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We use quantum detector tomography to characterize the qubit readout in terms of measurement
POVMs on IBM Quantum Computers IBM Q 5 Tenerife and IBM Q 5 Yorktown. Our results
suggest that the characterized detector model deviates from the ideal projectors, ranging from 10
to 40 percent. This is mostly dominated by classical errors, evident from the shrinkage of arrows
from the poles in the corresponding Bloch-vector representations. There are also small deviations
that are not ‘classical’, of order 3 percent or less, represented by the tilt of the arrows from the z
axis. Further improvement on this characterization can be made by adopting two- or more-qubit
detector models instead of independent single-qubit detectors for all the qubits in one device. We
also find evidence indicating correlations in the detector behavior, i.e. the detector characterization
is slightly altered (to a few percent) when other qubits and their detectors are in operation. Such
peculiar behavior is consistent with characterization from the more sophisticated approach of the
gate set tomography. We also discuss how the characterized detectors’ POVM, despite deviation

from the ideal projectors, can be used to estimate the ideal detection distribution.

I. INTRODUCTION

Recent manufacture of 49, 50 and 72 superconducting
qubits from companies such as Intel, IBM and Google
gives prospect of demonstrating quantum advantage in
not distant future. However, these and near-future
machines are at best noisy intermediate-scale quantum
(NISQ) processors [1]. Therefore, developing and har-
nessing tools for characterizing noise and error, mitigat-
ing them, and verifying quantum processing will be es-
sential in running programs on quantum devices and in
further locating the parameter windows in applications
towards quantum advantage. Several tools have been de-
veloped, including tomographic ones for quantum states
and processes [2-8]. But these rely on accurate mea-
surement and/or state preparation, for which the system
may not have, and the methods do not scale favorably
with the system size. If one is only concerned with par-
tial characterization, such as the average gate error rate,
then the so-called randomized benchmarking [9-11] pro-
vides a reliable estimation independent of state prepara-
tion and measurement error. Although these tools seem
to be standard, there are still some aspects of them not
fully explored.

When one speaks of qubit decoherence, there are typi-
cally two associated processes: (1) relaxation (with time
called T1), usually related to the transition of the excited
state(s) back to the ground state or the system return-
ing to thermal equilibrium and (2) dephasing (with time
T5), related to off-diagonal elements of the density ma-
trix decaying exponentially with time. In reality, a qubit
will couple to the environment and such interaction (and
with other qubits in an undesired way) will induce re-
laxation and dephasing, and possibly other ways causing

decoherence. These will be loosely referred to as noise,
and any quantum gate that does not operate as desired
is said to have errors. For instance in the IBM quan-
tum computers, the error rate in measurement readout
(2-10%) is comparable to that of two-qubit gates (3-7%)
and both rates are greater than that of single-qubit gates
(0.1-0.2%) by one order of magnitude. Single-qubit state
preparation for short circuits is to some extent of high
fidelity, but the computation for longer circuits will in-
evitably suffer from noise. Omne tomographic tool that
sometimes gets overlooked is the so-called quantum de-
tector tomography [12], more recently discussed in pho-
ton detectors [13-16], which seems to provide a first
tool to improve the readout or detector characterization,
via short quantum circuits involving single-qubit gates.
Because of the measurement error is higher than state
preparation (of |0)) and single-qubit gates on IBM Q de-
vices, we perform the quantum detector tomography to
characterize the detectors. We point out some behavior
revealed by experiments that require further investiga-
tion into physical devices, beyond the setting of quantum
circuits.

We remark that a more thorough characterization
scheme that makes the fewest assumptions is gate set to-
mography [17, 18], where an initial state, a set of quantum
gates, and a positive-operator valued measure (POVM)
are characterized simultaneously. Since this requires a
large number of gate sequences, some of which are very
long, it is currently limited to single-qubit and two-qubit
processes in practice. Another recently proposed scheme
that is less costly tries to characterize state preparation
and measurement iteratively [19].

