + 1)e2λ
∫

t

0
z∗

s ds − (cos θ − 1)eiωt

−(cos θ − 1)e2λ
∫

t

0
z∗

s ds + (cos θ + 1)eiωt

]

,

(15)

where A(t) =
∫ t

0 α(t, s)ds [46]. Due to the existence of z∗s
terms in both the numerator and denominator in the sec-
ond term, one can not directly use the Novikov theorem
to compute the ensemble mean over the noise. Noticing
that in the second term only λ accompanies the noise
terms, we can expand it in powers of λ, where it is found

FIG. 2. (Color online) The imaginary part of the geometric
phase βI as a function of the coupling strength λ and the non-
Markovian parameter γ of the bath correlation function, with
θ = 1 and t = 2π/ω. It can be readily seen that when γ or λ
are small, the imaginary part of the complex geometric phase
is very close to zero, meaning at this region the dissipation is
mainly dynamical rather than geometrical in nature.

that no ztz
∗
s pair exists, and the mean is given by

β̄tot = iλ2
∫ t

0

A(s) ds+ arctan

[

cos
ωt

2
,− cos θ sin

ωt

2

]

(16)

where arctan[x, y] = arctan(y/x), which takes into ac-
count the quadrant of point (x, y). The dynamic part
may be calculated in a similar fashion,

β̄dyn = iλ2
∫ t

0

dsA(s) −
1

2
ωt cos θ (17)

Interestingly, it is found that the ensemble average geo-
metric phase is the same as the closed system case,

β̄ =
1

2
ωt cos θ + arctan

[

cos
ωt

2
,− cos θ sin

ωt

2

]

. (18)

A t = 2π/ω, β = π (cos θ + 1). In this case, the geo-
metric phase is robust against dephasing effects. Under
this definition of the geometric phase, the pure dephasing
process for the two-level system is a dynamical effect.

IV. LEAKAGE CONTROL OF DECOHERENCE

To see how to combat the detrimental effect of the
bath on the system’s dynamics, we note that a wide
range of control strategies have been developed. In
the dynamical decoupling control [49], when the con-
trol pulses are applied to the system of interest, it is
assumed that the external pulses can be treated pertur-
batively such that the open system evolves under the
pulse Hamiltonian alone during the pulse’s active time.
In a non-Markovian open system setting, this assump-
tion may not be accurate. Therefore, here we may ap-
ply a non-perturbative control strategy [44] which treats
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the additional control consistently, and has the addi-
tional advantage that only the time integral of the con-
trol plays a significant role, making it more resilient
against control fluctuations. As an example, we con-
sider a three-level system H0 = diag(ω/2,−ω/2, 0), with
the system-bath coupling operator L = λ [|3〉〈1|+ |3〉〈2|].
The corresponding LEO control Hamiltonian is given by

R(t) = c(t)diag(1, 1, 0), where c(t) is the control function,
so the total system Hamiltonian together with the con-
trol part is given by Hs(t) = H0 +R(t). This model can
be exactly solved by using the NMQSD approach [44],
where the Ō(t) = F1(t)|3〉〈1| + F2(t)|3〉〈2| operator is
noise-independent, with

∂tF1(t) = α(0)λ+
F1(t)

2
[2λ(F1(t) + F2(t))− 2γ + iω + 2ic(t)] ,

∂tF2(t) = α(0)λ+
F2(t)

2
[2λ(F1(t) + F2(t))− 2γ − iω + 2ic(t)] . (19)

While an analytical solution for the trajectory is absent,
there is a convenient way to do the ensemble average
for this example. For this model with an initial sys-
tem state of [cos θ/2, sin θ/2, 0]T , we find that the first
two elements of the state vector and its adjoint are all
noise-independent. Therefore, the total phase is noise-
independent in this case. However, the dynamical phase
is noise-dependent. To analytically treat its ensemble
average, we define an operator P (t) = |ψz∗(t)〉〈ψ̃z∗ (t)|.

