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We have completed a measurement of the (6s26p2) 3P0 → 3P2 939 nm electric quadrupole (E2)
transition amplitude in atomic lead. Using a Faraday rotation spectroscopy technique and a sensitive
polarimeter, we have measured this very weak E2 transition for the first time, and determined its
amplitude to be 〈3P2||Q||3P0〉 = 8.91(9) a.u.. We also present an ab initio theoretical calculation of
this matrix element, determining its value to be 8.86(5) a.u., which is in excellent agreement with
the experimental result. We heat a quartz vapor cell containing 208Pb to between 800 and 940 ◦C,
apply a ∼ 10G longitudinal magnetic field, and use polarization modulation/lock-in detection to
measure optical rotation amplitudes of order 1 mrad with noise near 1µrad. We compare the
Faraday rotation amplitude of the E2 transition to that of the 3P0 −

3P1 1279 nm magnetic dipole
(M1) transition under identical sample conditions.

I. INTRODUCTION

Atoms have long served as testbeds for precision mea-
surements and low-energy tests of fundamental physics.
Searches for new physics, including potential candidate
particles for dark matter, are ongoing using, for exam-
ple, the technology of atomic magnetometers [1], atomic
clocks [2, 3], and atom interferometers [4]. A comprehen-
sive recent review of the role of atoms and molecules in
these searches can be found in [5].
A particular class of these atomic physics experiments

has exploited the symmetry-violating properties of the
weak interaction to study atomic parity nonconserva-
tion (PNC), and thus potentially probe both electroweak
Standard Model physics and potential new physics. A
number of these measurements have reached the 1% level
of experimental accuracy [6–9]. Since electroweak effects
in neutral atoms scale rapidly with the atomic number,
Z, such atomic-physics-based tests have focused on heavy
atoms, and require independent theoretical wavefunction
calculations in the relevant atomic systems to link mea-
sured experimental observables to fundamental parame-
ters [10].
Cesium, the heaviest stable alkali element, is an ex-

ample of an atomic system where very high-precision ab

initio atomic theory [11, 12] has come together with pre-
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cise experimental efforts [7] to provide an important low-
energy test of electroweak physics. More recently, signif-
icant progress has been made in ab initio calculational
techniques for multi-valence atomic systems [13, 14]. In
the trivalent thallium system, an existing high-precision
PNC measurement [8], coupled with high-precision cal-
culations [15], has yielded another atomic-physics-based
electroweak test. Current theory accuracy lags that of ex-
periment by roughly a factor of two, so that modest fur-
ther improvements in multi-valence theory will have a sig-
nificant impact. In a close experiment/theory collabora-
tion, we have completed a series of precise measurements
of atomic properties of thallium and its trivalent cousin
indium [16–18], which have served as benchmarks for on-
going calculational efforts [19]. In particular, by compar-
ing a series of excited-state polarizability measurements
in indium to theoretical predictions from two comple-
mentary calculational approaches, we were able to show
that a configuration interaction (CI) approach, combined
with the coupled-cluster (CC), all-orders method to the
three-valence system gave better agreement with experi-
ment than the pure CC method [18].

Recently, Porsev et al. have undertaken a new ab

initio calculation of the atomic structure of tetravalent
lead [20]. Two high-precision parity nonconservation op-
tical rotation experiments were completed in the 1990s
[9, 21], but the atomic theory accuracy at that time in
this complicated system was estimated to have an un-
certainty near 10%, limiting the potential impact of the
measurements on testing electroweak parameters. The
2016 theory work [20] improves the precision of the PNC
calculation by better than a factor of two. Testing the
accuracy of this new calculation and guiding forward fur-
ther improvements will require a similar suite of bench-
mark measurements in lead. Beyond some energy level
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measurements and hyperfine structure measurements in
207Pb [22, 23], measurements of atomic properties such
as transition amplitudes and polarizabilities at the 1%
level of accuracy do not exist for this element.
Here we present a new measurement and accompany-

ing ab initio calculation of the lead ground-state 3P0 →
3P2 electric quadrupole (E2) transition amplitude. We
intend to follow up this result with future measurements
of lead excited-state polarizability within the 6s26p7s
manifold (see Fig. 1) using similar techniques and ap-
paratus used for our earlier polarizability work in thal-
lium and indium. Thus, we also include relevant ab initio

polarizability calculations in Sec. V.
In the present transition amplitude work, we measure

the ratio of the E2 amplitude to the that of the ground-
state 3P0 → 3P1 magnetic dipole (M1) transition ampli-
tude. This allows us experimentally to eliminate a num-
ber of common factors responsible for measured absorp-
tivity of both transitions and extract a ratio of quantum-
mechanical amplitudes. Because the M1 amplitude is
precisely calculable without detailed wavefunction knowl-
edge [20], we ultimately can determine the E2 amplitude
(proportional to the transition quadrupole moment) from
our experimental ratio measurement. Comparative ab-
sorptivity measurements have been completed recently
[24–26] in Cs, producing high-precision determinations of
transition amplitude ratios for electric dipole (E1) tran-
sitions, but to our knowledge this is the first such mea-
surement using E1-forbidden transitions.
The E2 transition linestrength is roughly a factor of

30 weaker than that of the already-weak M1 transition.
In this work, a highly sensitive optical polarimetry tech-
nique [27–29] was used to measure the Faraday rotation
signals of the two transitions in an identical longitudinal
magnetic field. An analogous precision measurement of
the E2/M1 amplitude ratio within the Tl 6p1/2 → 6p3/2
transition was completed in our laboratory using a sim-
ilar technique some years ago [28]. In Sec. II, we out-
line the atomic structure details involved with extract-
ing transition amplitude information from the observed
Faraday rotation lineshapes. Secs. III and IV include a
description of the experimental apparatus, method, and
data analysis. Sec. V outlines the ab initio theoretical
calculation of the electric quadrupole matrix element,
and also the atomic polarizability of several relevant ex-
cited states of lead. We conclude with a comparison of
experiment to theory.

