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Inspired by the recent experiment of Hamsen et al. [Phys. Rev. Lett. 118, 133604 (2017)], which
demonstrated two-photon blockade in a driven nonlinear system (composed of a harmonic cavity
with a driven atom), we show that two-photon blockade and other nonstandard types of photon-
blockade and photon-induced tunneling can be generated in a driven harmonic cavity without an
atom or any other kind of nonlinearity, but instead coupled to a nonlinear (i.e., squeezed) reservoir.
We also simulate these single- and two-photon effects with squeezed coherent states and displaced
squeezed thermal states.

I. INTRODUCTION

A. Squeezed states of light

Squeezed states of light [1], which have less quantum
noise in one quadrature than a coherent state, are a pow-
erful resource for quantum technologies. These include
quantum communication, improving the precision of op-
tical measurements, and fundamental spectroscopic tests
of general relativity and quantum mechanics [2–6]. Al-
though squeezed states were already studied in 1927 by
Kennard [7] and the squeezing operator was introduced in
1955 [8, 9], these states had not been attracting much at-
tention for 50 years. A real practical interest in squeezed
states has been triggered only 40 years ago by finding
their first applications for detecting gravitational waves
via supersensitive interferometry [10–13]. Since the pi-
oneering experimental generation of squeezed states via
four-wave mixing in 1985 by Slusher et al. [14], shortly
followed by other two experiments [15, 16], various meth-
ods of squeezed-light generation have been implemented
experimentally not only for optical fields [6], but also
for microwave fields using superconducting quantum cir-
cuits [17]. The first long-term practical applications of
squeezed-vacuum states were demonstrated in 2013 for
increasing the astrophysical limits of gravitational-wave
detectors including LIGO [18] and GEO detectors [19].
Among many applications of squeezing, we mention also
recent proposals of an exponential enhancement of light-
matter interactions via squeezing [20–25] (for a review
see Ref. [26]). Such increased interactions at the single-
photon level can fundamentally change nonlinear optical
effects, including photon blockade (PB) [27, 28]. (This
and other abbreviations used in this paper are also de-
fined in Table I.) Here we study multiphoton correlations
in squeezed coherent states (SCS), displaced squeezed
thermal states (DSTS), and in light generated by a driven
harmonic cavity coupled to a squeezed reservoir for gen-

Full Name Abbreviation
photon blockade PB
nonstandard photon blockade NPB
single-photon (two-photon) blockade 1PB (2PB)
photon-induced tunneling PIT
two-photon (three-photon) tunneling 2PT (3PT)
squeezed coherent states SCS
displaced squeezed thermal states DSTS
photon antibunching PAB

TABLE I. Abbreviations used in this paper.

erating (or simulating) various kinds of PB.

B. Single-photon blockade

The phenomenon of Coulomb’s blockade has its op-
tical analogue, known as PB [29] (also referred to as
nonlinear quantum scissors [30]). PB (or more precisely
single-photon blockade, 1PB) refers to the effect in which
a single photon generated in a driven nonlinear system
(as those schematically shown in Fig. 1) can block the
generation of more photons in the system. This effect
was first predicted by Tian and Carmichael [31], Leoński
and Tanaś [32], and later by Imamoğlu et al. [29], who
coined the term photon blockade and studied the effect
in the steady-state limit. Indeed, Ref. [31] predicted PB
by demonstrating a two-state behavior in an driven op-
tical cavity containing one atom, as shown in Fig. 1(b)
and discussed in Appendix A, applying the quantum tra-
jectory method to the Jaynes-Cummings model; while
Ref. [32] predicted the PB effect in a driven Kerr nonlin-
ear cavity and showed its application for the generation
of the single-photon Fock state. Note that the Jaynes-
Cummings model in the dispersive limit (i.e., far off-
resonance) becomes equivalent to the Kerr Hamiltonian,
which shows the correspondence of the PB predictions of
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FIG. 1. Schematics of three prototype systems for observing
photon blockade and photon-induced tunneling: (a) an un-
usual photon blockade device, described in Sec. III A, which
is composed of a driven harmonic cavity coupled to a quan-
tum (squeezed) reservoir Rsq. Panel (a) is shown in contrast
to the common photon blockade devices (see Appendix A for
more details): (b) a driven anharmonic cavity (due to the
atom) coupled to a harmonic reservoir R1 and (c) a two-
cavity system, which is the anharmonic resonator shown in
(b) coupled to a harmonic (or anharmonic) resonator linked
to a harmonic reservoir R2. The anharmonicity can be in-
duced in a harmonic resonator by its coupling to a two-level
atom (qubit) as shown (b) and (c). This qubit is coupled to a
reservoir Rq. Red arrows denote classical coherent drives ap-
plied to a cavity or a qubit. Note that in setup (a), the cavity
anharmonicity is replaced by the reservoir anharmonicity.

Refs. [31, 32]. We also mention that PB has a mechanical
analogue referred to as phonon blockade, i.e., blockade of
quantum excitations of mechanical oscillators [33–36].

PB has been experimentally generated in a number
of driven systems of single [37–44] and two [45, 46] res-
onators with a nonlinearity, as shown schematically in
Figs. 1(b) and 1(c), respectively. Such a nonlinearity
can be induced by a two-level atom (or atoms) coupled
to one or both cavities. In the dispersive regime, such
atom-cavity interaction can effectively lead to a Kerr-
type nonlinearity as mentioned above. Note that PB can
be generated not only in a Kerr-nonlinear driven cavity,
but also other types of nonlinearities enable the genera-
tion of PB. The occurrence of PB is usually experimen-
tally characterized by the second-order correlation func-
tion g(2)(0) < 1, which means that the PB generated
state exhibits the sub-Poissonian photon-number statis-
tics, also referred to as (single-time) photon antibunch-
ing (PAB). PB and the generation of Bell states in two-
cavity driven nonlinear systems, as shown in Fig. 1(c)
and discussed in Appendix A, were first demonstrated in
Refs. [47, 48]. It was later shown in [49, 50] that the non-

linear system of Fig. 1(c) can exhibit surprisingly strong
single-time PAB for weak nonlinearities or, equivalently,
weak atom-cavity-field couplings. This effect is now usu-
ally referred to as unconventional PB [51].

Note that this single-time PAB, should not be confused
with standard two-time PAB, defined by g(2)(τ) > g(2)(0)
for small delay times τ , which is another important fea-
ture of PB. Indeed, if one considers single-PB as a true
source of single photons, one would require to satisfy not
only single-time PAB, but also two-time PAB, character-
ized by a local minimum of the second-order correlation
function,

g(2)(τ) = lim
t→∞

〈â†(t)â†(t+ τ)â(t+ τ)â(t)〉
〈â†(t)â(t)〉〈â†(t+ τ)â(t+ τ)〉

, (1)

as a function of the delay time τ ≈ 0, where â (â†) is
the annihilation (creation) operator of an optical mode.
Thus, at least the following conditions should be satisfied
for “true” single-PB:

g(2)(0) < 1 and g(2)(0) < g(2)(τ), (2)

for small τ . For brevity, we analyze two-time PAB only
in Sec. III and Fig. 2. Otherwise we limit our character-
ization of PB to single-time correlation functions.

C. Multi-photon blockade

Single-PB has been generalized to include two-PB
and multi-PB effects [52–61]. Two-PB was first exper-
imentally demonstrated by Hamsen et al. in 2017 [44].
We also note earlier theoretical works on multi-PB in
dissipation-free driven Kerr systems [62, 63] (for reviews
see Refs. [30, 64]). Multi-phonon blockade, which is a me-
chanical analogue of multi-PB, was studied in Ref. [35].
Multi-PB in dissipation-free systems enables generation
of quantum optical states in a finite-dimensional Hilbert
space including finite-dimensional analogues of coherent
and squeezed states of light [62, 64–67].

Intuitively, two-PB (and analogously multi-PB) occurs
if the single and two-photon Fock states, which are gen-
erated in a driven nonlinear system, block the generation
of more photons in the system. This paper is focused
on the study of two-PB and other kinds of single- and
two-photon correlations.

For any classical states, the second-order equal-time
correlation function satisfies g(2)(0) ≥ 1, which is a
property of classical intensity fluctuations. The states
for which g(2)(0) < 1 have the sub-Poissonian photon-
number statistics and, thus, are nonclassical (see Ap-
pendix C). This condition is also used for identifying the
presence of single-photon blockade (1PB). The analysis
of higher-order correlations is necessary to characterize
multi-PB or other types of nonstandard PB (NPB).

Thus, in our study of multi-PB, we apply the
kth-order equal-time correlation functions, g(k)(0) =
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FIG. 2. Squeezed-reservoir model: Steady-state second-order
correlation function g(2)(τ) versus: (a,c) the (rescaled) delay
time γτ between the measurements of subsequent photons
and (b) the reservoir squeezing parameter M for various val-
ues of the external field strength ε at the resonance, ∆ = 0,
between the cavity and external fields, with the damping rate
γ = 1. Moreover, in (a) we set ε/γ =0.05 (curve A), 0.06 (B),
0.07 (C), 0.1 (D), 0.2 (E), and 0.5 (F), and assume that the
reservoir is maximally squeezed with the reservoir mean pho-
ton number n = 0.003, which corresponds to M = 0.017. The
τ -dependences for the four specific points in (b) are shown in
panel (c). In (b) and (c) we set ε/γ = 0.07 and n = 0.001.
It is evident that the curves 2 and 3 (1 and 4) show two-time
photon antibunching (bunching) in panel (c). This implies
that only the points 2 and 3 in panel (b) can correspond to
“true” single-photon blockade states.

