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Quantum spin liquids (QSLs) define an exotic class of quantum ground states where spins are disordered
down to zero temperature. We propose routes to QSLs in kagome optical lattices using applied flux. An optical
flux lattice can be applied to induce a uniform flux and chiral three-spin interactions that drive the formation of
a gapped chiral spin liquid. A different approach based on recent experiments using laser assisted tunneling and
lattice tilt implements a staggered flux pattern which can drive a gapless spin liquid with symmetry protected
nodal lines. Our proposals therefore establish kagome optical lattices with effective flux as a powerful platform
for exploration of QSLs.

I. INTRODUCTION

QSLs are highly entangled spin states that are quantum dis-
ordered down to zero temperature and therefore do not display
conventional features of magnetism. But QSLs may nonethe-
less offer explanations for strongly correlated phenomena ob-
served in some materials [1, 2]. Frustration is known to fa-
vor certain types of QSLs. Kagome lattice models of spins in
particular serve as a central archetype hosting a broad array
of QSLs. It is now well established that ground states aris-
ing from the standard antiferromagnetic Heisenberg interac-
tion (Si ·Sj , where Si is the usual spin operator at a site i) on
a kagome lattice can be driven into exotic spin liquids when
certain three-spin interactions [Si · (Sj × Sk)] are added to
the Heisenberg interaction [3–9].

When the three-spin interaction is added uniformly every-
where to the kagome lattice, a chiral spin liquid (CSL) arises
[4, 5, 7] since it is an exact ground state of similar interactions
[6, 10]. A CSL is related to a bosonic Laughlin state [3, 6, 11],
and, as such, derives some of the same properties. The CSL
is a topologically ordered ground state and is therefore two-
fold degenerate on the torus. Such a topological degeneracy is
a key feature of gapped topologically ordered states that can
be used to uniquely identify them in numerics [12–15]. The
CSL also possesses chiral edge modes; It derives from flux
attachment in effective Chern-Simons theories [8]; And fur-
thermore, the CSL hosts exotic anyon excitations, whereby
braiding of anyons changes the many-body wavefunction by a
non-trivial phase [16, 17]. Identifying such exotic braid statis-
tics in the laboratory is a key goal of quantum many-body
physics [17].

Prospects for driving kagome antiferromagnets into the
CSL remains daunting and rare in the published literature.
Recent works with ultracold atoms placed in optical lattices
[18, 19] show promise because not only are kagome lattices
possible [20, 21], but also temperatures low enough to real-
ize antiferromagnetic order derived from super exchange be-
tween fermionic atoms have recently been realized [22] with
atomic gas microscopes [23–40]. One recent idea suggests
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FIG. 1. Schematic of one fermion per site (blacks spheres) on a
kagome lattice. The white spheres denote virtual current driven by
flux passing through the lattice. The plus and minus signs denote the
sign of the flux captured by the virtual currents. Panel a (b) shows a
uniform (staggered) flux pattern. In the Heisenberg limit of a Hub-
bard model, virtual currents encircling flux lead to chiral three-spin
terms that drive spin liquids.

that a CSL may be realizable in systems of polar molecules
using long-ranged dipolar interactions in optical lattices [41].
In this paper we examine a very different approach based on
more common short-ranged interactions of fermionic atoms in
the presence of tunable fluxes.

We model fermionic atoms placed in kagome optical lat-
tices with flux. Effective flux in optical lattices can be real-
ized in a variety of ways [42–54]. We show that an optical
flux lattice [44, 45, 48, 53] can be used to generate a sufficient
amount of flux to perturbatively drive virtual currents in an un-
derlying Hubbard model [55–57]. Fig. 1a shows one fermion
per site in the Mott limit. Ordinary hopping is prevented but
virtual hops around triangles can capture flux to drive three-
spin terms needed to enhance the CSL. The equivalent amount
of flux for such terms in a solid with an ∼ 1 Å inter-atomic
spacing would require large magnetic fields,∼ 104 T. We will
therefore show that an optical flux lattice in a kagome opti-
cal lattice offers a more direct route to the CSL than what is
achievable in solids with ordinary magnetic field strengths.