II. ATOMIC STRUCTURE AND FARADAY
ROTATION LINESHAPE

For these spectroscopic studies, we made use of an
isotopically enriched (99.9%) sample of 208Pb (I = 0),
providing us with a simple, single-feature spectroscopic
lineshape for both transitions studied. Fig. 1 shows
an energy level diagram for the relevant states. Due to
the intrinsically weak nature of the E2 transition, there

FIG. 1. Low-lying energy levels of 208Pb, with the M1 and
E2 transitions shown in red and blue, respectively.

is no detectable direct absorption feature, even at the
highest sample temperature and density we can achieve.
We therefore choose to focus on the real, rather than
imaginary, part of the refractive index, and measure the
milliradian-sized Faraday rotation lineshape induced by
a small longitudinal magnetic field. The observed op-
tical rotation results from the difference in the Zeeman-
shifted refractive indices, n±, for right and left-circularly-
polarized electric field components driving ∆m = ±1
transitions originating from the |3P0, m = 0〉 ground
state. The Faraday rotation signal can be written

ΦF (ω) =
ωℓ

2c
(n+(ω)− n−(ω)), (1)

where ℓ is the interaction path length through the op-
tically active medium, ω is the laser frequency, c is the
speed of light, and n± represents the dispersive real part
of the refractive index for a given circular polarization.
The application of a small magnetic field, B = B0ẑ,

parallel to the laser propagation direction causes equal
and opposite Zeeman shifts to the resonant frequency of
the circular polarization components, ω → ω0 ± µBgJB0

~
,

where µB = |e|~
2me

is the Bohr magnetion, e is the electron
charge, me is the electron mass, and gJ is the Landé g-
factor for a given transition. When the Zeeman shift is
small compared to the linewidth, we can approximate

n+(ω)− n−(ω) ≈
dn(ω)

dω

(

2µBgJB0

~

)

. (2)

In Sec. IVB, we explore the differences between the
derivative approximation and the (exact) difference forms
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of the resonance lineshape in order to assess potential sys-
tematics associated with the lineshape model. According
to Eq. (2), the Faraday rotation lineshape follows a sym-
metric derivative-of-dispersion shape. Its amplitude is
also proportional to the atomic density, N , and the ap-
propriate quantum mechanical linestrength factor, 〈T 〉2,

n(ω) ∝ N〈T 〉2 2µBgJB0

~

d

dω

(

ω − ω0

(ω − ω0)2 + Γ2/4

)

, (3)

where Γ is the homogeneous linewidth (due here to colli-
sional broadening). Finally, we must convolve this func-
tion with a normalized Gaussian, accounting for the ve-
locity distribution of the atomic ensemble. We define the
convolved lineshape, L, as follows:

L(ω, ω0,Γ, σ) ≡
C

σ
√
2π

∫ +∞

−∞

d

dω

(

ω − ω′

(ω − ω′)2 + Γ2/4

)

× exp

[−(ω′ − ω0)
2

2σ2

]

dω′, (4)

where σ, the Doppler width, is proportional to the laser
frequency and the root-mean-square velocity of the hot
atoms. Our experimental optical rotation spectra are
carefully calibrated in terms of radians. We fit our spec-
tra to a lineshape of the form of Eq. (4) (see Sec. IV)
allowing the amplitude scaling factor C to link the nu-
merical value of the integrand on resonance (which itself
is a function of the component widths) to the peak value
of the experimental spectrum. Making use of Eqs. (1–3)
and ignoring a number of common numerical factors and
fundamental constants, we find the following expression
for the ratio of Faraday rotation amplitude factors:

CE2

CM1
=
ωE2

ωM1

(B0ℓN)E2 g
E2
J

(B0ℓN)M1 gM1
J

|〈3P2,m = 1|E2|3P0〉|2
|〈3P1,m = 1|M1|3P0〉|2

. (5)

Here ωE2 (ωM1) is the resonant frequency for the
939nm (1279 nm) transition.
To find the matrix elements in Eq. (5) for many-

electron states, we define the electric quadrupole and
magnetic dipole moment operators, Qν and µ as the sum
of one-particle operators,

Qν = −|e|
Ne
∑

i=1

[

r2i C2ν(ni)
]

,

µ = −µB

c

Ne
∑

i=1

[ji + si], (6)

where Ne is the number of the electrons in the atom,
ni ≡ ri/ri, and ri is the radial position of the ith electron.
ji and si are the unitless total angular momentum and
spin of the ith electron, as defined in [30], and C2ν(ni)
are the normalized spherical harmonics [31]. While the
sums in Eq. (6) extend over all electrons, in practice the
valence p electrons provide the main contribution to the
matrix elements for the case of Pb.

Though, in general, each amplitude factor is propor-
tional to the interaction length, we work hard to ensure
that both laser beams traverse nearly identical physi-
cal paths through the cell. We also alternate scans in
a sequence that minimizes drift-related systematic errors
associated with density and magnetic field changes (see
Sec. IV). We have inserted into Eq. (5) matrix elements
for the E2 and M1 transitions that reflect the |∆m| = 1
selection rule appropriate to the transitions we study.
We make use of the fact that the matrix elements are the
same for ∆m = +1 and ∆m = −1 for both the E2 and
M1 transitions. It is possible, when the laser beam prop-
agation direction is not precisely collinear with the B-field
axis, for the E2 transition to exhibit small ∆m = ±2
components, and potential consequences of this are dis-
cussed below in Sec. IVB.
Assuming then that the relevant path length, atomic

density, and magnetic field are identical for sequential
laser scans for the two transitions, so that (B0ℓN)E2 =
(B0ℓN)M1, we arrive at an expression for the (unitless)
quantum mechanical transition amplitude ratio, χ, in
terms of experimental amplitudes, resonant frequencies,
and g-factors:

χ ≡
∣

∣

∣

∣

〈3P2,m = 1|E2 |3P0〉
〈3P1,m = 1|M1 |3P0〉

∣

∣

∣

∣

=

√

CE2 ωM1 gM1
J

CM1 ωE2 gE2
J

. (7)

A comparison of this expression with the theory predic-
tion will be presented below in Sec. VI.
The g-factors are well known [20], so that the statistical

uncertainty in our ratio, χ, is entirely determined by the
results of our lineshape fits which determine CE2 and CM1.