〈(â†)kâk〉/〈â†â〉k, describing the probability of measur-
ing simultaneously k photons. In PB experiments, the
second-order correlation functions g(2)(0) and g(2)(τ) are
usually measured, except the experiment of Hamsen et
al. [44], where also the third-order correlation functions
g(3)(0) and g(3)(τ) were measured to confirm two-PB.

We note that experimental tests of PB are not lim-
ited to measuring g(k)(0) and g(k)(τ). Indeed, the oc-
currence of PB can also be revealed by showing, e.g.,
a staircase dependence of the total transmitted power

through a driven nonlinear system for different incident
photon bandwidths, which was experimentally demon-
strated by Hoffman et al. [40] or a staircase dependence
of the mean photon number in the ground state of a
given Kerr nonlinear system on a rescaled detuning [68].
Such dependences are photonic analogues of a Coulomb-
blockade staircase. This paper is focused on characteriz-
ing multi-PB via g(k)(0) and g(2)(τ) only.

D. Photon-induced tunneling

Photon-induced tunneling (PIT) refers to a photon-
number correlation effect, which enhances the probabil-
ity of subsequent photons (from a coherent drive) to enter
the driven cavity [38, 60, 61, 69–73]. Evidently, this pro-
cess is inverse to PB, in which the probability, that the
subsequent photons of a drive enter the driven cavity, is
decreased (or even essentially vanishing). PIT has been
observed experimentally in Refs. [38, 69, 72].

Standard two-photon tunneling (two-PT), where the
simultaneous arrival of two photons is enhanced com-
pared to single-photon arrivals, is usually characterized
by the super-Poissonian photon-number statistics (i.e.,
single-time photon bunching), when 1 < g(2)(0) [69–71].
Analogously, standard three-photon tunneling (three-
PT) is a photon-number correlation effect, in which
the simultaneous arrival of three photons is enhanced
compared to the two-photon and single-photon arrivals.
Thus, three-PT can be characterized by the condi-
tions [60, 71]:

1 < g(2)(0) < g(3)(0). (3)

Note that other definitions of PIT are used in the litera-
ture (see Ref. [60] for a comparison), e.g., those based on
a local maximum of g(2)(τ) at τ = 0 (i.e., corresponding
to two-time photon bunching) [38] or the requirement
that g(3)(0) > g(2)(0), i.e., the simultaneous arrival of
three photons is enhanced compared to the simultane-
ous two-photon arrivals [72] without specifying whether
g(2)(0) exhibits the super- or sub-Poissonian statistics.
Various types of PIT in comparison to PB are listed in
Table II.

E. Photon blockade and photon-induced tunneling
via squeezing

It is known that squeezed coherent states (SCS) can ex-
hibit the (second-order) sub-Poissonian photon-number
statistics (also referred to as single-time PAB). This ef-
fect is also an important feature of light generated via
photon blockade.

The vast majority of previous works on PB assumed
that dissipation of a PB system can be modeled via its
linear coupling to a harmonic reservoir (a thermal bath).
Only a few works, including Refs. [74, 75], were ana-
lyzing PB in systems coupled to nonlinear reservoirs.
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Case Permutation Inequalities Effect

(a) (1 2 3) 1 < g(2)(0) < g(3)(0) 3PT

(b) (1 3 2) 1 < g(3)(0) < g(2)(0) 2PT

(c) (2 1 3) g(2)(0) < 1 < g(3)(0) 1PB (type 2)

(d) (2 3 1) g(2)(0) < g(3)(0) < 1 1PB (type 3)

(e) (3 1 2) g(3)(0) < 1 < g(2)(0) 2PB & 2PT

(f) (3 2 1) g(3)(0) < g(2)(0) < 1 1PB (type 1)

TABLE II. Different types of photon blockade and photon
tunneling classified via g(2)(0) and g(3)(0). Four of these types
of photon-number correlations can be exhibited by the steady-
state light generated by the squeezed-reservoir system, as well
as squeezed coherent states and displaced squeezed thermal
states, which are shown in Figs. 3, 4, and 5, respectively.

In such dissipative systems, PB can result from: (i) a
system nonlinearity, (ii) a reservoir nonlinearity, or (iii)
both of them. Single- and multi-PB effects in a Kerr-
nonlinear system coupled to nonlinear (squeezed) reser-
voir were analyzed in Ref. [74]. Shortly after that publi-
cation, a single-PB effect generated solely by a nonlinear
(squeezed) reservoir was studied in a linear system in
Ref. [75]. Here we analyze various PB effects and PIT in
a harmonic cavity coupled to squeezed systems, as shown
in Fig. 1(a). The other two common systems, which en-
able the generation of conventional and unconventional
PB are schematically shown in Figs. 1(b) and 1(c), re-
spectively. Note that some other schemes for PB can
be obtained by combing the three schemes shown in this
figure.

The main objective of this article is to analyze whether
squeezing plays an important role in generating various
types of PB (especially multiphoton effects). In other
words, we address the question whether PB can be ob-
served in a driven harmonic resonator without a strongly
nonlinear medium [like in the standard PB setup shown
in Fig. 1(b)] and without relying on multi-path interfer-
ence, as in the PB setup shown in Fig. 1(c).

The paper is organized as follows: In Sec. II, we spec-
ify the criteria of multi-PB and PIT. In Sec. III, we nu-
merically show that a two-photon decay process of light
generated in an optically linear system (a harmonic res-
onator) can induce two-PB. Then, in Sec. IV, we analyt-
ically study the relations between g(2)(0) and the higher-
order correlation functions g(k)(0) for the squeezed co-
herent states and the displaced squeezed thermal states,
to demonstrate more explicitly the possibility of generat-
ing two-PB, three-PT, and various types of nonstandard
single-PB via squeezing. The question of nonclassicality
of the studied effects and states is addressed in Sec. V
and Appendices C, D, and E. Moreover, we compare the
proposed method for generating multi-PB with the stan-
dard PB setups in Appendix A. Moreover, for pedagog-
ical reasons, we present more details about the master
equation for a squeezed reservoir and recall its relation
to the standard master equation in Appendix B. We con-
clude in Sec. VI.

(a) (123) three-PT (b) (132) no two-PT

(c) (213) single-PB (type 2)
(d) (231) single-PB

(type 3)

(e) (312) no two-PB
(f) (321) single-PB

(type 1)

FIG. 3. Squeezed-reservoir model: Photon-number correla-
tions of light generated in a driven harmonic cavity coupled
to a squeezed reservoir, assuming n = 0.01 and ∆ = 0. The
regions of the driving strength ε and the reservoir squeezing
parameter M satisfying the six conditions, which are listed
in Table II for the correlation functions g(2)(0) and g(3)(0),
are shown here in yellow (Y) and blue (B), respectively. The
regions in green show the ranges of the parameters M and ε
for which given criteria are satisfied simultaneously by g(2)(0)

and g(3)(0), which corresponds to a specific type of photon
blockade or photon-induced tunneling. In grayscale: yellow
is the brightest, and green looks slightly darker than blue.
Yellow is also indicated by “Y”, and blue by “B”.

In the main article, we use several abbreviations. We
concisely list them in Table I to facilitate the following
exposition.
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(a) (123) three-PT (b) (132) no two-PT

(c) (213) single-PB (type 2) (d) (231) single-PB (type 3)

(e) (312) no two-PB (f) (321) single-PB (type 1)

FIG. 4. Photon-number correlations in the squeezed coher-
ent states showing the regions of the displacement (α) and
squeezing (r) parameters for which the conditions in Table II
are satisfied. This figure uses the same notation, coloring,
and carries a similar message to those in Fig. 3. For exam-
ple, the green region in figure (c) (213) shows the ranges of

parameters for which the conditions g(2)(0) < 1 < g(3)(0) are
satisfied, as in Table II(c). The yellow (blue) region shows the

parameter ranges satisfying solely the condition g(2)(0) < 1

[g(3)(0) > 1]. Yellow (blue) is also indicated by “Y” (“B”).

II. CRITERIA FOR VARIOUS TYPES OF
PHOTON BLOCKADE

A. Refined criteria for multi-photon blockade

The mechanisms of both conventional and unconven-
tional single-PB under proper resonance conditions can
be generalized to generate also two- and multi-PB, i.e.,

(a) (123) three-PT (b) (132) no two-PT

(c) (213) single-PB (type 2) (d) (231) single-PB (type 3)

(e) (312) no two-PB (f) (321) single-PB (type 1)

FIG. 5. Photon-number correlations in the displaced squeezed
thermal states satisfying the inequalities in Table II: Same as
in Fig. 4 but for the states defined in Eq. (23) with nth = 0.1.
The parameter region on the left- (right-)hand side of the red
vertical line in all the plots corresponds to the classical (non-
classical) regimes of the states. This red line is plotted at the
critical squeezing parameter r0 = 0.0912, which is shown later
in Fig. 12 by the solid curve for nth = 0.1 for the vanishing
entanglement potential, EP = 0.

the generation of two or a larger number of photons at
the same instance of time.