In the next section (II) we briefly review the tomo-
graphic tool for detectors. We present our experimental



results in Sec. III. An unexpected behavior was seen in
the physical qubit labelled as qubit 3 of IBM Q 5 Tenerife.
Its detector characterization seems to be different when
it is done alone (with other qubits being idle) from when
it is done when other qubits are also in operation. This
can be a consequence of detector crosstalk or qubit oper-
ations influencing each other and requires further investi-
gation into the physical process. In Sec. IV, we describe
how such characterized readout can be used for mitiga-
tion of measurement error, in the sense of inferring ideal
measurement statistics. In Sec. V, we also use the gate
set tomography and compare its detector characteriza-
tion with that from the simple detector tomography. We
make concluding remarks in Sec. VI. Some experimen-
tal data and further results of GST are presented in the
Appendix, including QDT for the 14 qubits of IBM Q 16
Melbourne.

II. TOMOGRAPHIC TOOL FOR DETECTORS

Quantum Detector Tomography (QDT). In this
section we review the tool of quantum detector tomog-
raphy [12], which was often studied for photon detec-
tors [13-16]. A short review of quantum state tomogra-
phy (QST) and quantum process tomography (QPT) is
included in the Appendix for completeness. In QST one
has a set of projectors or more general POVM elements
{0} (e.g. Ay = {I0/1)(0/1], |+ /=)+/ — |, | £ i)(==il},
corresponding to eigenstates of Pauli matrices), and mea-
sures them with respect to an unknown state p, yielding
a set of data p,; = Tr(pll”). QDT is a dual view-
point: with a set of known states {p;}, one is asked to
estimate a fixed but unknown set of measurement opera-
tors {II()} characterizing a detector. Here we formulate
qubit detectors that are most relevant to realistic mea-
surement in cloud quantum computers, such as IBM Q
and Rigetti’s. The usual assumption is that the set of
states {ps}’s is well known or at least with much smaller
error rates than detection. For the state preparation in
|0), the typical ground state of superconducting qubits, it
is fairly accurate. Moreover, in these systems the single-
qubit gates have higher fidelity (than the measurement
and two-qubit gates), and only Z measurement can be
implemented. Measurement in other bases needs to be
actively made by the users to perform a suitable rotation
before the Z measurement. Hence we will consider two
measurement operators II(9) and IIM) for a single qubit,
which is constrained by the trace-preseving condition
that IIp + ITI; = 1. In the ideal case, |0)(0] = (1 + o03)/2
and [1)(1] = (1 — o03)/2.
Let us denote for convenience,

3
" =3 eV, (1)
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where the subscript of H(ln) means single-qubit detec-
tor and (n) denotes the measurement outcome 0 or 1.

The Pauli basis is 09 = 1,01 = 04,02 = 04,03 = 0.
We can use a vector @™ = (a(()"), a(ln),ag”),agn)) to col-
lectively denote the parameters. There are some con-
straints: (1) @® +a™) = (1,0,0,0) due to completeness,
and (2) |aén)|2 > E?:1 |a§n)|2 in order for II(™ to be non-
negative. We choose and prepare p from the 6-element
set A; (listed above), and those other than |0) can be
prepared from it with relatively high fidelity by single-
qubit gates. Then the measurement process accumulates
a set of data P,, , = Tr(p;I1,,), which is a 6 x 2 matrix for
each detector. From this we can find the best fit, under
the above constraints, to extract @™ that describes the
action of the detector. In adopting this model, we have
made the assumption that there is no crosstalk between
the qubits in one device so that the detectors are viewed
as independent. Relaxing this assumption a little bit,
we can have a multi-qubit detector model, where a bi-
nary string is produced as the measurement result. Just
like the single-qubit case, the N-qubit detector model is
written as:

Hg\?) :Zcz(ﬁ)aio ® . @O @ Oy, (2)

(no,...,nN_l) is the
measurement outcome and each component of i =
(0y -+, iny—1) Tuns from 0 to 3. It is natural to ask whether
measuring only one single qubit in the device gives the
same result as measuring all the qubits and tracing out
the other irrelevant ones. This question will be addressed
in our experiments.