III. EXPERIMENTAL DETAILS

A. Furnace and Vapor Cell

A schematic of the experimental layout is shown in Fig.
2. The centerpiece of the experiment is the furnace, in
the middle of which sits a 1-inch-diameter, 6-inch-long
evacuated quartz vapor cell, containing a small quan-
tity of isotopically enriched 208Pb (99.9% purity). The
quartz cell windows are welded to the body at 10◦ angles
to eliminate the possibility of etalon effects in the opti-
cal path. Because of the inherent low vapor pressure of
lead and the weak transition amplitudes being studied,
we focus on temperatures in the 800–940◦C range where
the density is sufficiently high for easily detectable opti-
cal rotation signals. This is achieved using four ceramic
clamshell heaters, which surround a meter-long ceramic
tube that contains the cell. The tube is sealed at both
ends with endcaps that include fused silica windows, and
is evacuated and backfilled with 20Torr of argon in order
to minimize optical beampath fluctuations due to con-
vective air currents. A function generator operating at
10 kHz drives four audio amplifiers, which in turn drive
the heaters. The frequency is sufficiently high that it
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FIG. 2. Schematic of the experimental setup. Two commer-
cial external cavity diode lasers (ECDLs) are scanned across
the transitions’ center frequencies in a sequence determined
by computer-controlled shutters. The laser scans are moni-
tored using a pair of Fabry-Pérot cavities. A calcite prism
linearly polarizes the light before the furnace, after which the
polarization is modulated and analyzed using a second calcite
prism. The transmitted light is separated using a diffraction
grating prior to detection. See text for further details.

does not interfere with the lock-in detection and signal
analysis described below. Two thermocouple probes are
positioned at the center of the vapor cell and one of the
edges, which provide a temperature estimate, as well as
a measure of temperature uniformity. A software p-i-d

servo loop controls the amplitude of the function gen-
erator signal, allowing us to set and stabilize the oven
temperature. The furnace contains a pair of Helmholtz
coils to apply the magnetic field used to create the Fara-
day rotation signal, and the entire assemply is enclosed in
µ-metal magnetic shielding. The roughly 100-fold reduc-
tion in ambient field afforded by the shielding is sufficient
to bring magnetic field fluctuations to a negligible level,
especially since we take the difference between sequential
magnetic field-on and field-off laser scans.

B. Optical Setup

Two commercial external cavity diode lasers (ECDLs)
at 939nm (E2) and 1279nm (M1) (Toptica DL pro se-
ries and Sacher Lasertechnik Lynx series, respectively)
pass through optical isolators before a small fraction of
each is directed into one of two Fabry-Pérot (FP) cavi-
ties which monitor the frequency scan range and linear-
ity. The confocal FP cavities (finesse near 30) are con-
structed with invar spacers, and contained inside insu-
lated boxes for passive thermal stabilization. The cavity
free spectral ranges for the E2 and M1 lasers were inde-
pendently calibrated and measured to be 361.0(2)MHz
and 501.0(3)MHz, respectively. A pair of shutters al-
low measurements of the two transition to be made in
quick succession. The beam paths are combined using a
dichroic filter, and directed first through a calcite prism

polarizer, then into the furnace and through the vapor
cell interaction region.
Upon exiting the furnace, the laser beams pass through

a 1-cm-diameter, 5-cm-long glass rod with a large Verdet
constant (“Faraday glass”) which is contained within a
solenoid to which we can apply AC and DC currents,
thus either modulating or tilting the laser polarization.
We typically drive the solenoid with 2A of AC current
at ω = 2π× 500 Hz, which results in a polarization mod-
ulation amplitude of a few milliradians. The laser beams
then traverse a second, crossed calcite polarizer. Our po-
larizer pair in isolation has a finite extinction ratio of bet-
ter than 10−6, but the presence of the furnace, vapor cell
windows, and Faraday glass limit the effective extinction
ratio of our polarimeter to about 2× 10−5. The polariz-
ers are each housed in a rotational lever mount actuated
with a differential micrometer. Given the geometry of
our mount and the 1 µm resolution of the differential mi-
crometer, we can reliably set and control the polarizer
tilt angle at the 10µrad level.
The light is then incident on a diffraction grating,

which separates the two laser beam paths. With the
aid of collimators and lenses, we focus each laser beam
onto a high-gain, low-noise photodiode detector. This
arrangement also allows us to reject nearly all of the sub-
stantial (but incoherent) blackbody radiation emanating
from the furnace. This is important given that the co-
herent laser radiation reaching our detector after exiting
the polarimeter is never more than about 100 nW.

C. Modulation, Lock-in Detection, and Calibration

The detection scheme, similar to that described in [27],
uses the modulator combined with a pair of lock-in am-
plifiers for each wavelength in order to extract the op-
tical rotation signal. After passing through the atomic
vapor, the laser intensity is I(f), reflecting the absorp-
tion lineshape, and there is also a frequency-dependent
rotation of ΦF(f), due to the atomic Faraday effect. We
also account for a small frequency-dependent optical bire-
fringence, Φbr(f), unrelated to the atoms. The Faraday
modulator introduces an additional sinusoidal rotation of
Φrot cos(ωt). The resulting intensity through the second
polarizer is thus (using the small angle approximation):

Iout = I(f) sin2 [ΦPb(f) + Φbr(f) + Φrot cos(ωt)]

≈ I(f)
[

Φ2
Pb(f) + Φ2

br(f) + 2ΦPb(f)Φbr(f) (8)

+ 2Φrot cos(ωt)(ΦPb(f) + Φbr(f)) + Φ2
rot cos

2(ωt)
]

,

where we have ignored the small constant transmission
component from the finite polarimeter extinction. This
expansion results in three important components: a con-
stant term, one oscillating at ω, and another oscillating
at 2ω. Lock-in detection at ω and 2ω removes the DC
term; the 2ω term is only dependent on the transmit-
ted intensity, whereas the 1ω term is proportional to the
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Faraday optical rotation times the transmission. Thus,
the ratio of the two signals S1ω/S2ω yields a signal pro-
portional to the optical rotation only. Four lock-in ampli-
fiers (Stanford Research Systems SRS 810) are set to the
fundamental and second harmonic of the modulation fre-
quency for the two lasers, and the extracted signals from
the four are collected using a data acquisition board.
The size of the lock-in signal we detect is also pro-

portional to the the amplitude of the modulation, Φrot.
However, we know that the Verdet constant of our Fara-
day glass is substantially different at our two laser fre-
quencies. To account for this in our calibration proce-
dure, we first perform the following off-line exercise for
each laser in turn. We fix the laser frequency at a value
away from the atomic resonance. While still modulating
the magnetic field, we add a stepwise series of increasing
DC currents to the solenoid. At each step, we use the mi-
crometer controlling the second polarizer to ‘re-cross’ the
polarimeter by noting when the 1ω lock-in output reaches
exactly zero. In this way, we can accurately find the ratio
of the rotatory effects of the Faraday glass for our two
laser frequencies. Repeated calibration exercises such as
these were performed over the one-month period of data
collection to study reproducibility upon laser beam and
polarimeter realignment. With these measurements in
hand, we can, as noted below, incorporate a second pro-
cedure into our data collection sequence in which we ap-
ply a large, discrete DC current step to the solenoid, and,
while directing both lasers through the cell (at fixed fre-
quencies), detect the corresponding step-size changes in
the lock-in outputs. When we include the results of both
calibration procedures, we can then convert the units of
the experimental signal of interest (ratio of lock-in out-
puts) to absolute radians for each transition.