Since the adjoint state |ψ̃z(t)〉 follows H
†, P (t) is a func-

tion of z∗t only. Using the Novikov theorem, one can show
that the ensemble average of the dynamical phase can be
written as

M[φd] = −

∫ t

0

dsM
[

〈ψ̃z∗(s)|Hs(s)|ψz∗(s)〉
]

= −

∫ t

0

dstr
[

Hs(s)ρ̃(s)− iL†Ō(s)ρ̃(s)
]

, (20)

where ρ̃(t) = M[P (t)] follows

∂tρ̃(t) = −i [Hs(t), ρ̃(t)]−
[

L†Ō(t), ρ̃(t)
]

. (21)

Choosing a sine-function control field c(t) = cx(1 +
sinΩct) with cx = 10, Ωc = 50, in Fig. 3, we plot the
geometric phases as functions of time for the both LEO
controlled and uncontrolled systems. As a comparison,
the geometric phase for the closed system described by
H0 is also plotted. It can be seen from Fig. 3 that the en-
vironmental effect adversely affects the geometric phase
and makes it deviate from the target determined by the
closed system’s evolution. The non-zero imaginary part
gives rise to the so-called geometric decoherence. Under
the LEO control, the open system can be brought back
to a desirable quantum state that is close to the tar-
get state, thereby restoring the geometric phase and at
the same time suppressing the geometric decoherence by
bringing the imaginary part of the generalized geometric
phase close to zero.

Target

No control(Re)

No control(Im)

With LEO (Re)

With LEO (Im)

0 �

2

3 �

2
2

- 3 �

4

- �

2

- �

4

0

ωt

β

FIG. 3. (Color online) The complex geometric phase for a
three-level system as a function of time, where the target
(solid blue line) corresponds to the closed system case, the
dotted orange line and the red dash-dotted line represented
the real and imaginary part of the geometric phase, respec-
tively. The green (purple) dashed line is the real (imaginary)
part of the geometric phase obtained after the LEO control is
applied, where the imaginary part of the geometric phase in
the controlled system is close to zero, |βI | < 0.005. The open
system parameters are γ = 0.3 and λ = 1, with an initial
state parameter θ = 1.2.

V. CONCLUSION AND DISCUSSION

In conclusion, we study the geometric decoherence
for a set of general quantum open system embedded in
a bosonic bath through defining a stochastic complex-
valued extension of the geometric phase for a non-unitary
quantum system. The quantum open system coupled to
a multi-mode bosonic bath is shown to be governed by a
stochastic Schrödinger equation known as the NMQSD
equation, the reduced density operator for the open
system may be recovered by the ensemble average of
the pure state trajectories, which evolve under a non-
Hermitian Hamiltonian. We associate the imaginary part
of the complex geometric phase of the open system with
the dissipation and dephasing induced by the bath. By
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using the two-level systems as illustrative examples, we
show that the decoherence of the dephasing model is
purely a dynamical effect. For the dissipative two-level
system, however, there exists a non-zero imaginary part
of the geometric phase, indicating the onset of a geo-
metric component to the dissipation of the open quan-
tum system. As expected, when the coupling strength
λ is small, the imaginary part is shown to be small con-
sistent with our general understanding of the decoher-
ence processes. Our approach allows a more general
discussion on the geometric decoherence of open quan-
tum systems across the parameter ranges including both
Markov and non-Markovian regimes. We also show that
a non-perturbative control scheme can be employed to
correct the open system trajectory. As an example, we
use a three-level system as an example to show the Leak-
age Elimination Operator control can correct the system
state so that the state can stay close to the closed sys-
tem, thus generating a robust geometric phase without
the side-effect created by the geometric decoherence.
It should also be noted that akin to the real-valued geo-

metric phases in open systems [33, 34, 37], one may define
geometric entities differently, and obtain different geo-
metric phases. For example, a specific model considered
in [43] using Markov master equations in an adiabatic
evolution setting allows one to define a geometric phase
from one density matrix element whose evolution equa-
tion is known. In this definition, an imaginary geomet-

ric contribution inversely proportional to T2 is obtained,
whereas with our general approach the pure dephasing
model includes no imaginary part.