In an experiment, the characterized detectors can be
used to perform QST on the resultant state, hence mit-
igating the effect from detector errors. However, we re-
mark that some correction can be made even without a
set of informationally complete set of measurements on
the state; see discussions below in Sec. IV.

where the binary string 7 =

A. Maximum likelihood estimation

In this section we summarize the maximum likelihood
estimation (MLE) analysis for detectors that we will em-
ploy [12]. The log likelihood function is defined as:

logL = Z Z fn,ilogTr (H(”)pi)7 (3)

where {II(™} is the POVM characterizing the detector
and f,; is the frequency of measuring the state p; and
obtaining outcome n. The sum over index ¢ contains
an informationally complete set of test states. The nor-
malization constraint ) I = 1 is implemented by
Lagrange multipliers. Maximization with the constraint
leads to the equation:

™ — pn) Ri(n) (4)



R is determined by the normalization constraint, and
is given by:

RO = 3 e (03 dealek )5
P n,t

m gk m,me,k

where p,, ; denotes the theoretical probability of mea-
suring the state p; and obtaining outcome m. Note
that R(™ is a function of the POVM {II(™)}, not only
through the explicit dependence, but also because p,, ; =
Tr(H(m) pj). In our analysis, we choose the multi-qubit
Pauli matrices as the basis to express {II™} and {p;}.
Each iteration starts with updating {H(m)} according to
Eq. 4, and ends with calculating {R“™} from Eq. 5 for
the next iteration. The termination condition is set as:

ST — gl < e, (6)

where the subscript denotes the ¢t-th and the (¢ + 1)-th
iterations, the norm is taken to be Frobenius norm, and
€ is some (arbitrarily chosen) cutoff value. Positivity and
normalization are preserved as long as the initial values
of {TI™} form a POVM. It is worth mentioning that
€ should be sufficiently small such that the numerical
error introduced by this cutoff would be smaller than the
uncertainty in the estimated parameters due to statistical
fluctuations.

IIT. RESULTS OF QUANTUM DETECTOR
TOMOGRAPHY

We performed QDT on the two IBM Q 5 devices:
Tenerife (ibmgx4) and Yorktown (ibmgx2), and present
the results below. Each experiment consists of 100 runs
with the setting of 8192 shots for each run on the IBM
Q devices. The effective total number of repetitions is
819200. This gives us effectively 819200 shots, The test
states in 4; were prepared by first initializing the qubits
in |0) (which is the ground state of each qubit) and act-
ing on it by the single-qubit gates: Pauli X, Hadamard
H, and the S gates, as well as their combinations. The
MLE [12] was used for calculating the POVM param-
eters from measured frequencies, reviewed earlier. The
positivity is ensured by construction, e.g., using initial
POVM elements being 1/2 for the iteration.

First we adopted the single-qubit detector model. One
can carry out the detector tomography procedure for each
physical qubit individually, leaving the other qubits in
the machine idle, or simultaneously carry out the same
procedure for all qubits (or a subset of them). We hence-
forth refer to these two different ways as ‘individual mea-
surement’ and ‘parallel measurement’, respectively. In
principle there should not be any difference except that
due to statistical fluctuations between the two, since us-
ing the single-qubit detector model we have assumed in-
dependence of the qubits. However, in reality we see sig-
nificant discrepancy between the results obtained from

the two types of experiments, which we will describe be-
low.

A next-step generalization would be to adopt the two-
qubit detector model. We examined all pairs of qubits in
the two machines, and compared the results with those
obtained for single-qubit detector model (both individual
and parallel). If the discrepancy we observed is solely due
to pairwise influence, this would be captured in the two-
qubit detector tomography. However, this is not the case,
as we will see in Sec. IIIB. One can readily generalize
this to detector models involving three or more qubits as
in Eq. 2. For the five-qubit devices, a five-qubit detector
model will be the best to characterize the measurement
for the two 5-qubit IBM machines. In order to obtain all
25 = 32 operators I1'™) using the aforementioned basis
states, 6° = 7776 circuits are required. But some kind
of compressed sensing technique may be used to mitigate
this, as was done for QST [20]. We would like to point
out that to run this list of circuits on the current devices,
it needs to be separated into smaller lists of jobs, since
there is an upper limit on the circuit count for one single
submitted job.