D. Data Acquisition Procedure

Data acquisition was performed at a range of temper-
atures (800 ◦C – 940 ◦C) and with a range of applied cur-
rents to the Helmholtz coils (1A – 4A). Acquisition was
done in three steps: an initial calibration sequence, the
main measurement sequence, and a final calibration se-
quence. The main measurement sequence has eight com-
ponents and is typically looped five times. Table I sum-
marizes the data collection sequence. We refer to this as
a ‘run.’ The goal of the sequence is to examine possible
sources of systematic error by measuring each transition’s
rotation with a background scan without an applied mag-
netic field either immediately before or immediately af-
ter the field is applied and the rotation is measured. We
acquire field-on / field-off scans, and also E2 and M1
scans in an “ABBA” sequence configuration to allow us
to study and minimize temporal drift-related systematic
errors. Such a collection sequence typically required one
hour to complete.
An individual scan is based upon a triangle wave

applied to a laser’s intracavity piezoelectric transducer

Data Cal. Frequency Scan (×5) Cal.
λ E2/M1 E2 E2 M1 M1 M1 E2 E2 M1 E2/M1

Bext x x x x

TABLE I. Data acquisition sequence. Each individual
up/down scan pair takes 15 seconds. The ‘x’ in the Bext

row reflects application of the longitudinal magnetic field to
the atoms.

(PZT), changing its frequency and scanning across the
transition’s linecenter, which typically requires 20 s to
complete. The atomic spectral features of interest extend
over roughly 1GHz, and a typical laser scan extended
over 4GHz. We separately analyzed the frequency-
increasing portion of the scan (“upscan”) as well as the
portion with a downward slope (“downscan”). For each
run with a particular laser, a data acquisition computer
recorded the triangle voltage wave, the transmission of
the Fabry-Pérot cavity the 1ω lock-in amplifier signal,
and the 2ω lock-in amplifier signal.
At each temperature, we acquired between 4 and 6

runs, between which optical realignments, changes of
laser beam powers, and changes in laser sweep charac-
teristics were applied. In all, roughly 40 h of data were
collected, representing 800 distinct E2/M1 amplitude ra-
tio measurements. The temperature range over which
we worked corresponds to more than an order of mag-
nitude change in lead vapor density. The corresponding
M1 Faraday rotation amplitudes range from 2mrad to
50mrad, while the E2 amplitudes were in the 200µrad
to 5mrad range.

IV. DATA ANALYSIS AND RESULTS

A. Data Analysis Procedure

The first step in data analysis involves using the Fabry-
Pérot transmission data to linearize and calibrate the
frequency scans. Using the FP peak locations, we model
the frequency as a fourth-order polynomial function of
scan point number to account for small nonlinearity in
the PZT voltage response. We found that higher-order
polynomials did not improve the statistical quality of the
FP peak fits. Using this frequency axis, we construct the
unitless ratio of the 1ω to 2ω lock-in outputs, and then
apply the calibration factors described above to convert
this ratio to units of radians. In each case, we use the
average step calibration values obtained by the pre- and
post-calibration scans for that particular data run. This
procedure is applied to both the M1 and E2 scans for
both the field-on and field-off configurations. We next
subtract the field-off scans proximate to the associated
field-on scan, removing background features unrelated to
the atoms that are typically a few percent of the field-on
Faraday signals.
The subtracted lineshape is then fitted using a stan-

dard nonlinear least squares algorithm to the convolution
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function described in Eq. (4). With two thermocouple
temperature monitors near the cell, we have a fairly ac-
curate estimate of the temperature. We choose, then, to
fix the Doppler width to a calculated value for the case
of each laser scan. Below we discuss our exploration of
lineshape changes and associated systematic amplitude
errors resulting from our estimated temperature uncer-
tainty. We note that, since ultimately we determine the
ratio of the E2 to M1 amplitudes, overall temperature
uncertainty largely cancels in this ratio, since the ratio of
Doppler widths is temperature-independent. We there-
fore analyzed our Faraday lineshapes by fitting to two
key parameters: the Lorentz width, Γ, due here to lead-
lead collisional broadening, and the amplitude parameter
C introduced in Sec. II, connecting our convolution line-
shape to the experimental peak height. We find this ho-
mogeneous linewidth component to be roughly ten times
smaller than the Doppler width for the case of both tran-
sitions. In order to account for imperfect background
subtraction, we also add constant and linear background
parameters to the fit, which are always quite small, and,
in the case of the linear term, often statistically unre-
solved. Examples of single background-subtracted scans
of each transition at 800 ◦C (near the low end of our
temperature range) are shown in Figs. 3 and 4, along
with the residuals of the fits. Each scan shown represents
about 40 s of data collection. As one can see, the resid-
ual RMS optical rotation noise is at the few µrad level in
both cases. Because of its much larger amplitude, theM1
scan exhibits a baseline signal-to-noise ratio of more than
1000:1. Interestingly, in this case there is a significant in-
crease in the size of the residuals near linecenter. In fact,
this can be easily modeled as an effective amplitude noise
induced by short-term frequency jitter of the diode laser
as it scans across the transition — something that would
manifest in the regions of the lineshape where the slope
is steepest. The dashed envelope included in the lower
box of Fig, 3 shows the expected amplitude noise from a
frequency jitter of 1MHz — something quite typical of
ECDL systems such as ours.