We also model effective flux generated by laser assisted
tunneling combined with a potential tilt as first implemented
in square optical lattices [51, 52]. When examining this setup
in a kagome optical lattice we find that the effective flux pat-
tern is staggered (Fig. 1b). We speculate that this flux pat-
tern may be able to drive an interesting gapless spin liquid re-
cently discovered numerically [9] to host symmetry protected
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nodal lines and may thus offer a platform to study gapless
spinon surfaces [58–61]. Overall, we show that flux applied to
kagome optical lattices offers a powerful tool to study QSLs,
in particular, the long sought chiral spin liquid, and, possibly,
a spin liquid with gapless spinon surfaces.

This paper is organized as follows. In Sec. II we discuss
the well-known Hubbard limit of kagome optical lattices. We
generalize to the case of complex hopping and describe a cal-
culation showing that, for large optical lattice depths (weak
hopping), the interactions lead to spin models with interesting
three-body terms that drive spin liquid formation. This section
describes a calculation we will use in the remainder of the pa-
per. In Sec. III we discuss an optical flux lattice setup that
leads to a uniform effective flux (Fig. 1a). We use the deriva-
tion in Sec. II to argue that the optical flux lattice establishes
three-spin terms favoring a CSL. In Sec. IV we discuss a route
to introduce a staggered flux (Fig. 1b) with laser assisted tun-
neling and a lattice tilt. We again use Sec. II to argue for a spin
model with three-spin terms. Although here we find that the
resulting three-spin terms are staggered and relate to recent
work on gapless spin liquids with nodal spinon surfaces [9].
We end with a summary and conclusion in Sec. V, where we
also discuss discuss practical aspects: entropy requirements
and methods to observe these spin liquid phases.

II. HUBBARD MODEL AND KAGOME LATTICES

We begin by discussing the mathematical connection be-
tween effective spin models and Hubbard models in the pres-
ence of flux. Secs. III and IV will rely on the derivation here
as a route to model two distinct proposals to realize effec-
tive flux in kagome optical lattices. In both cases we assume
fermionic alkali atoms equally populating the two lowest hy-
perfine states to yield a pseudospin. We also assume that they
are loaded into a kagome optical lattice [20, 21, 62]. The de-
tails of the kagome optical lattice setup have been discussed
elsewhere [21], where it was found that overlaying two trian-
gular optical lattices formed from lasers with commensurate
wavelengths yield potentials deep enough to realize the Hub-
bard limit [20, 21, 63]. For laser intensities yielding a Bloch
bandwidth well below the band gap, we have [20, 21, 63]:

Hα = Hα
0 + U

∑
i

ni↑ni↓, (1)

where the second term is a repulsive Hubbard interaction orig-
inating from the s-wave scattering between atoms in spin
states σ ∈ {↑, ↓}. Here niσ = a†iσaiσ is defined in terms
of dressed fermion annihilation (ajσ) and creation (a†iσ) oper-
ators at the site Ri. The first term is a single particle hopping
term:

Hα
0 = −

∑
〈ij〉

tαija
†
iσajσ, (2)

with nearest neighbor hopping matrix elements tαij . Eq. 1 de-
fines the essential degrees of freedom we will examine.

We will discuss two different strategies to realize effective
magnetic fields strong enough to drive Mott insulating states
toward QSLs in kagome optical lattices. The first strategy,
discussed in Sec. III, will examine the optical flux lattice as
a route to a uniform flux pattern, Fig. 1a, α = Un. The
second strategy, discussed in Sec. IV, will examine laser as-
sisted tunneling combined with a potential tilt, as a route to
implement a staggered flux lattice, Fig. 1b, α = St. In both
cases the flux can be described by effective gauge fields, A,
captured by a complex hopping via the Peierls transforma-
tion: tαij = |tij | exp(iΦij/Φ0), where the flux on a bond is

Φij =
∫Rj

Ri
A · dr. The flux then leads to an Aharonov-

Bohm phase difference as a particle tunnels around a triangle:
2πΦ∆/φ0, where Φ∆ =

∫
∆

(∇×A) · d2r is the flux through
an upward pointing triangle in the kagome lattice (Φ∇ is de-
fined in the same way but for downward pointing triangles). In
the following we work in units ~ = a = q = 1 where a is the
lattice spacing and q is the effective charge, so that Φ0 = 2π.