A. Single qubit detector: parallel vs. individual

The results of QDT are visualized in Fig. 1 using
Bloch spheres, with detailed parameters listed in Ta-
bles Va, VIa, Vb and VIb. The 3d arrow represents the
vector ¥ = (ay,as,as)/ap, and should be (0,0,+1) for
ideal detectors T1%' = (1 4 0.)/2. We use the thick-
ness of the arrow to represent the parameter ag. Each
detector is found to have its axis align mostly with z
axis but behave with some notable difference to the ideal
0/1 projectors: (1) shrinkage of the arrows from poles:
the length of the arrows represent the purity of the mea-
surement, and the shorter they are the further away are
the detectors from peferct projection; (2) tilt of the ar-
rows: the measurement axis is slightly tilted from the
Pauli z basis, but it is only of a few percents or less;

(3) thickness of arrows: it represents the amount of aém

and a/f)l) =1- (1,(()0). Intutively, we can consider the con-
ditional probability of measuring 0 given the state is 0:
P(0]0) = a(()o) + aéo), and the conditional probability of
measuring 0 given the state is 1: P(0|1) = a(()o) - a:(f)
and similarly P(1|0) = aE)U + aél) =1- a[()o) - ag)), and
P(11) =1- aém + aéo). Given that the tilt is small,
the detector errors are mostly classical flips. From the
above relations, we have 2(18()) = P(0[0) + P(0]1) and
2(1((]1) = P(1]0) + P(1|1). Given that |0) is the ground
state in each qubit, we expect that aéw > a(()l). Indeed
most of the detectors do satisfy this regardless of the
schemes of measurement, parallel or individual, except
qubit 3 in IBM Q 5 Tenerife measured in parallel. These
features are displayed in Fig. 1.

The details of the single-qubit detector results for the



(d) Parallel measurement on IBM Q 5 Yorktown.

Figure 1: Detector spheres for qubits 0 to 4 of (a), (b) IBM Q 5 Tenerife (c), (d) IBM Q 5 Yorktown. The arrow
represents the vector (a1, as,as)/ap from measurment [(n=0.1) — () . &, where the north pole and the south pole
correspond to ideal |0)(0| and |1)(1] respectively. Positivity is reflected by the length of the arrow being smaller than
1. The width of the arrow represents the weight ag in the corresponding POVM element, for which the ideal case is
1/2. These data are in tables V and VI. For example individual measurement of qubit 4 of IBM Q 5 Tenerife
produces the last sphere in (a), which corresponds to II®) = 0.521(1)1 — 0.012(2)o,, — 0.0122(4)o, + 0.3798(4)0, and

W =0.479(1)1 + 0.012(2)o, + 0.0122(4)5, — 0.3798(4)0 .

two devices, as measured individually for each physical
qubit leaving the other qubits idle, are shown in Table Va
and Table VIa, respectively. And those obtained by car-
rying out single-qubit detector tomography simultane-
ously for all five qubits in the machine are presented in
Table Vb and Table VIb. We use the non-parametric
bootstrap method [18] to estimate the uncertainty for
each parameter, which gives errors typically of the order
O(107%), with the largest among them up to 0.003. A
detailed discussion is in Sec. ITI C below. We note that
Fig. 5 corresponds to data in Table V, and Fig. 6 corre-
sponds to data in Table VI.

.q“bito‘l‘z‘:a‘z;
device
bmqxd ]0.011]0.010[0.023]0.087]0.025
ibmqx2  0.042(0.017|0.044]0.031|0.024

TABLE I: Distance between single-qubit detector from
individual measurement and that from parallel
measurement, for IBM Q 5 Tenerife (ibmgx4) and IBM
Q 5 Yorktown (ibmqgx2).