Fit results are organized by laser scan direction and
order of field-on / field-off sequencing. We scale our am-
plitude fit parameters using the calibration factors dis-
cussed above. The difference between the pre- and post-
calibration scans within a data run yields a measure of
calibration uncertainty, which can be combined with the
error bar generated by the fit procedure to arrive at a fi-
nal uncertainty for the corrected fit amplitude. We then
construct the ratio of the fit amplitudes for the two tran-
sitions, CE2/CM1, for each set of consecutive E2 and M1
scans. Inserting the values for the ratios of the frequen-
cies and g-factors of these transitions, we finally obtain
experimental values for χ as defined in Eq. (7). We ac-
cumulated statistics on all amplitude ratios taken at a
given temperature. In some cases, the scatter between
the weighted mean value for different data runs at a given
temperature slightly exceeded their respective standard
errors, due, for example, to small changes in experimental
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FIG. 3. Sample data from 800 ◦C M1 Faraday rotation signal
(black dots, every fifth point shown) and fit result (red line).
Residuals, expanded by a factor of 20, are shown below; solid
blue shows the unweighted residual, while the dashed black
line shows the envelope of the noise expected from a model
that includes laser frequency jitter (see text).

conditions, thermal drift, or relative beam path changes
of the two lasers due to purposeful optical realignment.
In each case, we expanded our error bars to account for
this measured variance. We also took the approach of
generating a histogram for all values at a given tempera-
ture and fitting this distribution to a Gaussian (see Fig.
5). The mean values arrived at by these two methods
agreed very well within statistical uncertainties. Fig. 6
shows the complete data set for our measured values of
χ plotted as function of temperature, and correspond-
ing M1 absorptive optical depth. Final weighted mean
and 1σ statistical uncertainty are indicated in blue. This
range of temperatures corresponds to a roughly a factor
of 15 in vapor density, and as such is associated with
changes in amplitude, and component spectral widths of
the Faraday lineshape. Below 800 ◦C, the E2 amplitudes
were too small to achieve reliable fit results. At the up-
per end of our temperature range, where relatively large
rotation amplitudes should have provided the best sta-
tistical precision, we observed a large scan-to-scan and
run-to-run variation in ratios, likely due to much larger
thermal drifts and optical birefringence effects at this
temperature. Ultimately, while the mean value at 940 ◦C
agrees well with other data sets, the uncertainty is signif-
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FIG. 4. Sample data from 800 ◦C E2 Faraday rotation signal
(black dots, every fifth point shown) and fit result (red line).
Expanded residuals are shown below.

icantly higher due to this increased scatter, and we did
not seek to increase the temperature further. Our final
value and 1σ statistical uncertainty in the measured ratio
is χ = 0.1496(7)stat.

B. Exploration of Systematic Errors

Potential systematic errors in our experimental value
for χ were studied extensively, and the results are sum-
marized in Table II, where systematic error contributions
to the unitless ratio are expressed in percentages. Poten-
tial error sources which did not show statistically resolved
effects are listed with a dash. In many cases, the fact that
we are taking the ratio of two amplitudes tends to reduce
systematic error impact (such as for temperature uncer-
tainties, or magnetic field inhomogeneities). In addition,
since χ is proportional to the square root of the ampli-
tude ratio, the size of potential errors in χ associated with
extracting Faraday signal amplitude are immediately re-
duced by a factor of two. Further, 1/f -type noise asso-
ciated with thermal, mechanical, or magnetic field drifts
occurring on time scales comparable to our scan sequence
would tend to show up as increased scatter between mea-
surements rather than systematic bias, especially given
our choice of sequencing repeated measurements in an
“ABBA” pattern.

c

0.13 0.14 0.15 0.16 0.17

 

 

FIG. 5. Distribution of χmeasurements from all 95 individual
scan ratios taken at 800 ◦C. Main figure: χ and corresponding
error bars, with mean and standard deviation (solid blue)
shown. Inset: histogram of χ (red bar plot) and a fitted
Gaussian (thick blue curve). Intrinsic precision of χ values
varies for subsets of these data depending, for example, on
magnetic field employed for a given run.

As can be seen in Fig. 6, we importantly do not see a
resolved systematic trend in our measured ratio as a func-
tion of temperature/density. In addition to comparing re-
sults at a number of different temperatures, we compared
results for laser scan direction, different scan speeds and
scan ranges, different temporal order of field-on/field-off
scans, and different temporal order of E2 vs. M1 scans.
Occasionally, we saw comparisons of subsets of data that
differed by 1.5 to 2.0σ, where σ is the combined error
of the data subsets, and these contributions to the net
systematic uncertainty are included in the table.

1. Calibration

Errors in any aspect of our calibration procedure would
directly impact our amplitude ratio measurement, and
these were explored as follows. We completed several of
the off-line calibration exercises over the course of our
data-collection period, and compared the ratio of cali-
bration factors obtained in these procedures. We assign
a systematic error component based on the variation of
these measurements (most likely due to small changes in
the relative optical paths of the lasers, or possibly small
thermal drifts over the time scale of the measurements).
Also, for all of our data collection runs, we studied the
differences between the pre- and post-calibration scans to
estimate the potential errors associated with using their
average to calibrate all scans in that run. An estimate of
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FIG. 6. The amplitude ratio χ as a function of optical depth
(bottom axis) and temperature (top axis). The mean and
standard error are shown in solid and dashed blue lines, re-
spectively.

the systematic error associated with taking our approach
of calibrating all runs based on the average of the two
calibration values is also included in Table II.

2. Fitting Methods

We explored a number of alternative approaches to fit-
ting our Faraday rotation spectra to quantify system-
atic effects associated with lineshape analysis. First,
as noted above, we explored different polynomial orders
for parametrization of the ECDL scan nonlinearity, find-
ing that beyond fourth order, no statistically significant
changes to the fitted amplitude were seen. Our nominal
method for fitting our spectra involved equal weighting
of all points in the scan. We explored two alternatives.
First, we explored a model that weighted data points
according to a model that accounted for the frequency
noise and associated fluctuations as noted in Fig. 3 and
discussed in the previous section. Second, we explored
truncating our fit ranges to exclude portions of the scan
farther away from the resonant lineshape. We saw small
changes in our fitted amplitude results, always well be-
low the 1% level, and include small error contributions
for these in Table II.
We studied the reliability of our Lorentzian and Gaus-

sian (Doppler) width determinations in detail. Possi-
ble errors in these parameters impact the peak value of
the lineshape convolution function defined in Eq. (4),
and thus directly affect the fitted amplitude parame-
ters, C, from which we determine χ. As noted, since
the ratio of the Doppler widths for the two transitions