We now turn to interaction effects in the Heisenberg limit to
study the role of our proposed flux patterns in driving QSLs.
Eq. 1 is well approximated by spin models when there is one
particle per site and for t� U . In this limit we can derive the
spin model by expanding Hα perturbatively in powers of t/U
using exp(iK)Hα exp(−iK) where K is an operator that
changes the number of doubly occupied sites [64]. Project-
ing into the limit of one particle per site we have [55, 56, 64]:

Hα≈ JH

∑
〈ij〉

Si · Sj + JC(Φ)
[ ∑
ijk∈4

Si · (Sj × Sk)

+ Pα
∑
ijk∈5

Si · (Sj × Sk)
]

+O(t4/U3) (3)

where we have used the mapping: Si = (1/2)a†iσσσ,σ′aiσ′ ,
with σσ,σ′ the elements of the usual Pauli matrices. The first
term is the usual antiferromagnetic Heisenberg term arising
from 2 virtual hops along bonds: JH = 4t2/U . Here we as-
sumed that the magnitude of the hopping on all bonds, t, is
the same without loss of generality.

In the absence of flux, corrections to the usual Heisenberg
(two-spin) interaction are fourth-order (four-spin) terms. But
here we note that three-spin terms in Eq. 3 arise perturba-
tively from third-order virtual hops around triangles due to the
presence of an effective field. One can see that they are non-
zero only in the presence of time-reversal symmetry break-
ing on individual triangles due to effective fluxes: JC(Φ) =
(24t3/U2)| sin(2πΦ∆,∇/Φ0)|, since JC(Φ) vanishes at zero
flux. In the following we seek routes to impose the maximum
amount of flux through each triangle: |Φ∆,∇| = Φ0/4 to max-
imize the strength of the three-spin terms. The parameter Pα
captures both the uniform flux Pα=Un = 1 (Φ∆ = Φ∇) and
the staggered flux cases Pα=St = −1 (Φ∆ = −Φ∇) discussed
below.

The lowest order corrections to Eq. 3 arise from fourth or-
der virtual hops. Corrections of order t4/U3 modify JH. In
addition to modifying JH, fourth order corrections also give
rise to next-nearest neighbor Heisenberg terms, e.g., Si ·Si+2.
We exclude next-nearest neighbor Heisenberg terms in the fol-
lowing.
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The following two sections propose to realize both uniform
and staggered fluxes, and therefore Eqs. 1 - 3, in kagome op-
tical lattices. We will discuss how each separate setup can be
approximated by Eq. 2, but with different flux patterns. We
discuss the role of interactions by using the derivation of the
above general spin model to argue that a Mott insulator placed
in a deep optical lattice is approximated by special cases of
Eq. 3. The uniform flux case (α = Un) will yield a three-spin
term in Eq. 3 that is the same on all triangles in the lattice
(Sec. III). The staggered flux case (α = St) will yield a three-
spin term in Eq. 3 with a sign that alternates from triangle to
triangle (Sec. IV).

III. UNIFORM FLUX FROM AN OPTICAL FLUX
LATTICE

Optical flux lattices [44] offer a straightforward route to im-
plement a uniform effective flux in a kagome optical lattice.
In optical flux lattices proposed so far, the lowest (of two)
hyperfine states adiabatically evolves under external lasers so
that the Berry’s phase of an atom adiabatically changes around
closed loops in a lattice to mimic an effective magnetic field.
Details of different optical flux lattices have been discussed in
the literature [44, 45, 48, 53]. A particularly versatile setup
was proposed in Ref. [45] wherein a two-photon dressed state
can be used to address many common atomic species. There it
was argued that low-loss fermionic atoms which have already
been laser cooled, such as 171Yb can 199Hg, can be used. By
loading them into the lowest two hyperfine levels and address-
ing with two lasers detuned from the first excited level one can
effect a Berry’s phase change. The low energy states in this
proposal [45] yield just a single-component fermion moving
in an effective magnetic field.