Intuitively, k-PB can be understood as the generation
of a state ρ̂ satisfying the conditions for the photon-
number probabilities Pk = 〈k|ρ̂|k〉 as follows [44, 53]:

Pk+1 ≈ 0 and Pk � Pk+1. (4)

However, in more realistic scenarios, the conditions in
Eq. (4) are replaced by weaker criteria, where the photon-
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number distribution Pk of ρ̂ is compared with the Pois-
sonian distribution P cs

k , describing the photon-number
statistics of a coherent state. Specifically:

Pk+1 < P cs
k+1 and Pk ≥ P cs

k , (5)

where the probability P cs
k = |〈α|k〉|2 is for a coherent

state α with the same mean photon number as that
for ρ̂, i.e., 〈α|n̂|α〉 = |α|2 = Tr(ρ̂n̂), where n̂ = â†â
is the photon-number operator. The conditions for the
probabilities Pk can be replaced by those based on the
experimentally-accessible kth-order correlation function,

g(k)(0) =
〈(â†)kâk〉
〈n̂〉k

=
〈n̂[k]〉
〈n̂〉k

=

∑∞
n=0 Pnn

[k]

〈n̂〉k
, (6)

where, as usual, â (â†) is the annihilation (creation) oper-
ator, 〈n̂[k]〉 = 〈(â†)kâk〉, and n[k] = n(n−1) · · · (n−k+1)
is the factorial power (also called the falling power).
Thus, the criteria for PB given in Eq. (5) can be replaced
by

g(k+1)(0) ≈ 0 and g(k)(0)� g(k+1)(0), (7)

In this paper, we assume that k-PB is defined by the
following two criteria derived by Hamsen et al. [44]:

criterion #1 : g(k+1)(0) < A ≡ exp(−〈n̂〉),
criterion #2 : g(k)(0) ≥ B(k) ≡ A+ 〈n̂〉g(k+1)(0), (8)

which replace the criteria in Eq. (5).
We note that the definition of multi-PB in Eq. (8)

has some drawbacks and limitations. Strictly speaking,
the criteria in Eq. (8) can only be considered a PB wit-
ness, i.e., necessary but not sufficient conditions of PB.
Note that second-order single-time photon antibunch-
ing [g(2)(0) < 1] is the most common test of single-PB,
but it is also only a necessary but not sufficient condi-
tion for PB. An intuitive “orthodox” interpretation of
single- and multi-PB effects can be given as follows: k-
PB (k = 1, 2, ...) corresponds to the effect, in which the
photon occupation of the first k energy levels of a driven
nonlinear system blocks the generation of more photons
in the system. In other words, k-PB corresponds to an
effective truncation of the Hilbert space spanning a given
state at the k-photon Fock state |k〉 so the contributions
of the Fock states |k + l〉 for l > 0 can be effectively ig-
nored, which means that 〈k|ρ̂|k〉 � 〈k + l|ρ̂|k + l〉 or,
alternatively, g(k)(0) � g(k+l)(0), for any l > 0. How-
ever, the above conditions are usually only checked for
l = 1, ignoring the analysis of the cases for l > 1. Such
objection also applies to many studies of single-PB based
on requiring g(2)(0) < 1 and ignoring the values of g(3)(0)
and higher-order correlation functions.

B. Simplified criteria for multi-photon blockade

Note that if 〈n̂〉 � 1 then the refined conditions for
multi-PB, given in Eq. (8), simplify to the following fa-
miliar criteria for ρ̂:

g(k+1)(0) < 1 and g(k)(0) ≥ 1, (9)

which mean that, in this small photon-number limit, the
state generated via k-PB exhibits (single-time) (k + 1)-
PAB, and k-photon bunching if g(k)(0) > 1 or the so-
called unbunching if g(k)(0) = 1.

Thus, two-photon and three-PB effects can be given
by the following relations for the correlation functions:

g(2)(0) ≥ 1 and g(3)(0) < 1; (10)

g(2)(0), g(3)(0) ≥ 1 and g(4)(0) < 1, (11)

respectively. Note that we have added an extra condition
for g(2)(0) in Eq. (11), which is not required in the criteria
specified in Eqs. (8) and (9). Moreover, in this simpli-
fied characterization of PB we ignore the requirements on
two-time correlation functions g(k)(τ), including g(2)(τ).

Thus, in the case of two-PB, the three-photon probabil-
ity has to be suppressed and simultaneously the probabil-
ity of observing two photons should be enhanced. Anal-
ogously, the suppression of the four-photon probability
and the increase in the probabilities of a lower number
of photons would lead to three-PB.

Both types of PB, which are characterized by the sim-
plified and refined criteria, correspond to nonclassical ef-
fects, because they require the sub-Poissonian photon-
number statistics (of any given order k), as described in
greater detail in Appendix C.

As mentioned above, the refined criteria in Eq. (8) re-
duce to the conditions in Eq. (10) for small photon num-
bers 〈n̂〉 � 1. But, in principle, these simplified criteria
can be applied even if 〈n̂〉 > 1, but then the predicted
PB can differ from that based on the refined criteria in
Eq. (8). It might also be the case that a given state ex-
hibits, e.g., two-PB according to the refined criteria, but
not according to the simplified criteria. Actually, we will
show such cases in the following sections.

Now, we consider a simple example of such different
predictions of two-PB according to Eqs. (8) and (9).
Specifically, the two-photon Fock state |2〉, for which
g(2)(0) = 1/2 and g(3)(0) = 0, can be considered a two-
PB state according to the refined criteria in Eq. (8), be-
cause g(2)(0) > exp(−2) ≈ 0.135 and g(3)(0) < exp(−2).
Note that the simplified criteria in Eq. (9) can, in prin-
ciple, be applied to the two-photon Fock state |2〉. How-
ever, since A ≡ exp(−〈n̂〉) is not negligible, the predic-
tions of PB for |2〉 according to the refined and simpli-
fied criteria are different. Indeed, the Fock state |2〉 is
not considered a two-PB state according to the simpli-
fied criteria (9).

C. Nonstandard types of photon blockade

As described in previous subsections, the simplified
condition for observing single PB corresponds to the re-
quirement of single-time PAB. If the following additional
condition g(3)(0) < g(2)(0) is satisfied, as desirable for
good single-photon sources, then we refer to this effect
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as single-PB of type 1, i.e., which is characterized by

g(3)(0) < g(2)(0) < 1. (12)

Apart from this single-PB, there are other possibilities
of obtaining quantum photon-number statistics by spec-
ifying the relations between higher-order single-time cor-
relations g(k)(0) and/or the second-order two-time cor-
relations g(2)(τ). These include the following types of
PB:

(1) We recall that, in order to consider single-PB as a
true source of single photons, the generated light via PB
should also exhibit two-time PAB as given in Eq. (2). In-
deed, it is known that the sub-Poissonian photon-number
statistics (i.e., single-time PAB) of a field can be accom-
panied with both two-time PAB and two-time photon
bunching, and vice versa (see, e.g., Ref. [76] and refer-
ences therein). Thus, if light exhibits single-time PAB
and two-time photon bunching [i.e., a local maximum
of g(2)(τ) for small τ ], one can refer to as nonstandard
single-PB as characterized by Eq. (2). Examples of this
nonstandard PB are analyzed in Sec. III and shown in
Fig. 2. In the following we mainly analyze other types
on nonstandard PB based solely on single-time correla-
tion functions.

(2) In greater detail we analyze a special kind of non-
standard PB characterized by the single-time correlation
functions satisfying the conditions:

g(2)(0) < 1 < g(3)(0), (13)

which was first studied in greater detail in Ref. [77] un-
der the name unconventional PB. However, in order to
avoid confusion of this type of PB and unconventional
PB studied in Refs. [45, 46, 51], we refer to the effect
characterized by Eq. (13) as nonstandard PB of type 2.

It is seen that this nonstandard PB occurs when the
probability of measuring two photons at the same time
is suppressed and, simultaneously, the probability of ob-
taining three photons is enhanced. Note that this ef-
fect can be generated by different physical mechanisms
in different systems: (i) by using large nonlinearities in
conventional PB systems, as shown in Fig. 1(b), (ii) by
small nonlinearities and multi-path interference in un-
conventional PB systems, as shown in Fig. 1(c), or (iii)
by exploiting squeezing in, e.g., linear systems coupled to
a squeezed reservoir, as shown in Fig. 1(a) and studied
here.

(3) One can modify the condition for g(3)(0) in Eq. (13)
to consider another type (say type 3) of single-PB, as
characterized by:

g(2)(0) < g(3)(0) < 1. (14)

The latter two types of nonstandard single-PB are
listed in Table II and a few examples of such effects gener-
ated via squeezing are discussed in the following sections
and shown in Figs. 3, 4, 5, and 6.

Note that we found examples of nonstandard PB con-
cerning unusual properties of both single- and two-time

0.05 0.1 0.15 0.2 0.25 0.3
/

k

/

k

FIG. 6. Squeezed-reservoir model: Correlation functions
g(k)(0) versus: (a) the driving strength ε for fixed ∆ = 0
and (b) the detuning ∆ for the maximally squeezed reservoir
for n = 3× 10−4, which corresponds to M = 0.017, for fixed
ε = 0.07γ. All the parameters are scaled in γ units. The
regions between the broken lines correspond to nonstandard
single-photon blockade (type 2).

correlation functions. But, for brevity, we do not present
such examples here.

We also note that nonclassical states often satisfy the
conditions g(2) < g(3) < . . . < g(k) < 1, as those studied
in Refs. [78, 79], where the sub-Poissonian statistics was
resulting from postselection. Such states can also be used
for simulating nonstandard single-PB effects.
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III. VARIOUS TYPES OF PHOTON
BLOCKADE AND TUNNELING GENERATED

BY SQUEEZED RESERVOIR

A. Model

Here we will show that a squeezed reservoir can in-
duce various types of PB and PIT, including two-photon
effects in a driven harmonic resonator.

Specifically, as an example of a physical system, in
which squeezing interactions induce PB, we use a sin-
gle optical cavity of a frequency ωc, which is externally
driven by a laser field of an amplitude ε with a frequency
ωd. The cavity decays into a squeezed reservoir char-
acterized by the reservoir squeezing parameter M . The
model is presented in Fig. 1(a). We will show that for
such a linear optical system, the two-photon dissipation
process plays a crucial role in obtaining single- and two-
PB, as well as other nonstandard types of nonclassical
photon correlations.