A notable feature is found that for almost all qubits



a((JO) is larger than aél) =1- aé ), which comes from

relaxation to the ground state |0). There is an exception
for qubit 3 of the device IBM Q 5 Tenerife, where aéo) <
a(()l) when measured together with the other qubits in
parallel. This was not seen when qubit 3 was measured
alone, which hints at influence from the other qubits.

A measure of discrepancy between individual mea-
surement and parallel measurement is the distance be-
tween the vectors @) = (ago),ago) aéo),ago)) (note that
av = (1,0,0,0) — @) obtained in the two different
ways. This distance corresponds to the Frobenius norm
of the difference between the two II(9) operators up to a
factor of 2. These are shown in Table I. It is worth notic-
ing that the statistical fluctuations in the estimated @©)
limits the resolution of the distance to an order O(1073).
We distinguish this order of magnitude from the magni-
tude of the fluctuations in the parameters of the detec-
tor model which are typically O(10~%). This distance is
derived from those parameters and the estimated fluctu-
ations in the distances originate from, but are of lager
magnitude than, the fluctuations in the detector param-
cters. We see that the distance between the two @©
vectors obtained from individual measurement and paral-
lel measurement is one order of magnitude larger, which
indicates that there is some correlation due to several
qubits being operated and measured simultaneously, vis-
ible even in the presence of statistical fluctuations. These
differences are visible from Bloch spheres between 1st and
2nd rows and between 3rd and 4th rows in Fig. III.

B. Beyond single qubit detector

Two-qubit QDT and cross talk. The two-qubit

detector model H§"°7"1) for a pair of qubits is char-
acterized by 64 parameters, which can be organized
into four 4 x 4 matrices c(no’m) for the four outcomes
(no,n1) = (00), (01), (10), (11) respectively. Imagine we
have two uncorrelated systems A and B, where the
POVM for the composition is {174 "% = 0 g

g“?)}. Dona H(IA) = 1,4 and the same condition for
B are satisfied independently. When we have no access
to system B, we need to sum over all possible outcomes

(na) (n nB)
for B to get {II', 4) =, up 7} We can then
take the partial trace over B to recover

) = T Z s e, (7)

dlrn

where dim(B) is the dimension of the Hilbert space for B.
In doing so we are assuming that any state of B is equally
likely to occur, i.e., no information about B is accessible.
To check whether a pair of qubits are separable, we can
calculate the singular values of the matrices c( m0:m1). g,
them. If the single-qubit detector assumption holds well,

the operators can be decomposed in the following way:

e = e my, ®)

where Hﬁ") is a single-qubit detector operator. In this
case there will be only one nonzero singular value for
any of the four c(no’nl) matrices. This is a direct anal-
ogy to characterlzatlon of the entanglement of a bipar-
tite system. We can also calculate from the singular val-
ues the analogy of entanglement measures, whose magni-
tudes give a measure of how bad the assumption of inde-
pendent single-detectors is violated. We will not present
detailed analysis about this here.

How do we characterize a single-qubit detector reduced
from the detector in the presence of other qubits? From
the two-qubit detector model (see Eq. 2 applied to two
qubits), one can trace out one qubit and obtain a single-
qubit detector model for the other qubit. For example,
tracing out the second qubit in a pair, we get a single-
qubit detector for the first qubit according to