To generate effective flux for a system of two-component
fermions (a spin model), we consider a straightforward two-
copy generalization of Ref. [45] where the atoms are loaded
into four near-degenerate lowest levels (as opposed to just
two). Beams implementing the optical flux lattice are simi-
larly detuned from excited states. The resulting four hyper-
fine states reduce to a dressed state of just the two lowest lev-
els thus leading to an effective spin in an optically induced
field. The dynamics of each atom leads to a Berry’s phase
[44] which is equivalent to a flux passing through a closed
loop, identical for each of the two lowest hyperfine states.
Candidate atoms include isotopes of alkaline-earth-like atoms,
such as 173Yb and 87Sr [65–67] which can be used to prepare
SU(N)-symmetric Hubbard models. Recent work has been
able to use optical pumping to load 137Yb into four degen-
erate lowest levels and cool into a Mott insulator displaying
spin correlations [68]. These four levels can be split with a
Zeeman field to yield an excellent candidate for a two-copy
generalization of Ref. [45].

We first examine the non-interacting part of the kagome op-
tical flux lattice. The optical flux lattice arises from counter
propagating lasers defining the usual kagome potential but for
the four hyperfine states so that, for each pair of hyperfine

FIG. 2. Top: Lowest energy of the potential term in Eq. 4, EL, used
to implement the optical flux lattice for lattice depth VL = 1. Posi-
tion is plotted in units of the lattice spacing a. The atoms sit at the
energy minima (dark regions). Bottom: Same as the top but for the
magnitude of the effective flux density, nφ. The bright spots within
triangles show that atoms experience a uniform flux through triangles
(Fig. 1a).

states, the single-particle Hamiltonian becomes:

H̃Un
0 =

p2

2m
+ VL

3∑
l=1

[
cos (kl · r)− 1

5
cos (2kl · r)

]
σl,

(4)
where VL is the lattice depth, k1 = (0, 1), k2 =(√

3/2,−1/2
)
, k3 =

(
−
√

3/2,−1/2
)
, and σl are the Pauli

matrices. If the kinetic energy is much smaller than the gap
of the second term, the ground state adiabatically follows the
second term in a dressed state φ(r). Writing the ground
eigenstate of the second term as |Ψ〉† = (φ1(r), φ2(r)) we
assume that the ground state of this Hamiltonian is non-
degenerate everywhere. Projecting to its lower band leads
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FIG. 3. Lowest energy eigenvalues of the spin model with uniform
effective flux (Eq. 5) for 18 spins in 2 × 3 unit cells with peri-
odic boundaries. The lowest energy is set to zero. The strengths
of the Heisenberg and chiral three-spin term are parameterized with
JH = J cos(θ) and JC(Φ) = J sin(θ), respectively. With this pa-
rameterization, we have tan(θ) = 6t/U and Φ∆ = Φ∇ = Φ0/4 in
the original Hubbard model. The right side of the graph is dominated
by the three-spin term where we see two ground states defining the
CSL. Different colors indicate different total spin sectors: Sz = 0
(red), Sz = 1 (blue), Sz = 2 (green), and Sz = 3 (orange).

to an effective two-component Hamiltonian with the vector
potential A = i 〈Ψ| ∇r |Ψ〉 , where the effective magnetic
flux density perpendicular to the plane of the lattice becomes
nφ ≡ (∇×A) · ẑ/Φ0.

The top panel of Fig. 2 plots the lowest energy of the po-
tential term in Eq. 4, EL, for a single spin. Here we see that
minima correspond to a kagome lattice as expected. The bot-
tom panel plots the flux density in the lattice. The flux density
pattern shows that the flux piercing each triangle is the same,
thus corresponding to Fig. 1a.