The Hamiltonian of the system has the following form
(hereafter we set ~ = 1)

Ĥ ′ = ωcâ
†â+ ε

(
âeiωdt + â†e−iωdt

)
. (15)

After its transformation to the interaction picture to the
frame rotating with a driving frequency ωd, one obtains
the following effective Hamiltonian of the system

Ĥ = ∆â†â+ ε
(
â† + â

)
, (16)

where ∆ = ωc − ωd is the detuning between the cavity
and driving frequencies.

The evolution of the driven cavity interacting with a
squeezed reservoir is governed by the following master
equation [80–82]:

dρ̂

dt
= −i[Ĥ, ρ̂] +

1

2
γ(n+ 1)

(
2âρ̂â† − â†âρ̂− ρ̂â†â

)
+

1

2
γn
(
2â†ρ̂â− ââ†ρ̂− ρ̂ââ†

)
−1

2
γM (2âρ̂â− ââρ̂− ρ̂ââ)

−1

2
γM?

(
2â†ρ̂â† − â†â†ρ̂− ρ̂â†â†

)
. (17)

We refer to M as a reservoir squeezing parameter and to
n as the mean number of reservoir photons. These pa-
rameters satisfy the inequality |M | ≤

√
n(n+ 1). For the

squeezed-vacuum reservoir, these parameters are given
by n = sinh2(r) and M = cosh(r) sinh(r) exp(−iθ), im-

plying the equality |M | =
√
n(n+ 1), where r and θ

correspond, respectively, to the amplitude and phase of
the squeezing parameter ξ = r exp(iθ) (see Appendix B
for more details). Apart from the standard parts in
Eq. (17), which describe a thermal-like Markovian reser-
voir with the mean photon number n allowing for single-
photon dissipation, this master equation includes also
two-photon decay processes. Indeed, Eq. (17) reduces to

-2 0 2
0

0.2

0.4

0.6

0.8

1

1.2

X: 0
YYY : 0.07294

-2 0 2
1

1.04

1.08

1.12

1.16

1.2

A

B

C

D

A

B

CD

FIG. 7. Squeezed-reservoir model: Single-photon blockade
in a driven harmonic resonator coupled to a squeezed reser-
voir. Specifically, the steady-state second-order correlation
function g(2)(0) versus the detuning ∆ between the cavity
and driving frequencies for various values of the external field
strength ε, assuming: (a) the squeezed-vacuum reservoir (see

Appendix B) with M =
√
n(n+ 1) and (b) no squeezing

(M = 0) of the reservoir. We set the reservoir mean photon
number as n = 3 × 10−4, and ε/γ = 0.07 (curve A), 0.1 (B),
0.2 (C), and 0.5 (D). All the parameters are scaled in γ = 1
units. Panel (a) shows strong single-time photon antibunch-
ing, especially for ε = 0.07γ and ∆ = 0, which characterizes
single-photon blockade. Panel (b) shows single-time photon
bunching, which confirms that the single-photon blockade in
panel (a) results from the squeezed reservoir.

the standard master equation for the thermal reservoir by
setting M → 0 and n → nth = {exp[~ω/(kBT )] − 1}−1,
which becomes the mean number of thermal photons at
the frequency ω and temperature T , where kB is the
Boltzmann constant.

B. Standard single-photon blockade

As mentioned above, the standard indicator of single-
PB is the condition g(2)(0) < 1 showing the decreased
probability of measuring simultaneously two photons
during the process of the cavity-field dissipation.

In Figs. 7(a) and 7(b), we have shown the depen-
dence of single-time steady-state second-order correla-
tion function g(2)(0) versus the detuning ∆ for the har-
monic cavity field decaying, respectively, into (a) the
squeezed-vacuum reservoir (i.e., the maximally squeezed

reservoir with M =
√
n(n+ 1)) and (b) the standard

thermal reservoir (M = 0) with the same mean number
n = 0.003 of reservoir photons. Various external-driving-
field strengths are considered. Our first conclusion is
that the squeezing of the field in the reservoir is responsi-
ble for generating single-PB of the linear-cavity field, as
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FIG. 8. Squeezed-reservoir model: Steady-state correlation
function g(2)(0) versus the reservoir squeezing parameter M
and the driving strength ε in a driven harmonic resonator
coupled to a squeezed reservoir. We set ε/γ =0.05 (curve A),
0.07 (B), 0.1 (C) and 0.2 (D). Moreover, we assume resonance
between the cavity and external fields, ∆ = 0, and the mean
photon number of the squeezed reservoir is n = 3× 10−4. All
the parameters are scaled in γ units. It is seen that, usually,
a larger reservoir squeezing parameter M implies stronger
single-time PAB, reaching the smallest value of g(2)(0) for

the squeezed-vacuum reservoir with M =
√
n(n+ 1) (see Ap-

pendix B). However, this is not the case for, e.g., ε = 0.05γ in

panel (a), when there is an optimal value of M �
√
n(n+ 1),

which results in the strongest single-time PAB. The same sur-
prising result is shown in panel (b) in the area between the
dashed lines indicating the range of the external field strength
ε for which g(2)(0) has a minimum for M <

√
n(n+ 1).

described by the sub-Poissonian photon-number statis-
tics shown in Fig. 7(a). While the interaction with the
thermal field of the environment inevitably leads to the
super-Poissonian photon-number statistics of the cavity
field shown in Fig. 7(b). This effect can be interpreted as
PIT. In all of these cases, by tuning the frequency of the
external excitation with the cavity frequency, one can as-
sure the lowest possible value of g(2)(0). Additionally, a
weaker external driving is preferable to obtain lower val-
ues of g(2)(0). For the parameters presented in Fig. 7(a),

the lowest value of g(2)(0) is 0.0729. By decreasing the
mean photon number inside the squeezed reservoir, or
by applying a weaker external field, one can obtain even
smaller values of g(2)(0) under the exact resonance con-
dition ∆ = 0.

Figures 8(a) and 8(b) show the dependence of the
steady-state single-time second-order correlation g(2)(0)
on the reservoir squeezing parameter M and the driv-
ing strength ε. Usually, the minimal possible values of
g(2)(0) are obtained when the field inside the reservoir is
maximally squeezed, i.e., for the squeezed-vacuum reser-
voir satisfying M =

√
n(n+ 1). However, for very weak

excitations, the dependence g(2)(0) versus M has a min-

imum for M <
√
n(n+ 1). Thus, it is worth stressing

that it is possible to use a non-maximally squeezed reser-
voir, which still enables strong single-time PAB for very
weak excitations, as shown in Fig. 8(a).

C. Nonstandard single-photon blockade with
two-time photon bunching

Here we discuss whether a squeezed reservoir can gen-
erate nonstandard PB exhibiting two-time photon bunch-
ing, as defined in Eq. (2). Two examples of this PB are
shown in Figs. 2(a) and 2(b), as indicated by arrows 1
and 4. These examples should be compared with the ex-
amples of true single-PB indicated there by arrows 2 and
3.

More specifically, in Fig. 2(a), the steady-state two-
time second-order correlation function g(2)(τ) is shown
versus the rescaled delay time γτ for the same values
of the parameters as those in Fig. 8(a). We assumed
here the maximal squeezing of the field in the reser-
voir, i.e., M =

√
n(n+ 1). For each of the considered

cases, having the minimum of g(2)(0) < 1, the cavity
field clearly exhibits two-time PAB, g(2)(τ) > g(2)(0).
When ε takes such a value, which results in the minimal
value of g(2)(0) for a non-maximally squeezed reservoir
field, the cavity field exhibits two-time bunching of pho-
tons for short delay times. PAB appears for longer delay
times. In Figs. 2(b) and 2(c), this behavior is studied in
more details. It appears that, depending on the reservoir
squeezing degree M of the reservoir, both two-time pho-
ton bunching and antibunching are possible. But bunch-
ing for short delay times is possible only for such values
of M , which result in decreasing g(2)(0) for increasing M .

D. Nonstandard single-photon blockade of types 2
and 3

We will show now the possibility of generating non-
standard single-PB of the second and third types in the
system considered here.

In Fig. 6(a), the correlation functions of g(2)(0),
g(3)(0), and g(4)(0) are shown in their dependence on the
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external excitation strength ε for a specified mean num-
ber of photons in the squeezed reservoir; while Fig. 6(b)
shows g(2)(0) and g(3)(0) as a function of the detuning
∆. As one can see, there are ranges of the excitation
strengths ε and the detuning ∆ for which g(2)(0) < 1 is
accompanied by the additional condition for g(3)(0) > 1,
which implies the occurrence of NPB of type 2. For these
regions, the condition g(2)(0) < 1 is not sufficient for
identifying “true” single-PB, because there still exists a
nonzero probability of measuring more than two photons
at the same time. Only the two-photon statistics is sup-
pressed and that can be also achieved when the external
driving field is off resonance with the cavity frequency.
Larger values of ε are related to the simultaneous sup-
pression of the higher-order correlations. Although the
values of g(2)(0) are increasing, still we can decrease the
higher-order correlations below the value of g(2)(0), as
shown in Fig. 6(a).

Moreover, in Fig. 4(d), we show the ranges of the
squeezing r and displacement α parameters, for which
another type of nonstandard single-PB (i.e., type 3) can
be observed. This NPB in Fig. 4(d) is shown in addition
to the NPB of type 2 presented in Fig. 4(c).

E. Two-photon blockade

As shown in Fig. 3, various types of single-PB can be
generated via dissipation of a linearly driven optical cav-
ity field into a squeezed environment. However, two-PB,
according to the simplified criteria in Eq. (10), is not ob-
served in this model, which is demonstrated in Fig. 3(e)
for a specific choice of n. Also our numerical calcula-
tions show that it is very unlikely to generate three-PB
according to the simplified criteria Eq. (11) for an arbi-
trary value of n.