Source Error in χ (%)
Statistical error 0.48
Fitting
Frequency Linearization 0.02
Fixing vs. Floating Lorentz Widths 0.37
Linear Background 0.27
Lineshape Weighting 0.32
Incorrect Doppler Widths 0.10
Include / Discount Scan Wings 0.13
Signal Modeling
Derivative vs. Difference 0.19
Magnetic Field Dependence –
Geometry
E2 ∆m = 2 Transitions 0.35
Laser Scanning Properties
Scan Direction 0.22
Scan Speed / Width –
Data Collection
Field-On / Field Off Order –
E2 / M1 Order 0.13
Angle Calibration
Off-Line Calibration 0.28
Pre/Post Variance 0.29
Other
Isotopic Purity 0.02
TOTAL: 0.98%

TABLE II. Summary of error contributions and sources, ex-
pressed as percentage errors in the experimental ratio χ. Hor-
izontal line entries reflect the lack of a resolved systematic
error contribution.

is temperature-independent, a potential systematic er-
ror in χ due to temperature error could only come from
the secondary effect of producing associated changes in
other fit parameters that would affect the two transitions
lineshapes in different ways. We explored this by sys-
tematically choosing a temperature (and hence Doppler
widths) over a ±20-degree range centered on the nominal
temperature (which is taken to be the average of our two
thermocouple readings). We then fit both experimental
lineshapes, extracting the Lorentzian width, Γ, and peak
amplitude factor, C, in our usual fashion. Even using this
relatively large temperature range, roughly equal to the
difference in our thermocouple readings, we saw changes
in the value of χ only at the ±0.1% level, and have in-
cluded this in our error table.

Of more concern is the accuracy of our Lorentz width
determinations. These widths are an order of magni-
tude smaller than the Doppler widths, and thus more
challenging to extract. However, their value clearly af-
fects the amplitude of our lineshape function (Eq. (4)).
Our standard analysis method starts with fixed Doppler
widths and optimizes the Lorentz width parameter in
the fit process. In order to explore the effect of potential
errors in Lorentz width values on our ratio χ, we pro-
ceeded as follows. Since the E2 Faraday amplitudes have
substantially lower signal-to-noise ratio, we assumed, for
the purpose of this exercise, that the standard M1 fit
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FIG. 7. Exploration of a potential systematic error from a
fixed, miscalculated Lorentzian width. The amplitude ratio,
χ, is plotted with black dots and dashes on the left y-axis. The
corresponding fit error for those values and Lorentz widths are
plotting with red plusses, on the right y-axis. The orange star
indicates the Lorentz width and χ of a floated Lorentz width.
Further details are provided in the text.

procedure is able to extract the ‘correct’ Lorentz width,
ΓM1. Then, we fit E2 lineshapes using a modified proce-
dure where instead we fix the Lorentz width (in addition
to the Doppler width) to a series of values above and
below the apparent ‘best fit’ value, and allow only the
peak amplitude factor to be optimized (this optimized
value is clearly correlated with the choice of ΓE2). We
then recorded the summed chi-squared value of the over-
all lineshape fit for each fixed choice of ΓE2. Figure 7
summarizes this exploration for the case of all the data
runs taken at one temperature (here 900 ◦C). The red
curve indicates the changing ‘quality of fit’ for the en-
tire collection of fits at 900 ◦C at each fixed choice of
ΓE2. The black line simply maps out the correlation be-
tween χ and ΓE2 , assuming that ΓM1 remains constant.
The orange ‘star’ shows the average Lorentz width pa-
rameter generated by our standard fitting procedure, in
which ΓE2 is ‘floated.’ The excellent agreement between
the two methods in terms of finding the optimal value
ΓE2 ≈ 35MHz is reassuring, and we can see even a very
large fractional change in ΓE2 of ± 10MHz that yields a
change in χ of only ±1%. A more extensive analysis of
data sets at all temperatures allows us to place a ±0.4%
systematic error based on our estimated uncertainty in
the the extracted Lorentz widths.

3. Lineshape Model

We also considered the systematic error associated
with using the derivative approximation to the Fara-
day lineshape. First, for a series of Zeeman splittings
in our experimental range, we generated theoretical line-
shapes with typical values for component widths using
the difference (rather than the derivative) of the dis-
persive real part of the refractive index lineshapes. We
then proceeded to fit these lineshapes using our standard
(derivative approximation) fitting function and studied
the changes in fitted amplitude as a function of the Zee-
man splitting. Since the g-factors and component widths
of the two transitions are different, this would impact
the two transitions differently, and hence would produce
a systematic error in χ. From this investigation, we put
a limit of the potential systematic error of our derivative
approximation at the 0.2% level. As a second experimen-
tal check, we studied the correlation of χ with the current
applied to the Helmholtz coils for the data we collected.
This showed no statistically resolved trend over the ≈ 3–
15G range of magnetic fields that we explored.

4. Geometrical Misalignment

Finally, we note that our analysis assumes that the
laser beam paths are exactly collinear with the magnetic
field axis within the vapor cell interaction region. This
effectively allows us to view the electric quadrupole in-
teraction as an operator proportional to the ℓ = 2,m = 1
spherical harmonic (see Sec. VI below). For small devia-
tions from collinearity, δθ, one can show that ∆m = ±2
transitions are possible, and that the size of these com-
ponents relative to the dominant ∆m = ±1 transitions
is proportional to | sin(δθ)| [32]. Given our apparatus
geometry and laser beam collimation, we estimate that
| sin(δθ)| ≤ 2◦. We were able to explore the implications
of this by generating simulated Faraday rotation spectra
with small ∆m = ±2 components, and then analyzing
these modified lineshapes using our standard fitting rou-
tine. By studying the impact of this non-ideal geometry
on the fitted lineshape amplitudes, we can place a limit
on its potential systematic error contribution to χ, which
is included in Table II. We note that, even with perfect
collinearity, small stray magnetic fields, either from ex-
ternal sources or mu-metal remanence, would ultimately
produce a small systematic geometric uncertainty. For
the experimental fields employed here, we estimate this
contribution to misalignment to be several times smaller
than the current optical collinearity contribution.
We lastly mention that such geometrical misalignment

also produces more complicated magneto-optical effects,
including the so-called ‘Voigt’ effect. As discussed in de-
tail in [33], the size of these additional components, given
the estimated size of our misalignment, would produce
changes to our Faraday lineshape that are well below our
level of statistical sensitivity.
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5. Isotopic Purity

Given the quoted isotopic purity of the vapor cell
(99.9%), we generated realistic simulated lineshapes and
fit these using our standard analysis procedure to pro-
duce the systematic relevant error estimate in Table II.