1
MY = 2 Trana (115" +115°Y), 9)

where the trace is taken over the second qubit only.
Note that by doing this, (0) + Hgl) = 1g2 is an au-
tomatic consequence of >, Hg"o’nl) = Lgzygz. We
call the single-qubit detector obtained by tracing out an-
other qubit in a pair ‘a single-qubit detector conditioned
on another qubit’. We calculate such models for each
qubit conditioned on any of the other qubits, and com-
pare the result to the single-qubit detector obtained from
individual measurement, parallel measurement, and par-
allel measurement of only those two qubits (henceforth
referred to as pairwise parallel measurement). In the
ideal case where all detectors are independent of each
other, these results should agree within statistical uncer-
tainty. If there is influence of only one other qubit on a
given qubit, then we expect one of the four conditional
single-qubit detector results to coincide with the result
obtained from parallel measurement. From this we can
also find which qubit is affecting a given qubit. Again we
use the distance between two @) vectors to characterize
the agreement between two results. We present the com-
parison between the single-qubit detector from individual
measurement and that conditioned on another qubit in
Fig. 2, and leave the other two comparison schemes in
the appendix (Figures 3 and 4). In these figures we also
use schematic diagrams to visualize the crosstalk. In the
influence diagrams, the arrows are of thicknesses propor-
tional to the distance between the detectors obtained in
the two different ways and point from the qubit traced
out to the qubit of interest, indicating the influence of the
former to the latter. As mentioned before, due to statis-
tical fluctuations the distance can not be resolved below
the order O(1073). Therefore, it is sensible to compare
the entries in the tables to this order of magnitude. For
all qubits in both Tenerife and Yorktown, the distances
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© ® 1 0.030] - [0.040[0.021[0.012
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Figure 2: The left panels explain the comparison scheme: the single-qubit detector on the left is obtained by
tracing out another qubit in a two-qubit detector while that on the right is from individual measurement. The
tables contain the distances between these two: the entry in i-th row and j-th column is the distance between
single-qubit detector of qubit ¢ conditioned on qubit j and that for qubit ¢ obtained from individual measurement.
Values between 0.01 and 0.1 are highlighted in blue and those above 0.1 in green. The right panels are schematic
influence diagrams where each arrow points from the qubit traced out to the qubit of interest and the thickness is
proportional to the distance. This comparison is shown for IBM Q 5 Tenerife (upper panels) and IBM Q 5

Yorktown (bottom panels) respectively.

obtained are mostly one order of magnitude larger (of or-
der O(1072)), with the largest of order O(1071) for qubit
3 of Tenerife. This suggests that pairwise influence and
crosstalk do exist. This is important to take into account
when we analyze results of measurement, and this sug-
gests that by adopting the two-qubit detector model, the
measurement result may be further improved than using
just the single-qubit detector model. In the upper panels
of Fig. 2 we can see that the result for qubit 3 measured
individually differs significantly from that conditioned on
qubit 2. This suggests possible influence on qubit 3 by
qubit 2. Further discussion on the implications from the
other comparison schemes is in App. B.

We comment that we also performed 3-qubit detector
tomography on certain subsets of qubits. These could po-
tentially be used in measurement error mitigation, e.g.
in the circuit of GHZ production, similar to the two-
qubit detector tomography for the Bell-state circuits be-
low. But we do not present those results here.

C. Error analysis

The non-parametric boostrap approach. Follow-
ing the non-parametric bootstrap error analysis [21], we
evaluate the uncertainty in the parameters by first ob-

taining different estimates from resampled data sets of
experimental data and calculating statistics of these esti-
mates. In our analysis each experiment was repeated
100 times, each time with 8192 shots on the IBM Q
devices. This gives us effectively 819200 shots, from
which the result is calculated using MLE. To evaluate
an uncertainty in this result, we resample the set of 100
runs with replacement to obtain new sets of experimen-
tal data. These sets are of the same size (100) as our
original data set and from each we can calculate a new
estimate of the result. The assumption supporting the
method of non-parametric bootstrap is that the resam-
pled data will approximate the true probability distribu-
tion and their distribution allows one to study the con-
fidence region for the estimated parameters. Since our
experiments involve large numbers of repetitions, each of
which is assumed independent of the others, by central
limit theorem the distribution of the observed frequency
of a given outcome can be approximated by a Gaussian
distribution. The fitted detector parameters are linear in
the observed frequencies and consequently their distri-
butions will be similar to Gaussian. This enables one to
associate the confidence interval of one parameter with
the standard error in its estimated value. For a single
parameter following Gaussian distribution, the interval
within 1.96 standard errors of the estimate contains the



true value with probability 95%. The standard deviation
across the bootstrap resampled data sets is an estimate
of the standard error in the fitted parameter from the
original sampled data.