However, two-PB, according to the refined criteria in
Eq. (8), can be observed in this model. Indeed, the green
regions in Fig. 9 show the ranges of the squeezing r and
displacement α parameters for which two-PB can be ob-
served.

IV. SIMULATING VARIOUS TYPES OF
PHOTON BLOCKADE AND TUNNELING WITH

SQUEEZED COHERENT STATES

A. Squeezed coherent states

Ideal squeezed coherent states (SCS), or more precisely
the displaced squeezed vacuum, can be obtained by ap-
plying the squeezing and displacement operators to the
vacuum state as follows:

|α, ξ〉 = D̂(α)Ŝ(ξ)|0〉, (18)

where

Ŝ(ξ) = exp
[

1
2

(
ξ?â2 − ξâ†2

)]
(19)

(a) M ≤
√
n(n+ 1), n = 0.03

0

0.2

0.4

0.6

0 0.06 0.12 0.18

(b) M =
√
n(n+ 1)

0 0.02 0.04 0.06 0.08

FIG. 9. Squeezed-reservoir model: Two-photon blockade gen-
erated in a driven harmonic cavity coupled to a squeezed
reservoir according to the refined criteria in Eq. (8) for n =

0.03 and (a) M ≤
√
n(n+ 1) and (b) M =

√
n(n+ 1) corre-

sponding to the squeezed-vacuum reservoir (see Appendix B),
assuming ∆ = 0. Specifically, by changing the driving
strength ε versus (a) the reservoir squeezing parameter M
and (b) the reservoir mean photon number n, we show the
regions in which the criteria #1 and #2 are satisfied, as indi-
cated in yellow and blue, respectively. Two-photon blockade
occurs when both criteria #1 and #2 are satisfied, which cor-
responds to the green regions.

is the squeezing operator with a complex squeezing pa-
rameter ξ = r exp(iθ) and D(α) = exp(αâ† − α?â) is the
displacement operator with α = ᾱ exp(iφ), for arbitrary
phases θ, φ ∈ [0, 2π] and amplitudes ᾱ, r ≥ 0.

The second-order correlation function g(2)(0) for the
SCS with arbitrary values of θ and φ is given by

g(2)(0) = 3 + 2
(
1− 2ᾱ2

)
N̄−1 − ᾱ2 [1 + C] N̄−2, (20)

where the mean photon number is

N̄ ≡ 〈â†â〉 = 1
2 [2ᾱ2 + cosh (2r)− 1] , (21)

and C = cos (2φ− θ) sinh (2r). For a special case with
the optimally squeezed amplitude quadrature (θ = 2φ),
Eq. (20) simplifies to the formula given in Ref. [75]. Note
that such phase optimization corresponds to the so-called
principal squeezing [76, 83, 84].

Our main objective is to determine whether two-PB
(2PB) and three-PB (3PB), as well as various types
of nonstandard single-PB (NPB) and other phenomena
such as PIT, can be generated or simulated with squeezed
states. Thus, we have to examine higher-order correla-
tion functions, namely g(3)(0) and g(4)(0). We find that
the third-order correlation function for the SCS with ar-
bitrary angles θ and φ is

g(3)(0) = 15 + 9
(
1− 3ᾱ2

)
N̄−1 − 9ᾱ2(1 +B)N̄−2

+2ᾱ2
(
2ᾱ2 + 3C

)
N̄−3, (22)

which considerably simplifies for the optimally squeezed
amplitude quadratures (θ = 2φ).
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θ φ NPB

0 (−π/4;π/4) & (3π/4; 5π/4) yes

[π/4; 3π/4] & [5π/4; 7π/4] no

π (π/4; 3π/4) & (5π/4; 7π/4) yes

[−π/4;π/4] & [3π/4; 5π/4] no

(−π/2;π/2) 0, π yes

[π/2; 3π/2] no

[−π/2;π/2] π/2 no

(π/2; 3π/2) yes

TABLE III. Squeezed coherent states simulating nonstandard
photon blockade (of type 2), for which hold g(2)(0) < 1 and

g(3)(0) > 1, versus the phase φ = argα of the displacement
operator, and the phase θ = arg ξ of the squeezing parameter.

The analytical solution of the simplified criteria in
Eq. (10) can be obtained for the optimally squeezed state
holding the relation of θ = 2φ. Additionally, analytical
solutions can also be found whenever one of the phases is
fixed and the other takes any value from the range [0, 2π].
Our numerical and analytical results show that it is very
unlikely to obtain the simplified conditions in Eq. (10)
for two- and three-PB for the SCS having the optimally
squeezed amplitude quadratures. The same conclusion
holds for the SCS with one of the phases fixed and for
any values of: the other phase, α, and r. This conclu-
sion has been confirmed numerically for 106 randomly
generated SCS without fixing any parameters.

Thus, we have shown that multi-PB, according to the
simplified criteria in Eq. (10), are very unlikely for any
choice of the parameters of the SCS. This suggests that,
by having a physical system evolving into a squeezed
state, one can expect the possibility of generating single-
PB but standard squeezing does not lead to the genera-
tion of this type of multi-PB.

In contrast to this, we find that two-PB is still possible,
but according to the refined criteria in Eq. (8). Indeed,
for properly chosen parameters M and ε of the SCS, two-
PB can be observed as shown by the green regions in
Fig. 9.

Nonstandard single-PB (of type 2) can occur for the
SCS. Indeed, we have found analytical solutions satisfy-
ing both criteria in Eq. (13). Such solutions exist only
for some relations between the phases of the displacement
and squeezing operators. The ranges of these phases are
collected in Table III. The nonstandard PB effect cannot
be observed for other phase relations.

B. Displaced squeezed thermal states

In addition to the SCS, we also analyze the displaced
squeezed thermal states (DSTS), which can be obtained

by applying the displacement D̂(α) and squeezing Ŝ(ξ)

operators to a thermal state ρ̂th(nth), i.e.:

ρ̂(α, ξ, nth) = D̂(α)Ŝ(ξ)ρ̂th(nth)Ŝ†(ξ)D̂†(α). (23)

The thermal state is characterized by the density matrix
ρ̂th(nth) =

∑
n
Pn|n〉〈n|, where Pn = nnth/(1 + nth)n+1

is the probability of finding n thermal photons in a
thermally-excited mode having a geometric probability
distribution, and nth is the mean number of thermal pho-
tons.

In Appendix E we show explicitly that the DSTS
ρ̂(α, ξ, nth) are nonclassical if and only if the squeezing
parameter r ≡ |ξ| is greater than the critical value r0:

r > r0 ≡ 1
2 ln(1 + 2nth). (24)

These states are nonclassical, independent of the dis-
placement parameter α, because they are described
by a non-positive-semidefinite Glauber-Sudarshan P -
function. This is demonstrated in Appendix E with-
out recalling the explicit form of the P -function for the
DSTS. Further discussion of the nonclassical (r > r0)
and classical (r ≤ r0) regimes of the DSTS in relation to
their simulation of PIT is presented in Sec. V.

Applying the definition of the kth-order correlation
functions g(k)(0), we can easily obtain the following re-
lations describing the second- and third-order equal-time
correlation functions:

g(2)(0) = 3 +
(
1− 2ᾱ2

)
N̄−1 − h−, (25)

g(3)(0) = 15 + 9
(
1− 3ᾱ2

)
N̄−1 − 9h+

+2ᾱ2
[
2ᾱ2 + 3(2nth + 1)B

]
N̄−3, (26)

where the mean photon number is

N̄ ≡ 〈â†â〉 = 1
2 [2ᾱ2 + (1 + 2nth) cosh(2r)− 1], (27)

and the auxiliary functions are

h± =
{
nth(1 + nth) + ᾱ2 [1± (2nth + 1)C]

}
N̄−2,

(28)
where C is defined below Eq. (21). For θ = 2φ, Eqs. (25)
and (26) considerably simplify. In this special case,
Eq. (25) reduces to the corresponding formula given in
Ref. [75].

C. Photon correlations in squeezed coherent states

Here we analyze different kinds of PB and PIT effects
as listed in Table II and shown in Figs. 3-12.

(i) Three-PT occurs when 1 < g(2)(0) < g(3)(0). We
find that these conditions are satisfied for the SCS if r > 0
and α is smaller than a critical parameter α0, i.e.,

0 < α < α0 ≡ 1√
2

√
1 + c4 + c(2c+ s)(cs− 1), (29)

where hereafter c = cosh(r) and s = sinh(r).
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FIG. 10. Squeezed coherent states: Regions of the displace-
ment (α) and squeezing (r) parameters for which the refined
photon blockade criteria in Eq. (8) are satisfied for two-photon
(a,b,c) and three-photon (d,e,f) blockades. Specifically, the
regions of the SCS parameters, where the criteria #1 and
#2, are satisfied for g(2)(0), g(3)(0), and g(4)(0), are shown
in yellow, blue, and violet (or navy blue), respectively. In
grayscale, yellow (indicated by “Y”) is the brightest, and vi-
olet is the darkest color. Blue is marked by “B”. Two-photon
blockade occurs if the criteria for g(2)(0) and g(3)(0) are both
satisfied, which corresponds to the green region in (c). Three-

photon blockade does not occur as the regions for g(3)(0) and

g(4)(0) do not overlap.

(ii) Nonstandard single-PB of type 2, which is also
referred to as unconventional PB in Ref. [77], occurs if
g(2)(0) < 1 < g(3)(0), which can be observed for the SCS
if α ∈ (α0, α1) for r > 0, where the critical parameter α0

is defined in Eq. (29) and another critical value of α is

α1 = 1
4
√

6s

√
3f7 − 4(3c− 21s) + 8

√
3β1(c+ s)s2, (30)

given in terms of the auxiliary functions:

fx = x exp(−3r)− 4 exp(3r) + exp(5r), (31)

β1 = 35 + 94c4 + 2cs(70 + 47cs)− 2c2(51 + 88cs).