6. Final Experimental Ratio

Combining all of the systematic error contributions in
quadrature gives an uncertainty roughly twice that of
the statistical error. Combining these leads to a final
experimental value for our unitless amplitude ratio: χ =
0.1496± 0.0015. In Sec. VI, we establish the connection
between this ratio and the reduced electric quadrupole
matrix element, the ab initio theoretical derivation for
which we present next.

V. THEORY

We evaluated the reduced matrix elements (MEs) of
the 6p2 3P0 − 6p2 3P2 and 6p2 3P0 − 6p2 1D2 E2 tran-
sitions as well as the static scalar and tensor polariz-
abilities of the 6p2 3P1 and 6p7s 3P o

0 states of Pb using
the high-precision relativistic CI+all-order method [14].
This method was adopted by us for calculating the PNC
amplitude for the 6p2 3P0 − 6p2 3P1 transition [20].
We consider Pb as a four-valence atom. The ba-

sis set was constructed using a V N−2 approximation in
the framework of the Dirac-Fock-Sturm approach (see
Ref. [20] for more details). In this calculation, we use the
wave functions obtained in [20] in the CI+MBPT [34]
and CI+all-order approximations. We carry out calcu-
lations in both approximations considering the CI+all-
order results as the recommended ones. Atomic units
(~ = |e| = m = 1) are used throughout unless stated
otherwise.

A. E2 Transitions

Using the expression for the electric quadrupole mo-
ment operator, given by Eq. (6), we obtain for the E2
6p2 3P0 − 6p2 3P2 transition,

|〈3P0||Q||3P2〉| ≈ 8.91 a.u. (CI +MBPT),

≈ 8.86 a.u. (CI + all− order). (9)

Inclusion of the Breit interaction correction increases
the absolute value of the matrix element (ME) by 0.02
a.u.. The quantum-electrodynamic (QED) correction is
negligible at the current level of calculation accuracy.
The difference of the values obtained at the CI+MBPT
and CI+all-order stages gives us an estimate of the un-
certainty. Thus, the final recommended value is:

|〈3P2||Q||3P0〉| = 8.88(5) a.u.. (10)

We have also estimated the reduced ME of the electric
quadrupole 6p2 3P0− 6p2 1D2 transition. This is an inter-
combination transition (the initial and final states have
different total spin S). As a result, it is an order of mag-
nitude smaller than |〈3P2||Q||3P0〉|. We find

|〈1D2||Q||3P0〉| ≈ 0.63 a.u.. (11)

B. Polarizabilities

The scalar dynamic polarizability α(ω) can be sepa-
rated into three parts:

α(ω) = αv(ω) + αc(ω) + αvc(ω), (12)

Where alphav is the valence polarizability and αc is the
ionic core polarizability. A small term, αvc, is included
due to the presence of the four valence electrons and
possible excitation of a core electron to the occupied
shell. Thus, αvc serves to restore the Pauli principle and
slightly modifies the core polarizability [36].
The valence part of the a.c. electric dipole polariz-

ability of the |Φ0〉 state can be written in the following
form:

αv(ω) = 2
∑

k

(Ek − E0) |〈Φ0|D0|Φk〉|2

(Ek − E0)
2 − ω2

=
∑

k

[ |〈Φ0|D0|Φk〉|2
Ek − E0 + ω

+
|〈Φ0|D0|Φk〉|2
Ek − E0 − ω

]

, (13)

where D0 is the z-component of the effective electric
dipole operator D, defined (in a.u.) as D = −r. By
the effective (or “dressed”) electric dipole operator, we
mean that the operator also includes the random-phase
approximation (RPA) corrections [37].
To account for intermediate high-lying discrete states

and the continuum, we calculated αv(ω) by solving the
inhomogeneous equation in valence space. We use the
Sternheimer [38] or Dalgarno-Lewis [39] method imple-
mented in the CI+all-order approach [40]. Given the Φ0

wave function and energy E0 of the |Φ0〉 state, we find
intermediate-state wave functions δψ± from an inhomo-
geneous equation,

|δψ±〉 =
1

Heff − E0 ± ω

∑

k

|Φk〉〈Φk|D0|Φ0〉

=
1

Heff − E0 ± ω
D0|Φ0〉. (14)

Using Eq. (13) and δψ± introduced above, we obtain:

αv(ω) = 〈Φ0|D0|δψ+〉+ 〈Φ0|D0|δψ−〉 , (15)

where the subscript v emphasizes that only excitations
of the valence electrons are included in the intermediate-
state wave functions δψ± due to the presence of Heff .
The αc and αvc terms were evaluated in the RPA. The

small αvc term was calculated by adding αvc contribu-
tions from the individual electrons. For example, for the
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TABLE III. Polarizabilities obtained using the CI+all-order approximation. Contributions to the 6s26p2 3P1 and 6s26p7s 3P o

0

scalar static polarizabilities, α0, of Pb (in a.u). The dominant contributions to the valence polarizability from intermediate
states |n〉 are listed separately with the corresponding absolute values of electric-dipole reduced matrix elements given (in
a.u.) in the column labeled “D”. The theoretical and experimental [35] transition energies ∆E ≡ E(n) − E(6p2 3P1) and
∆E ≡ E(n) − E(6p7s 3P o

0 ) are given (in cm−1) in columns ∆Eth and ∆Eexpt. The remaining contributions to the valence
polarizability are given in the row labeled “Other.” The values listed in the row labeled “Total val.” are obtained as the sum
of all listed contributions and “Other.” The dominant contributions to α0, listed in columns α0[A] and α0[B], are calculated
with CI+all-order+RPA matrix elements and theoretical [A] and experimental [B] energies [35], respectively.