The flux through the lattice can be tuned to yield a com-
plex hopping. Passing to the tight binding limit we assume
that VL is large enough to keep all atoms in the lowest band
of the kagome lattice (more than a few atomic recoils). Eq. 4
then becomes well approximated by Eq. 2 with complex hop-
ping, tij = t exp(iΦij/Φ0), where t is real and the same
for all bonds. The hoppings capture a uniform flux pass-
ing through all triangles in the kagome lattice (Φ∆ = Φ∇).
We have checked that the flux passing through triangles in
Fig. 2 is maximized: Im[t12t23t31] = t3 sin(2πΦ∆/Φ0) =
t3 sin(2πΦ∇/Φ0) ≈ t3. This shows that an optical flux lattice
can be tuned to yield a large uniform effective flux through a
kagome optical lattice captured by the Hubbard model dis-
cussed in Sec. II.

We now turn to interaction effects in the uniform flux case.
We assume the Hubbard limit with one particle per site. Per-
turbation theory discussed in Sec. II with complex hopping

leads to a spin model of the form:

HUn≈ JH

∑
〈ij〉

Si · Sj + JC(Φ0/4)
∑

ijk∈{4,5}

Si · (Sj × Sk)

+ O(t4/U3) (5)

where we assumed a uniform flux, Φ∆ = Φ∇ = Φ0/4,
that leads to the three-spin interaction term that is uniform
throughout the lattice and JC(Φ0/4) = 24t3/U2.

We expect Eq. 5 to lead to a gapped CSL [3, 6, 7, 10].
The three-spin term on the kagome lattice, and therefore large
JC(Φ) ∼ t3/U2 in Eq. 5, strongly favors the CSL. But the
derivation of Eq. 5 is most accurate in the perturbative limit,
t/U � 1. We therefore search for an intermediate range of
t/U which lies in the perturbative regime while still favoring
the CSL.

We study the robustness of the CSL over the entire param-
eter range using unbiased exact diagonalization for small sys-
tem sizes. We use the Krylov-Schur algorithm [69] which al-
lows us to handle degenerate eigenvalues. This method is es-
sentially exact (it includes all quantum fluctuations) and gives
the same results as other unbiased methods on small lattices.
We work on a finite system size, 18 spins (2 × 3 unit cells)
with periodic boundaries to obtain the lowest energy states.
We point out that similar small-system size studies in the
fractional quantum Hall regime on related models [70] are
applicable to the thermodynamic limit because correlations
in gapped topological phases are known to decay exponen-
tially. For example, system sizes as small as 8 particles cap-
ture the low-energy roton structure of the fractional quantum
Hall states [12]. Since the CSL maps to the bosonic fractional
quantum Hall states, the presence of the gap and other corrob-
orating numerics [7] allow us to make conclusions about the
robustness of the CSL.

Figure 3 plots the lowest energies of Eq. 5 as a function of
the relative strength of each term using exact diagonalization.
To make a more compact exploration of parameter space, we
define new interaction parameters, J and θ, via JH = J cos(θ)
and JC(Φ0/4) = J sin(θ), corresponding to tan(θ) = 6t/U
and Φ∆ = Φ∇ = Φ0/4 in the original Hubbard model. By
varying θ in Fig. 3 we can tune between the Heisenberg (left)
and three-spin (right) limits in Eq. 5. The rightmost side of
the graph shows a two-fold degenerate ground state (arrows),
as expected for a CSL on a torus. There is a gap to a third state
that remains robust for θ & π/4, i.e., JC/JH & 0.5. In this
regime we see that deviations from the exact CSL generating
model [6] lift the exact degeneracy induced by the three-spin
term at θ = π/2. Nonetheless the CSL remains robust since
the gap does not close. The gap is even somewhat enhanced
by the two-spin term. Larger system size numerics [7] show
an even larger range of stability, JC/JH & 0.15 in the thermo-
dynamic limit.