(iii) Nonstandard three-PT occurs when g(2)(0) <
g(3)(0) < 1. This effect can be observed for the SCS
if α ∈ (α1, α2) for r > 0, where α1 is defined in Eq. (30)
and

α2 = 1
4
√

2r

√
f9 − 2(3c− 17s) + 8

√
2β2(c+ s)s2, (32)

β2 = 10 + 29c4 + cs(40 + 29cs)− c2(31 + 56cs).

(iv) Single-PB is usually verified by the simplified con-
dition g(2)(0) < 1. Stricter conditions for single-PB can
be given as g(3)(0) < g(2)(0) < 1. These conditions are
satisfied for the SCS if α > α2 and r > 0.

(v) Our numerical and analytical calculations show
that there are no solutions for α satisfying the conditions
1 < g(3)(0) < g(2)(0) for two-PT.

(vi) Two-PB can indeed be observed according to the
refined conditions given in Eq. (8) for both SCS and
DSTS, as shown by the green regions in Figs. 10(c) and
11(a), respectively, for specific choices of the squeezing
phase θ = π and the displacement phase φ = 4π/8.
It is seen in Figs. 10(a) and 10(b) that two-PB cannot
be observed for the phases φ = 0, 3π/8. Figures 10(c)
and 11 show the destructive role of thermal photons nth

for the generation of two-PB. Indeed, the green region in
Figs. 10(c) and 11 decreases with increasing nth, and it
is not seen any more for nth = 0.01 in Fig. 11(b).

In contrast to this refined two-PB, our analytical and
numerical calculations show that the simplified criteria
in Eq. (10) for two-PB are very unlikely to be satisfied
as graphically explained in Fig. 4(e) for the SCS and
Fig. 5(e) for the DSTS.

Moreover, our both numerical and analytical results
show that three-PB can be simulated by neither SCS
nor DSTS according to the refined and simplified criteria
of PB, given in Eqs. (8) and (9), respectively. Indeed,
the criteria #1 and #2 can be satisfied separately, as
shown by the violet and blue regions in Figs. 10(d)–(e),
but they cannot be satisfied simultaneously for the same
values of the squeezing parameter r and the displacement
parameter α. This result implies that the colored regions
in these figures do not overlap.

V. NONCLASSICAL AND CLASSICAL
EFFECTS AND STATES

Now we address the question whether the analyzed ef-
fects and states are nonclassical or not.

We apply here the standard quantum-optical defini-
tion (or criterion) of the nonclassicality of a single-mode
bosonic state ρ̂ in terms of the Glauber-Sudarshan P -
function [85]:

ρ̂ =

∫
d2β P (β, β∗)|β〉〈β|, (33)

where |β〉 is a coherent state with a complex ampli-
tude β. According to this common definition (see, e.g.,
Refs. [76, 85]): a given state ρ̂ is referred to as classical,
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FIG. 11. Simulation of two-photon blockade with the dis-
placed squeezed thermal states according to the refined crite-
ria #1 and #2. Same as in Fig. 10 but for the DSTS with (a)
nth = 0.005 and (b) nth = 0.01. We set here θ ≡ arg ξ = π
and φ ≡ argα = 4π/8. Two-photon blockade occurs only in
panel (a) (in the green region). This green region is much
larger for nth = 0 as shown in Fig. 10(c). It is seen that
even a very small number of thermal photons severely shrinks
the range of the parameters allowing for the observation of
two-photon blockade.

if it is described by a classical-like (i.e., non-negative)
P -function. Otherwise, a state ρ̂ is considered nonclas-
sical (or quantum), i.e., when it is described by a nega-
tive (or more precisely non-positive or non-positive semi-
definite) P -function. Thus, according to this definition,
only coherent states and their mixtures (including ther-
mal states) can be considered classical, while all other
mixed and pure states (including squeezed states) are
nonclassical.

Single- and multi-PB effects are indeed purely nonclas-
sical as shown explicitly in Appendix C.

PIT is usually also considered a quantum effect (as
emphasized in, e.g., [38, 60]), even if it is characterized
by a classical-like property of the photon-number dis-
tributions, i.e., the second-order or higher-order super-
Poissonian photon-number statistics (i.e., single-time
photon bunching). We note that g(2)(0) ≥ 1 is usually
regarded as “a general property of all kinds of classical
light” [86]. Indeed, thermal states, which are classical
as given by the mixtures of coherent states, can simulate
PIT as shown in Appendix D.

A number of nonclassicality measures of bosonic
fields have been proposed, which include nonclassical
depth [87], nonclassical distance [88], and the nonclas-
sicality volume [89], which corresponds to the volume of
the negative part of the Wigner function (see, e.g., [90]
and references therein). Here, we apply an entanglement
potential introduced by Asbóth et al. [91]. Entanglement
potentials are, in general, numerically and experimen-
tally simpler than other formally-defined nonclassicality
measures, including the nonclassical depth and distance.
Moreover, entanglement potentials are much more sen-
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FIG. 12. Nonclassicality measures of the displaced squeezed
thermal states: (a) Entanglement potential, EP, of ρ̂(α, ξ, nth)

and (b) the truncated squeezing variance Ṽ , defined in
Eq. (38), versus the squeezing parameter r = |ξ| for differ-
ent values the mean numbers of thermal photons nth. The
EP and squeezing variance are independent of the displace-
ment parameter α and the squeezing phase θ. It is seen that
the critical values r0 (specifically, r0 = 0, 0.0912, 0.1682) of
the squeezing parameter r increase with increasing nth (i.e.,
nth = 0, 0.1, 0.2), according to Eq. (24) as indicated by the
vertical thin solid lines.

sitive in detecting nonclassicality compared to the non-
classicality volume. Indeed, the nonclassicality volume of
the SCS studied here is exactly zero, although the states
are nonclassical according entanglement potentials.

The basic idea of entanglement potentials is physically
quite simple: By combining a classical single-mode light
with the vacuum on a beam splitter, then the output
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state is separable. In contrast to this, if the input light
is nonclassical then the output light from a lossless beam
splitter is entangled. Moreover, the degree of nonclassi-
cality is not changed by lossless linear-optical transfor-
mations (including beam splitters). Thus, the degree of
nonclassicality of the input state can be measured by the
output-state entanglement by applying standard entan-
glement measures [92], e.g., the negativity, the concur-
rence, or the relative entropy of entanglement [91, 93].

To be more specific, the nonclassicality of a single-
mode state ρ̂ ≡ ρ̂in can be quantified, according to
Ref. [91], by the entanglement of the output state ρout

of an auxiliary lossless balanced BS with the state ρ̂ and
the vacuum |0〉 at the inputs, i.e.,

ρ̂out = ÛBS(ρ̂in ⊗ |0〉〈0|)Û†BS, (34)

where ÛBS is the unitary transformation of a balanced
(50:50) lossless beam splitter,

ÛBS = exp
[
−iπ2 (â†1â2 + â1â

†
2)
]
, (35)

and â1,2 (â†1,2) are the annihilation (creation) operators
of the input modes. We apply here the entanglement
potential (EP) based on the negativity (N) [91, 92]:

EP(ρ̂in) ≡ EN (ρ̂out) = log2[N(ρ̂out) + 1]

= log2 ||ρ̂Γ
out||1, (36)

which is given in terms of the trace norm ||ρ̂Γ||1 of the
partially-transposed statistical operator ρ̂Γ, and the loga-
rithmic negativity EN . We note that the negativity and,
thus, the corresponding entanglement potential deter-
mine, e.g.: (i) the entanglement cost Ecost ≡ EN under
operations preserving the positivity of the partial trans-
pose (at least for single-PB entangled states) [92] and (ii)
the dimensionality of entanglement, which is the number
of the degrees of freedom of entangled beams [35, 94].

The entanglement potential, defined in Eq. (36), for
the DSTS is given by the following simple formula [91]:

EP[ρ̂(α, ξ, nth)] =
r − r0

ln 2
, (37)

where the critical parameter r0 is given in Eq. (24). This
entanglement potential is plotted in Fig. 12(a) together
with the squeezing variance, which is another nonclassi-
cality measure of the DSTS. Indeed, in Fig. 12(b), we
plotted the truncated squeezing variance defined as [95]:

Ṽ ≡ min[0,−〈: (∆X̂ϕ0
)2 :〉], (38)

where the squeezing variance for the DSTS is (see Ap-
pendix E):

〈(∆X̂ϕ0
)2〉 = 1

2

(
1
2 + nth

)
exp(−2r) = 1

4 exp[−2(r − r0)],
(39)

and 〈: (∆X̂ϕ0
)2 :〉 = 〈(∆X̂ϕ0

)2〉 − 1/4. We note that,
in general, squeezing for an optimal phase ϕ0 is referred

to as principal squeezing [76, 83] and its geometrical in-
terpretation can be provided by Booth’s elliptical lem-
niscates [84]. Figure 12(b) clearly shows the same non-
classical and classical regimes of the DSTS, as those in
Fig. 12(a) for the entanglement potential, as explained
in greater detail in Appendix E.

By comparing Eqs. (37) and (39), it is seen that the
EP is a monotonic function of the squeezing variance for
the DSTS, i.e.:

EP = − 1
2 log2 〈(∆X̂ϕ0)2〉 − 1. (40)

Note that these quantities are also monotonically related
to the nonclassical depth for the DSTS [87].

The nonclassicality of an arbitrary two-mode Gaus-
sian state ρ̂out (which includes an arbitrary single-mode
state ρ̂in studied in this paper) can also be analyzed by
applying a numerically-efficient nonclassicality invariant
proposed in Ref. [96]. That quantifier is invariant under
any global unitary photon-number-preserving transfor-
mations of the covariance matrix of a Gaussian state.