The method presented in this paper may be ex-
tended to other open quantum systems that interact with
fermionic baths via a fermionic NMQSD equation [50–
52]. Another promising direction lies in the application
of our approach to study the quantum phase transition in
a non-Markovian open system setting [53], where it will
be very interesting to study the connection of the geomet-
ric or topological aspects with interesting phenomenon in
quantum phase transitions such as symmetry-breaking
and the thermalization process. We leave these interest-
ing open problems to further investigations.
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Appendix A: Proof on the geodesic equation

Let |u′〉 = Ds|ϕ〉 and denoting |u〉 = ∂s|ϕ〉, we have |u′〉 = |u〉 − 〈ϕ̃|u〉|ϕ〉. From the normalization condition, we
also have 〈ϕ̃|u〉 = −〈ũ|ϕ〉, and δ〈ϕ̃|ϕ〉 = 0 = 〈δϕ̃|ϕ〉+ 〈ϕ̃|δϕ〉. Therefore, the variation of

∫

〈ũ′|u′〉dl is given by

∆ = δ

∫

[〈ũ|u〉 − 〈ũ|ϕ〉〈ϕ̃|u〉]dl (A1)

=

∫

dl [〈δũ|u〉+ 〈ũ|δu〉 (A2)

−〈δũ|ϕ〉〈ϕ̃|u〉 − 〈ũ|δϕ〉〈ϕ̃|u〉 − 〈ũ|ϕ〉〈δϕ̃|u〉 − 〈ũ|ϕ〉〈ϕ̃|δu〉] . (A3)

After some algebra, it can be shown that

∆ =

∫

dl [〈δũ|u′〉+ 〈ϕ̃|u〉〈δϕ̃|u′〉] +

∫

dl [〈ũ′|δu〉 − 〈ũ′|δϕ〉〈ϕ̃|u〉] (A4)

(A5)

Integrate by parts and let the variation δϕ be zero at both ends, we have

∫

dl〈δϕ̃| [|∂lu
′〉 − 〈ϕ̃|u〉|u′〉] = 0, (A6)

which needs to hold for all variational δϕ̃. This then gives us the geodesic equation in Eq. (8).
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(2009).

[36] M. S. Sarandy and D. A. Lidar, Phys. Rev. A 73, 062101
(2006).

[37] D.-W. Luo, J. Q. You, H.-Q. Lin, L.-A. Wu, and T. Yu,
Phys. Rev. A 98, 052117 (2018).

[38] M. V. Berry, Proc. Roy. Soc. London A 430, 405 (1990).
[39] J. Garrison and E. Wright, Phys. Lett. A 128, 177 (1988).
[40] I. J. R. Aitchison and K. Wanelik, Proc. Roy. Soc. Lon-

don A 439, 25 (1992).
[41] X.-D. Cui and Y. Zheng, Phys. Rev. A 86, 064104 (2012).
[42] X.-D. Cui and Y. Zheng, Sci. Rep. 4, 5813 EP (2014).
[43] R. S. Whitney, Y. Makhlin, A. Shnirman, and Y. Gefen,

Phys. Rev. Lett. 94, 070407 (2005).
[44] J. Jing, L.-A. Wu, M. Byrd, J. Q. You, T. Yu, and Z.-M.

Wang, Phys. Rev. Lett. 114, 190502 (2015).
[45] J. Gambetta and H. M. Wiseman, Phys. Rev. A 66,

012108 (2002).
[46] To choose a branch for the square root, one may write

down the numerator and denominator in polar coordi-

nates, zeiϕz =
√

xeiϕx

yeiϕy
, where x(y, z) and ϕx(y,z) ∈

R. Furthermore, make the following restrictions: ϕx ∈
(−π, π] and ϕy ∈ [−π, π). Therefore, ϕz ∈ (−π, π] and
the resultant total phase reduces to the closed system
case when the evolution is unitary. Note that a differ-
ent choice of the branch may change the real part of the
complex geometric phase by π but does not affect the
imaginary part.

[47] A. Bassi and E. Ippoliti, Phys. Rev. A 73, 062104 (2006).
[48] T. Steimle, G. Alber and I. C. Percival, J. Phys. A 28,

L491 (1995)
[49] L. Viola and S. Lloyd, Phys. Rev. A 58, 2733 (1998).
[50] X. Zhao, W. Shi, L.-A. Wu, and T. Yu, Phys. Rev. A 86,

032116 (2012).
[51] W. Shi, X. Zhao, and T. Yu, Phys. Rev. A 87, 052127

(2013).
[52] M. Chen and J. Q. You, Phys. Rev. A 87, 052108 (2013).
[53] A. Carollo, B. Spagnolo and D. Valenti, Sci. Rep. 8, 9852

(2018); A. Carollo, B. Spagnolo and D. Valenti, Entropy
20, 485 (2018)