Returning to the original Hubbard parameters, this range
of CSL stability, t/U & 0.16 for 18 spins and t/U & 0.026
in the thermodynamic limit, corresponds to parameters well
within the assumption of the perturbative regime. This brings
us to our central result: an optical flux lattice induces third-
order virtual currents which in turn drive a CSL state in
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FIG. 4. Schematic of a kagome optical lattice with two additional
fields applied to create a staggered effective flux (Fig. 1b). The ar-
rows denote a uniform potential gradient (tilt) from a gravitational
field, magnetic field, or another method. The green arrows denote the
direction of the moving lattice created by additional Raman beams.

the Mott insulator regime of a Hubbard-kagome optical lat-
tice. We discuss possible routes to observation of the CSL in
Sec. V. The next section discusses a method to introduce stag-
gered flux and possibly a different QSL in a kagome optical
lattice.

IV. STAGGERED FLUX FROM A MOVING OPTICAL
LATTICE

We now discuss a separate method to introduce flux in a
kagome optical lattice. The method is based on a scheme re-
cently used to implement complex hopping in a square optical
lattice [51, 52] with a tilt (which can be applied using a variety
of methods including a magnetic field or gravity) and a mov-
ing lattice. The moving lattice is established by two additional
Raman lasers applied perpendicular to the tilt.

Figure 4 shows a schematic of the kagome lattice contain-
ing two species of fermion, e.g., 40 K, with both external fields
applied, the tilt, and the moving lattice. The kinetic energy of
the atoms under the applied fields becomes a function of time
τ :

H̃St
0 = −t

∑
〈ij〉σ

c†iσcjσ +
∑
iσ

[
~∆ ·Ri + V (Ri, τ)

]
c†iσciσ,

(6)
where the annihilation and creation operators refer to un-
dressed fermions (as in Eq. 2 but prior to the applied fields)
in Wannier states localized at sites i and j. The second term
results from the tilt field ~∆ = ∆

[
x̂+ (

√
3/3)ŷ

]
/2 such that

~∆·R1 = 0 and ~∆·R2 = ~∆·R3 = ∆/2, where we assume the
positions of the three sites in a unit cell are R1 = 0, R2 = x̂
andR3 = (1/2)x̂+(

√
3/2)ŷ. The last term is due to a moving

lattice created by additional lasers added to the lasers defining
the kagome potentials: V (r, τ) = Ω sin(P · r − τ∆), where
P = −(π/2)x̂+ (

√
3π/2)ŷ is the momentum of the moving

lattice, such that P · ~∆ = 0, and P ·R3 = P ·R1 + π/2 =
P · R2 + π. Here we have chosen an oscillation frequency
that helps maximize flux and equalizes the magnitude of the
hopping along all bonds.

We derive a steady state effective model for the fermions
under the applied fields. By computing the Wannier functions
in the presence of the tilt we find a Wannier-Stark effect which
allows the moving lattice to generate a complex hopping (see
Appendix A). Appendix B shows that the flux through the
kagome lattice is staggered (Fig. 1b). Specifically, we find
that a tilt and moving lattice applied to fermions in a kagome
optical lattice results in Eq. 2 with complex hopping and stag-
gered flux to yield Φ∆ = −Φ∇ = Φ0/4. We have checked
that varying the angle and other parameters does not lead to a
uniform flux, though other irregular flux patterns are possible.
We conclude that a method already realized in the laboratory
(introducing flux in optical lattices using a tilt and a moving
lattice) always leads to staggered flux patterns in kagome op-
tical lattices.

We now turn to interaction effects in the staggered flux case.
We again take the Hubbard limit of a deep optical lattice with
one particle per site. Arguments discussed in Sec. II lead to a
spin model of the form:

HSt≈ JH

∑
〈ij〉

Si · Sj

+ JC(Φ0/4)

[ ∑
ijk∈4

Si · (Sj × Sk)−
∑
ijk∈5

Si · (Sj × Sk)

]
+ O(t4/U3) (7)

where we assumed a staggered flux, Φ∆ = −Φ∇ = Φ0/4,
that leads to a three-spin interaction term that alternates from
triangle to triangle and JC(Φ0/4) = 24t3/U2.