Thus, we have shown that not all our numerical pre-
dictions of PIT and other photon-number correlations
correspond to quantum states, but only those for r > r0

are nonclassical for the DSTS. To make this distinction
clearer, we plotted in Figs. 5 and 12 the borderline at
r = r0 between the classical and nonclassical regimes
of the DSTS. We emphasize that all SCS with nonzero
squeezing parameter r are nonclassical, which is a special
case of the DSTS for nth = 0. Thus, all our numerical
predictions shown in Figs. 4 and 10 correspond to non-
classical states.

VI. CONCLUSIONS

Single- and two-photon blockades have been usually
studied in a driven nonlinear cavity [see Fig. 1(b)] or cavi-
ties [see Fig. 1(c)] coupled to a harmonic reservoir (a ther-
mal bath). Only a few works (including Refs. [74, 75])
were devoted to the analysis of single-photon blockade
via quantum nonlinear reservoir engineering.

In this paper we showed that a driven harmonic cavity
coupled to a squeezed reservoir, as schematically shown
in Fig. 1(a), can generate light exhibiting various types
of photon blockade and related phenomena. These in-
clude: two-photon blockade (as defined in Sec. II A),
three-photon tunneling (defined in Sec. I D), and three
nonstandard types of single-photon blockade (defined in
Sec. II C), in addition to standard single-photon block-
ade. Our theoretical interest in studying two-photon
blockade [53] has been stimulated by a recent experiment
of the Rempe group [44].

As shown in Refs. [97, 98], the roles of the Kerr non-
linear interaction and two-photon dissipation can be in-
terchanged in the steady states of the systems undergo-
ing these processes. This simply explains why the linear
system shown in Fig. 1(a), being coupled to a squeezed
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reservoir, enables the generation of photon blockade anal-
ogously to the standard Kerr nonlinear systems shown in
Figs. 1(b) and 1(c) in the dispersive limit. Indeed, a
squeezed reservoir allows for two-photon dissipation.

We considered various types of nonstandard photon-
number-correlation effects by analyzing different prop-
erties of second- and third-order single-time correlation
functions (as listed in Table II), and two-time correlations
described by g(2)(τ).

We also simulated these multi-photon effects with
squeezed coherent states and displaced squeezed thermal
states, inspired by the prediction [75] of single-photon
blockade in a linear system with nonlinear damping. The
relation between the squeezed-state simulations of these
effects and their generation via squeezed-reservoir is ex-
plained in Appendix B.

Photon blockade in nonlinear systems coupled to ther-
mal reservoirs has already attracted considerable inter-
est, as confirmed by a number of experimental demon-
strations [37–46]. Thus, we hope that the described
method of quantum reservoir engineering, which enables
the generation of multi-photon blockade, photon-induced
tunneling, and related phenomena, can also stimulate
further theoretical and experimental research in optical
and microwave photonics [17].
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APPENDICES

Appendix A: Standard systems for studying
conventional and unconventional photon blockade

For a better comparison of the proposed PB system
shown in Fig. 1(a), we briefly recall here the prototype
systems for generating conventional [see Fig. 1(b)] and
unconventional [see Fig. 1(c)] PB effects.

(1) Conventional PB is usually studied in a driven Kerr

nonlinear system described by the Hamiltonian

Ĥa = ωcâ
†â+ ε

(
âeiωdt + â†e−iωdt

)
+ χâ†â†ââ, (A1)

where χ is a Kerr nonlinearity proportional to the
third-order susceptibility χ(3), and the other terms of
this Hamiltonian are the same as in Eq. (15). The
Hamiltonian (A1) can be effectively derived (see, e.g.,
Ref. [53] and references therein) from the Jaynes-
Cummings model in the dispersive limit (i.e., far off reso-
nance) describing a driven cavity interacting with a two-
level system (qubit) under the rotating wave approxima-
tion. Thus, the system shown schematically in Fig. 1(b),
can be given by the Hamiltonian:

Ĥq
a =

1

2
ωσ̂z + ωcâ

†â+ g(σ̂+â+ â†σ̂−)

+ε(âeiωdt + â†e−iωdt), (A2)

where σ̂− (σ̂+) is the qubit lowering (raising) operator;
σz = |e〉〈e| − |g〉〈g| is a Pauli operator; and |g〉 (|e〉) is
the ground (excited) state of the two-level system.

(2) The prototype Hamiltonian for generating uncon-
ventional PB is given by [47–50]:

Ĥab = Ĥa + Ĥb + Jâ†b̂+ J∗âb̂†, (A3)

where

Ĥb = ω′cb̂
†b̂+ ε′

(
b̂eiω

′
dt + b̂†e−iω

′
dt
)

+ χ′b̂†b̂†b̂b̂, (A4)

where b̂ (b̂†) is the annihilation (creation) operator of
the optical mode in the second cavity, χ′ is the Kerr
nonlinearity of the second cavity, and the quantities ω′d,
ε′, and ω′d correspond, respectively, to ωd, ε, and ωd in
Eq. (15), but for the second cavity.

In analogy to the derivation of the conventional Kerr-
nonlinear Hamiltonian in Eq. (A1) from Eq. (A2), also
Eq. (A3) can be derived from the two linearly coupled
driven Jaynes-Cummings systems in the dispersive limit.
Such a two-cavity system can be described by:

Ĥq
ab = Ĥq

a + Ĥq
b + Jâ†b̂+ J∗âb̂†, (A5)

where Ĥq
b is defined analogously to Ĥq

a in Eq. (A2), but

for the mode b̂ of the second cavity. This two-atom sys-
tem can be simplified to include only one atom, which is
the case shown in Fig. 1(c).

The dissipative evolution of such PB systems has been
usually studied assuming their coupling to a thermal
reservoir within the Lindblad master equation,

dρ̂

dt
= −i[Ĥ, ρ̂]+

1

2
γ
{

(nth +1)Γ1[â]ρ̂+nthΓ1[â†]ρ̂
}
, (A6)

for the reduced density matrix ρ̂, where the Lindblad su-
peroperator Γ1[x̂]ρ̂ is defined in Eq. (B2) in Appendix B,
γ is the damping rate, and nth = {exp[~ω/(kBT )]−1}−1

is the mean thermal photon number.
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Appendix B: Master equation for the
squeezed-vacuum reservoir

Here, we show more explicitly the relation between
squeezed states and a squeezed reservoir by studying the
master equation for the squeezed-vacuum reservoir, given
in Eq. (17) in its special case for |M | =

√
n(n+ 1). Our

presentation is based on Refs. [80–82] (see also, e.g., [99]).
The master equation in Eq. (17), with the system

Hamiltonian Ĥ in Eq. (16), can be rewritten more com-
pactly as

dρ̂

dt
= −i[Ĥ, ρ̂] +

1

2
γ
{

(n+ 1)Γ1[â]ρ̂+ nΓ1[â†]ρ̂

−MΓ2[â]ρ̂−M∗Γ2[â†]ρ̂
}
, (B1)

using the superoperators defined as

Γ1[x̂]ρ̂ = 2x̂ρ̂x̂† − x̂†x̂ρ̂− ρ̂x̂†x̂, (B2)

Γ2[x̂]ρ̂ = 2x̂ρ̂x̂− x̂x̂ρ̂− ρ̂x̂x̂. (B3)

This master equation can be derived by considering a
system described by Ĥ ′ in Eq. (15) or, equivalently, Ĥ in
Eq. (16), with its cavity mode â being linearly coupled

to an infinite set of reservoir modes b̂k [99]. We assume

that the reservoir modes b̂k are initially in the squeezed
vacuum states,

|~ξ 〉 =
∏
k

|ξk〉 =
∏
k

Ŝk(ξ)|0k〉, (B4)

where the kth-mode squeezing operator is given by

Ŝk = exp (ξ∗b̂k0+k b̂k0−k −H.c.), (B5)

with k0 = ωc/c, ξ = r exp(iθ) is the usual complex
squeezing parameter, and H.c. denotes the correspond-
ing Hermitian-conjugate term. Thus, Ŝk in Eq. (B5) is
a two-mode squeezing operator for each k. Note that
the master equation in Eq. (B1) can also be derived for
a single-mode squeezing operator acting on each reser-
voir mode k [81]. The total initial state is assumed to

be ρ̂T = ρ̂(0) ⊗ |~ξ 〉〈~ξ |; and the total system-reservoir
Hamiltonian reads

ĤT = Ĥ ′ +
∑
k

ωk b̂
†
k b̂k +

∑
k

gk(âb̂†k + â†bk), (B6)

where gk is the coupling strength between the system

mode â and the reservoir mode b̂k. The standard proce-
dure of deriving the equation of motion for the reduced
density matrix ρ̂ under the Markov approximation re-
sults in the master equation, given in Eq. (B1) in the
interaction picture, where

〈b̂†k b̂k′〉 = nδkk′ = sinh2(r)δkk′ ,

〈b̂k b̂k′〉 = −M∗δk′k′′ = − cosh (r) sinh (r)eiθδk′k′′ , (B7)

with k′′ = 2k0 − k. By applying the Bogoliubov trans-
formation,

âs = Ŝ†âŜ = cosh (r)â− sinh (r)eiθâ†,

â†s = Ŝ†â†Ŝ = cosh (r)â† − sinh (r)e−iθâ, (B8)

where Ŝ(ξ) is the squeezing operator defined in Eq. (19),
the master equation in Eq. (B1) for ∆ = 0 reduces, in
the squeezed-vacuum frame, to the standard-form master
equation without Γ2 terms, i.e.:

dρ̂

dt
= −i[Ĥs, ρ̂] +

γ

2
Γ1[âs]ρ̂, (B9)

or, equivalently,

dρ̂s
dt

= −i[Ĥ, ρ̂s] +
γ

2
Γ1[â]ρ̂s, (B10)

where ρ̂s = ŜρŜ† and

Ĥs = Ŝ†ĤŜ = ε(â†s + âs). (B11)

As mentioned above, the resonant case ∆ = 0 is assumed
here. Note that for ∆ 6= 0, terms proportional to â2 and
(â†)2 should be added to the master equations in (B9)
and (B10).