Therefore, the standard deviation of the estimates
from resampled data sets gives a scale for the uncertainty
in our result. 100 resampled data sets were generated
for each experiment. For some selected cases we tried
more (up to 1000) resampled data sets, which gave sim-
ilar standard deviation to that from 100 resampled data
sets. Therefore, we believe the standard deviation from
100 resampled data sets can represent the fluctuations
well. The estimated statistical fluctuations in the pa-
rameters of the obtained detector models are typically of
order O(107%), with some exceptions of order O(1073)
(see tables V and VI). This would cause fluctuations of
order up to O(1073) in the distance between two @®
vectors.

The Hessian approach. In addition to bootstrap, the
authors of [18] used likelihood ratio confidence regions
[22] to define an error bar in the following way

Af=\Je(Vh)T-H1-(V)), (10)

where f is a function of the fitted parameters, H is the
Hessian matrix without any redundancy in the parame-
ter space, and the constant ¢ is the argument for the cu-
mulative density function of normal distribution when its
value reaches the desired confidence (e.g. 95%). This def-
inition relies on the Gaussian-like likelihood function and
the fact that in GST there are no constraints on the fit-
ted parameters. As discussed previously it is reasonable
to assume Gaussian distribution for the detector parame-
ters, but the latter statement is not true in QDT. Specifi-
cally the operators in a POVM must be positive semidef-
inite. When the constraint |a\”|? > S a{”|2 is close
to being saturated, the distribution will be non-Gaussian.
Note that normalization is not a constraint if we remove

the redundancy in the parameters. For example, in the
single-qubit detector case one only considers the param-
eter space formed by @® since @ = (1,0,0,0) — a©.
Under the positivity constraint the detector parameters
are not completely independent and the distribution may
be distorted from Gaussian. However, we argue that if
the distribution of each parameter has a narrow peak we
may overlook the constraint and still use the definition
to quantify the uncertainty in our estimates. We calcu-
late this quantity for the detector parameters and find
that most of the time the result agrees in order of magni-
tude with the fluctuation estimated using non-parametric
bootstrap. In the rarer cases where the non-parametric
bootstrap produces fluctuations of order O(1073) instead
of O(107%), estimates from this definition are still of or-
der O(10~%). This discrepancy is likely to arise from
ignoring the positivity constraint.
IV. APPLICATION OF CHARACTERIZED

DETECTORS—INFERRING IDEAL DETECTION

Given the characterized detectors, one should be able
to infer from the existing measurement data the ‘cor-
rect’ joint distribution P, pn, ... .ny_,) of obtaining N-
qubit outcomes (ng,ni,...,ny—1) in the ideal computa-
tional basis to some extent. Assuming there is no detec-
tor crosstalk,

gy = Te(pllg 0 1% @ . @ 701

(0] (1] [N—-1]
N-1 3 )

=Te[p [T (D_a,flow)], (1)
j=0 q=0

where [j] denotes the j-th physical qubit in the device;
we use Pngn,,..ny_,) to denote the experimental dis-
tribution and P,y n,,...ny_,) the ideal distribution. And
when |agn) l, |a§n)| < |a§n) |, which is the case in the IBM’s
quantum computers, Eq. 11 becomes approximately:

N—
Plng,ns,veinn-1) = Tr[p H ap ) + S5 )]

- ¥

(mo,m1,....mnN_1)

= ZMﬁ;fﬁPrﬁy

where summation over m runs through all possible out-
comes. Moreover, M is a left-stochastic matrix and its

N-1
P(mo,ml7 MmN 1) H (a(()"[;] + (_1)mja;(),ﬁﬁ)7
7=0
(12)
[
matrix elements are given by
TT (o) (n5)
Mg = I (of}+ C0mai)). (9



This can be used to invert the relation to obtain Py. We
remark that the matrix M is equivalent to the transi-
tion matrix in [23], where it is estimated by preparing
and measuring the classical states instead of using QDT
data. Similar idea was proposed by the IBM group [24].
We remark that obtaining this matrix from detector to-
mography data becomes inefficient for large number of
qubits because the number of experiments needed grows
exponentially with the number of qubits.