We now speculate on the role of strong interactions in the
staggered flux case. The staggered flux ground state of Eq. 7
is argued [9] to be a gapless spin liquid where the zero-energy
excitations fall along three nodal lines that all cross zero in
momentum space. The gapless nodal lines are protected by
symmetry but finite size effects may open a gap. We used
numerical exact diagonalization on Eq. 7 with up to 18 spins
with periodic boundary conditions to study the spectrum in all
spin sectors. We find small gaps (& 0.05JC) at expected gap-
less points. We conclude that large system sizes are needed
to see the degeneracy because the gapless spectrum allows
strong finite size effects. Numerical work on kagome ladders
with as many as 200 spins show a gap [9] that decreases lin-
early with system size from ∼ 0.012JC for 50 spins to be-
low 0.002JC for 200 spins, thus establishing a gapless phase
for large system sizes. This work also shows that the gapless
phase is stable for JC/JH & 0.8. This range corresponds to
t/U & 2/3 and |Φ∆,∇| = Φ0/4 in terms of Hubbard param-
eters, indicating that the gapless spin liquid phase is indeed
reachable in a perturbative limit where t/U is still less than
one. Further work would be needed to study the gapless phase
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for lower values of t/U , where the perturbative limit is more
precise.

V. CONCLUSION

Fermions in a kagome optical lattice in the Heisenberg limit
can be driven into QSLs by applying fluxes that lead to chiral
three-spin terms. If the final state of the combined lattice/flux
system is to approximate a thermal state, we must assume that
the initial state is at low enough entropies [71] to lead to an
approximation to the QSLs discussed here. Recent work es-
timates that entropies per particle below ∼ 0.8kB are needed
to reach the Laughlin regime of bosons [72], which is closely
related to the CSL. The entropy to reach the bosonic Laughlin
state is within reach of atomic gas microscopes [22–40] which
have already realized the Heisenberg (antiferromagnetic) limit
in a square optical lattice [22] with entropies per particle be-
low log(2)kB ≈ 0.7kB. To make such an estimate for the
CSL, a detailed study of the high energy statistics of the CSL
would be needed to extract an entropy-temperature relation-
ship. Such a study is beyond the scope of the present work.

The gapless spin liquid, by contrast, hosts a large number of
(nearly) zero-energy states and may therefore offer favorable
entropy requirements. The required entropy (which scales as
the logarithm of the number of ground states) is not as low as
the CSL. A single spin excitation along one of the degenerate
nodal lines hosts an entropy per particle ∼ log(N)/NkB, for
N spins. High occupancy of degenerate nodal lines implies
that entropy can be large in finite sized systems. From an
entropy perspective, gapless spin liquids therefore appear to
be simpler to realize because the low energy manifold can be
accessed at higher entropies in finite sized systems.

QSL ground states discussed here are more difficult to ob-
serve than conventionally ordered spin states (e.g., antifer-
romagnetic or ferromagnetic states [22, 73, 74]) because the
QSL ground states are uniform and otherwise featureless. The
most obvious route to observe the CSL is the gap, manifest in
the energy cost to change the spin imbalance. The absence of
a net magnetization but an observable gap would offer strong
evidence for a CSL. Additionally, the CSL has chiral edge
modes which could be observable using the spin analogue of
recently realized quantized circular dichroism [75, 76]. Spin
liquids also distinguish themselves in their excitations. CSLs
have anyon excitations which can lead to non-trivial power
law behavior [41, 77] in the dynamical structure factor and
can be observed with Bragg scattering [78–81]. More local
probes can be used to directly observe anyons in optical lat-
tices captured by spin models [82]. The gapless spin liquid
phase can be revealed in measures of the dynamical structure
factor as excitations populate degenerate nodal lines, reveal-
ing the gapless spinon surfaces. In this paper we have con-
structed a route to such spin liquids in ultra-cold atom systems
with short-ranged interactions to foster their identification in
the laboratory.
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Appendix A: Wannier-Stark States and the Effective
Hamiltonian