Appendix C: Nonclassicality of photon blockade

Here we recall that PB is a nonclassical effect. First we
show this for single-PB using the P -function approach.
And then we apply another approach for any multi-PB.

We first recall that (â†)2â2 = n̂(n̂−1) =: n̂2 :, where ::
means the normal ordering of the creation and annihila-
tion operators. The photon-number variance 〈: (∆n̂)2 :〉
is simply related to g(2)(0) as follows:

〈: (∆n̂)2 :〉 = 〈: n̂2 :〉 − 〈n̂〉2 = [g(2)(0)− 1]〈n̂〉2, (C1)

where ∆n̂ = n̂ − 〈n̂〉. So, g(2)(0) < 1 if and only if the
variance is negative:

〈: (∆n̂)2 :〉 =

∫
d2β P (β, β∗)(|β|2 − 〈n̂〉)2 < 0. (C2)

Because the terms (|β|2 − 〈n̂〉)2 ≥ 0 and 〈: (∆n̂)2 :〉 < 0,
then P (β, β∗) must also be negative in some regions of
phase space. This means that the state ρ̂, which exhibits
single-PB, is described by a non-positive-semidefinite
P (β, β∗), and, thus, has to be nonclassical.

The nonclassicality of single- and multi-PB can be
shown even faster by recalling the following facts: (1)
classical states of light are either coherent states or
their mixtures; (2) coherent states are characterized
by g(k)(0) = 1, for any k ≥ 1; (3) k-PB requires
g(k+1)(0) < 1, or even the sharper condition g(k+1)(0) <
A ≡ exp(−〈n̂〉) ≤ 1, according to the refined PB criterion
#1 in Eq. (8). So, single- and multi-PB can occur only
for photon-number distributions which are sharper [79]
than that of a coherent state and, therefore, also sharper
than any mixtures of coherent states. This completes our
proofs.
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Appendix D: Classical simulation of photon-induced
tunneling with thermal states

Here we show that usual thermal states can simulate
the PIT of an arbitrary number of photons.

The thermal-state probability Pn of measuring n pho-
tons can be compactly written as Pn = yxn, where x =
〈n̂〉y, y = 1/(1+〈n̂〉), and 〈n̂〉 ≡ n̄th = {exp[~ω/(kBT )]−
1}−1. Then the geometric series for the second- and
higher-order correlation functions g(k)(0) can be easily
calculated as:

g(2)(0) =
y

〈n̂〉2
∑
n

xnn(n− 1) = 2,

g(3)(0) =
y

〈n̂〉3
∑
n

xnn(n− 1)(n− 2) = 6, (D1)

These values can also be obtained from Eqs. (25) and (26)
in their special cases for α = r = 0.

By induction, we conclude that for any order k > 1,
the correlation function g(k)(0) for the thermal state with
the mean photon number 〈n̂〉 becomes

g(k)(0) = 〈n̂〉−k
∑
n

Pnn
[k] = k!, (D2)

where n[k] = n(n − 1) · · · (n − k + 1). This implies that
for any k > 1 and 〈n̂〉 > 0, holds

1 < g(k)(0) < g(k+1)(0). (D3)

Thus, thermal states can simulate the PIT of any number
of (thermal) photons. In particular, which includes two-
and three-PT, which are characterized by the conditions:
1 < g(2)(0) and Eq. (3), respectively.

Appendix E: Nonclassical and classical regimes of
displaced squeezed thermal states

For completeness of our presentation, we show explic-
itly that the DSTS, given by ρ̂(α, ξ, nth), are nonclassical
if the inequality |ξ| > r0, given in Eq. (24) is satisfied.

By defining a phase-dependent quadrature operator

X̂ϕ = 1
2 [â exp(iϕ) + â† exp(−iϕ)], (E1)

the minimum value of the normally-ordered variance
〈: (∆X̂ϕ)2 :〉 for the DSTS is given by

min
ϕ
〈: (∆X̂ϕ)2 :〉 ≡ 〈: (∆X̂ϕ0

)2 :〉

= 1
4 exp[−2(r − r0)]− 1

4 , (E2)

where ϕ0 denotes the optimal value of the quadrature
phase ϕ. In particular, ϕ0 = 0 for the squeezing phase
θ = 0. Moreover, :: denotes normal ordering and ∆X̂ϕ =

X̂ϕ−〈X̂ϕ〉. It is seen that Eq. (E2) is independent of the
displacement parameter α and, thus, equivalent to the
variance for the squeezed thermal states first derived in
Ref. [100].

Squeezing occurs if 〈: (∆Xϕ)2 :〉 < 0. This normally-
ordered variance can be directly calculated from the cor-
responding P -function:

〈: (∆Xϕ0
)2 :〉 =

∫
d2β P (β, β∗)[Xϕ0

(β, β∗)−〈X̂ϕ0
〉]2 < 0,

(E3)
where

Xϕ0 = 1
2 [β exp(iϕ0) + β∗ exp(−iϕ0)]. (E4)

Because the term [...]2 is nonnegative and 〈: (∆Xϕ0
)2 :〉

is negative for any squeezed state, then P (β, β∗) has to
be negative in some regions of phase space. This means
that the DSTS for r > r0 are nonclassical. This result
is confirmed by Eq. (37) for the entanglement potential,
and shown in Fig. 12. Thus, the requirement r > r0 is
the necessary and sufficient condition of the P -function-
based nonclassicality for the DSTS. This implies that any
nonclassical DSTS exhibits quadrature squeezing.

In a special case of the SCS, given by |α, ξ〉 =

D̂(α)Ŝ(ξ)|0〉, we recover the well-known result that r0 =
0, which means that any SCS with a nonzero squeezing
parameter is nonclassical [3].

Thus, to show the nonclassicality of the DSTS, we
have plotted the entanglement potential and the squeez-
ing variance in Figs. 12(a) and 12(b), respectively. More-
over, we plotted the red vertical line at r = r0 in Fig. 5 to
show more explicitly the borderline between the classical
and nonclassical regimes of the DSTS.
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[9] J. Plebański, Wave Functions of a Harmonic Oscillator,
Phys. Rev. 101, 1825 (1956).

https://iopscience.iop.org/article/10.1088/1464-4266/4/1/201
https://iopscience.iop.org/article/10.1088/1464-4266/4/1/201
https://doi.org/10.1038/306141a0
https://doi.org/10.1038/306141a0
https://doi.org/10.1080/09500348714550721
https://doi.org/10.1080/09500348714550721
https://doi.org/10.1007/978-3-662-09645-1
https://doi.org/10.1088/0031-8949/91/5/053001
https://doi.org/10.1088/0031-8949/91/5/053001
https://doi.org/10.1007/bf01391200
https://doi.org/10.1103/physrev.101.1825


18

[10] J. N. Hollenhorst, Quantum limits on resonant-mass
gravitational-radiation detectors, Phys. Rev. D 19, 1669
(1979).

[11] C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D.
Sandberg, and M. Zimmermann, On the measurement of
a weak classical force coupled to a quantum-mechanical
oscillator. I. Issues of principle, Rev. Mod. Phys. 52,
341 (1980).

[12] V. Dodonov, V. Man’ko, and V. Rudenko, Nondemo-
lition measurements in gravitational-wave experiments,
Sov. Phys. JETP 51, 443 (1980).

[13] C. M. Caves, Quantum-mechanical noise in an interfer-
ometer, Phys. Rev. D 23, 1693 (1981).

[14] R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz,
and J. F. Valley, Observation of Squeezed States Gener-
ated by Four-Wave Mixing in an Optical Cavity, Phys.
Rev. Lett. 55, 2409 (1985).

[15] L.-A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, Gener-
ation of Squeezed States by Parametric Down Conver-
sion, Phys. Rev. Lett. 57, 2520 (1986).

[16] R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G.
DeVoe, and D. F. Walls, Broad-Band Parametric Deam-
plification of Quantum Noise in an Optical Fiber, Phys.
Rev. Lett. 57, 691 (1986).

[17] X. Gu, A. F. Kockum, A. Miranowicz, Y.-X. Liu,
and F. Nori, Microwave photonics with superconducting
quantum circuits, Physics Reports 718-719, 1 (2017).

[18] LIGO Scientific Collaboration, Enhanced sensitivity of
the LIGO gravitational wave detector by using squeezed
states of light, Nature Photonics 7, 613 (2013).

[19] H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel,
J. Slutsky, and H. Vahlbruch, First Long-Term Applica-
tion of Squeezed States of Light in a Gravitational-Wave
Observatory, Phys. Rev. Lett. 110, 181101 (2013).

[20] M. Bartkowiak, L.-A. Wu, and A. Miranowicz, Quan-
tum circuits for amplification of Kerr nonlinearity via
quadrature squeezing, J. Phys. B 47, 145501 (2014).
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truncation and generation of maximally entangled states
in pumped nonlinear couplers, J. Phys. B 39, 1683
(2006).

[49] T. C. H. Liew and V. Savona, Single Photons from
Coupled Quantum Modes, Phys. Rev. Lett. 104, 183601
(2010).
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[64] W. Leoński and A. Miranowicz, Quantum-optical states
in finite-dimensional Hilbert space. II. state generation,

Adv. Chem. Phys. 119(I), 195 (2001).
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