State |n〉 ∆Eth ∆Eexpt D α0[A] α0[B]

6p2 3P1 6p7s 3P o

0 27207 27141 1.92 6.6 6.6
6p7s 3P o

1 27533 27468 1.41 3.5 3.5
6p6d 3F o

2 38222 37624 0.08 0.01 0.01
6p6d 3Do

2 39046 38242 3.45 14.9 15.2
6p6d 3Do

1 39110 38249 0.63 0.5 0.5
6p7s 3P o

2 40572 40370 0.78 0.7 0.7
6p8s 3P o

1 41737 40868 1.13 1.5 1.5
6p8s 3P o

0 42275 40907 0.65 0.5 0.5
6p7s 1P o

1 42670 41621 0.20 0.04 0.05
Other 25.9 25.9

Total val. 54.2 54.6
Core + Vc 3.8 3.8

Total 58.0 58.4

6p7s 3P o

0 6p2 3P1 -27207 -27141 1.92 -20 -20
6p7p 3P1 7837 7959 3.99 298 293
6p7p 3D1 9605 9715 5.43 450 445
6p8p 3P1 17800 16361 0.17 0.2 0.2
6p8p 3D1 18336 16957 1.04 8.6 9.4
Other 19 19

Total val. 756 747
Core +Vc 4.1 4.1

Total 760 751

TABLE IV. The static scalar (α0) and tensor (α2) polarizabil-
ities obtained in the CI+MBPT and CI+all-order approxima-
tions (in a.u.) are presented. The differences of the CI+all-
order and CI+MBPT results are given (in %) in the column
labeled “diff.” The recommended values and their uncertain-
ties are given in the last column.

State CI+MBPT CI+all-order diff(%) Recom.

6p2 3P1 α0 58.7 58.0 1.2 58.0(7)

α2 -5.8 -5.7 1.5 -5.7(1)

6p7s 3P o

0 α0 752 760 1.1 760(8)

6s26p2 3P1 state, we find αvc = 2αvc(6s) + αvc(6p1/2) +
αvc(6p3/2).
For the case of static polarizabilities, where ω = 0,

Eq. (13) is written as:

αv(0) = 2
∑

k

|〈Φ0|D0|Φk〉|2
Ek − E0

. (16)

To establish the dominant contributions to the valence
polarizabilities, we combine the electric-dipole matrix el-
ements and energies according to the sum-over-states for-
mula given by Eq. (16). We have carried out two calcu-

lations of the dominant contributions of the intermediate
states to the polarizabilities using our theoretical and
experimental energies. In Table III, we present results
obtained in the CI+all-order approximation. The abso-
lute ab initio values of the corresponding reduced electric-
dipole matrix elements are listed (in a.u.) in column la-
beled “D.” The theoretical and experimental [35] tran-
sition energies are given in columns ∆Eth and ∆Eexpt.
The remaining valence contributions are given in rows
labeled “Other.” The contributions from the core and
αvc terms are listed together in the row labeled “Core +
Vc.” The dominant contributions to α0, listed in columns
α0[A] and α0[B], are calculated with CI+all-order+RPA
matrix elements and theoretical [A] and experimental [B]
energies [35], respectively. The results listed in the col-
umn α0[A] are the recommended ones.

The results obtained in the CI+MBPT and CI+all-
order approximations, their differences, and the recom-
mended values are presented in Table IV.
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VI. COMPARISON OF EXPERIMENT TO
THEORY

We turn now to the connection between our unitless
E2/M1 amplitude ratio, χ, and the theoretical expres-
sions for the respective matrix elements. It is helpful to
recall that both the M1 and E2 matrix element com-
ponents emerge from the same term in the expansion of
the interaction Hamiltonian. Following a standard text-
book derivation of these higher-order terms [41], we find
that both theM1 and E2 transition amplitudes originate
from a matrix element, Tfi, containing both the position
and momentum operators,

Tfi (M1,E2) ∝ 〈f |(k̂ · r) (ǫ̂ · p)|i〉, (17)

where k̂ (ẑ in our case) is the laser propagation direction,
and ǫ̂ (x̂ in our case) is the laser polarization axis. We
can ignore overall multiplicative factors since they will
cancel in the eventual E2/M1 amplitude ratio.

After some vector algebra and use of a commutator
to re-express the momentum operator in terms of po-
sition [41], we can separate the M1 (vector) and E2
(second-rank tensor) components of the matrix element
in Eq. (17). We note that this process introduces a factor
of ωE2/c into the E2 component. In our case, the M1
final state of interest is |3P1,m = 1〉, where as for the E2
component it will be |3P2,m = 1〉.
According to the Wigner-Eckart theorem, for the case

of the |J = 0〉 → |Jf ,m = 1〉 transitions, the multiplica-
tive factor connecting the |∆m| = 1 matrix elements that
we measure with the associated reduced matrix element
is 1/

√

2Jf + 1. Given our geometry, the operator for
the E2 term is proportional to 〈xz〉. This can then be
rewritten in terms of the operator 〈r2C21〉 as introduced
in Sec. II.

Assembling a theoretical expression that is equivalent
to the (unitless) experimental amplitude ratio χ, given
by Eq. (7), we arrive at

χ =
1

2
√
5

ωE2

c

〈3P2||Q||3P0〉
〈3P1||µ||3P0〉

. (18)

Here the reduced ME 〈3P2||Q||3P0〉 is expressed in |e|a2B
(where aB is the Bohr radius; note that for this ME
1 a.u. = 1 |e|a2B) and 〈3P1||µ||3P0〉 is expressed in µB/c.

Inserting our experimental value, χ = 0.1496(15),
as well as the (highly accurate) theoretical value
for the M1 reduced matrix element 〈3P1||µ||3P0〉 =
1.293(1)µB/c [20], we can compute an experimentally-
derived value for the reduced quadrupole matrix element:
〈3P2||Q||3P0〉exp = 8.91(9) a.u.. This is in excellent agree-
ment with, and of comparable precision to, the recom-
mended ab initio theory value from Eq. (10) in Sec. V:
〈3P2||Q||3P0〉th = 8.88(5) a.u.. Together, we have demon-
strated consistency between experiment and theory for
this lead E2 transition amplitude at the 1.2% level of
accuracy.

VII. CONCLUDING REMARKS

We have completed a precise measurement of the elec-
tric quadrupole 3P0 → 3P2 transition amplitude within
the 6s26p2 configuration in atomic lead. This result is in
excellent agreement with a precise ab initio calculation
of this amplitude, which has also been presented here.
The calculation builds upon on recent theoretical work
in the four-valence lead system aimed at improving PNC
calculations in this element [20]. The experimental work
relies critically on a high-precision polarimetry technique
used previously to measure PNC optical rotation in Pb
and Tl [8, 9], and has allowed direct measurement of this
forbidden E2 transition for the first time. We have also
presented ab initio calculations of the static polarizabil-
ity of several low-lying states in lead. This now pro-
vides additional opportunities to test the accuracy and
further guide the refinement of theory through precise
atomic-beam-based measurements of Stark shifts in this
element, employing experimental techniques analogous to
those used by our group in recent indium and thallium
polarizability measurements [16–18, 42].
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