In this section we show that Eq. 6 leads to Eq. 2 with com-
plex hopping and effective flux. To find a parameter regime
yielding an effective flux from a combination of a tilt and a
moving lattice, we first study the impact of the first two terms
in Eq. 6 on the basis of Wannier functions. We numerically
solve for the eigen-modes for a system which is finite along
the direction of tilt while infinite along the orthogonal axis.
The momentum along the orthogonal axis, k⊥, is a good quan-
tum number. In the limit of strong tilt, we find two types of
states plotted in Fig. 5. States localized near site R1 are dis-
persionless since their hopping to sitesR2 andR3 (See Fig. 4)
are suppressed due to the energy difference, and there is no
hopping possible along the direction perpendicular to the tilt.
These states appear as flat bands in Fig. 5. (This suppression
of hopping is key to allowing the moving lattice to generate
a complex hopping.) States localized near sites R2 and R3

can hop freely along the direction perpendicular to the tilt and
therefore form the dispersive bands in Fig. 5 with bandwidth
4t. Wannier-Stark states are then constructed from the Fourier
transform of the Bloch states, where the phases are chosen to
yield states maximally localized on a lattice site. We denote
the Wannier-Stark states localized nearRi by |i〉.

In the basis of Wannier-Stark states, the Hamiltonian
in the presence of both the tilt and moving lattice be-
comes: hWS

0 = −t
∑′

〈ij〉 |i〉 〈j| +
∑
i

(
~∆ ·Ri

)
|i〉 〈i| +

Ω
∑
ij |i〉 〈i| sin(P · r − τ∆) |j〉 〈j| , where the

prime on the sum indicates a sum only over bonds
such that ~∆ · (Ri − Rj) = 0. To remove the
time dependence we pass to the rotating basis, de-
fined by the unitary time evolution operator: U =

exp
{
i
∑
i

[
−
(
~∆ ·Ri

)
τ − FP ,r cos(P ·Ri − τ∆)

]
|i〉 〈i|

}
,

where FP ,r ≡ (Ω/∆) 〈0| cosP · r |0〉. Using U we
can now remove the time dependence in hWS

0 using:
U†hWS

0 U − iU†(∂U/∂t). The resulting model is time inde-
pendent but now describes dressed fermions with complex
hopping, i.e, we retrieve Eq. 2. Direct numerical simulation
of the Wannier functions and computation of the resulting
imaginary part of the hopping shows that staggered flux with
tunable strength is possible. An analytic argument for the
staggered flux pattern can be derived in the weak Ω limit.
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FIG. 5. Eigenvalues of the static part of Eq. 6 (Ω = 0) plotted against
lattice momentum perpendicular to the tilt for ∆ = 20t. The kagome
lattice is infinite along the direction of the moving lattice but extends
three unit cells along the direction of the tilt, Fig. 4. The dispersive
(flat) bands define de-localized (localized) states used to vary hop-
ping around triangles.

Appendix B: Staggered Flux in the Weak Ω Limit

In this section we show that the flux derived from Eq. 6
is staggered. We have computed this numerically in a tight-

binding construction of the complex hoppings in Eq. 2. We
can work in the weak Ω limit to allow analytic expressions
demonstrating the mechanism behind the staggered flux. If
we let indices, 1,2, and 3 refer to the sites in upward-pointing
triangle in Fig. 4 we find (for weak Ω) a complex hop-
ping: t1n ≈ Ω 〈1| e−iP ·r |n〉 /(2i) for n = 2, 3, and real
hopping along the remaining bond in the triangle: t23 ≈
tJ0 [(2Ω/∆) sin(P ·R23/2)] . We have checked using max-
imally localized Wannier functions that we can maximize the
flux through the plaquettes and adjust Ω to set t = |t12| =
|t23| = |t31|, leading to Im[t12t23t31] = t3 sin(2πΦ∆/Φ0) ≈
t3. This shows that we can use the moving lattice to induce an
effective flux in the kagome lattice.

The flux for the downward triangles is different. One can
show that t1n ∼ exp[iP · (R1 +Rn)] for weak Ω while t23

is real and the same for all triangles. This implies that the
sign of the flux is the opposite for downward pointing trian-
gles in comparison to upward pointing triangles in Fig. 4, i.e.,
t3 sin(2πΦ∇/Φ0) ≈ −t3. The change in the sign of the flux
arises from the change in sign of the moving lattice potential
set by P . This behavior contrasts with the uniform flux real-
ized using the same technique but in square optical lattices.
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