However, a problem is that the resultant Py by direct
inversion may have negative components. Similar issues
were also addressed in [17], and dealt with by setting a
cutoff. In the near-term devices (e.g. IBM Q 5 York-
town in Sec. IV A), this problem is very likely to occur
due to statistical fluctuations in measured frequencies.
Another way to obtain Py circumventing the negativity
problem is to minimize the distance squared |M P — P|?,
subject to the constraints of positivity and normaliza-
tion. This is a quadratic programming problem, whose
objective function is convex (and solution can be found
in polynomial time using ellipsoid method). In Sec. IV A
we demonstrate this procedure using a built-in function

There are 2V different K ’s, including the original circuit
with the probability given by Eq. 11. Adding up Pz (K)’s
cancels the terms involving a1, as and their average gives
the probability in Eq. 12.

Crosstalk between qubits can further complicate the
situation. Let us again make the assumption that in Eq. 2
only coefficients involving Pauli indices ¢ = 0, 3 dominate,
ie., cZE") ~ 0 for all the i’s with any entry equal to 1 or
2. Now the probability is:

Pa= ) o ). e

)Tr p020® B0y 1)

i0=0,3 in-1=0,3
- Y T AT,
i0=0,3 in_1=0,3 m
=D M Pri, (16)
m
where M is given by:
T (@) 1\m-I/3

T

Although I = (0, .-, in—1) has the same expression as

in the python package Scipy [25]. We stress that this cor-
rection procedure only serves as an easy first-step miti-
gation, which does not have the full power of QST us-
ing characterized detectors. The advantage is that one
only needs the measured frequencies for all outcomes in
the computational basis and no further experiments are
needed.

We remark that this conclusion is based on the as-
sumption that HE g a(() [7;]1 + aé [7%03 [j]- The situation
will be complicated when there are non- negligible com-
ponents a1 and as, in which case a trick can be used if we
can run additional circuits, which are the same as before
except with additional Pauli Z gates at the end. This
is similar to the idea behind the error mitigation scheme
in [26]. The gates added to the end are of the form:

N-1
Z2(K) = [] o5y (14)
=0

where K is a binary string of length N that denotes
whether there is a Pauli Z gate on each qubit in the

device. Given a particular K , the probability is given
by:

Ki(a{or ) + af o )] (15)

f, we distinguish between them because each component
of I is equal to 0 or 3. Note the summation only runs
through these I’'s. We can use the same procedure to
extract the ideal distribution Pg. Moreover if the as-

sumption that CE R

~ 0 for all the i’s with any entry
equal to 1 or 2 does not hold, we can still use the average
procedure by running addltlonal circuits with gates (14)

appended to the original circuits.

A. Using characterized detectors

We demonstrate how to apply the characterized de-
tectors in a simple real-life experiment for a first-step
correction, without carrying out QST, as described in
Sec. II. First we applied Hadamard gate on qubit 3,
and then CNOT gate on qubits 3 (condition) and 4
(target) in IBM Q 5 Yorktown, followed by measure-
ment of all qubits. The resultant state, in the perfect
scenario, should be a Bell state between qubits 4& 3,
(]00)43 + |11)43)/v/2. The ideal probability distribution
will be Pygooo = Pir1000 = 0.5 with all other components



of Pz equal to 0. The circuit was repeated for 50 runs,
each run with 8192 shots. The largest two components
are POOOOO = 0.466 and P11000 = 0422,~ with the oth-
ers ranging from 0 to the order 0.01 (Pyopo1 = 0.013,
POIOOO = 0.042, PlOOOO = 0.0327 PllOOl = 0.011; see Ta-
ble II). Direct inversion gives some negative entries in
P5;. An immediate technique is setting any negative en-
try to zero, and then renormalizing P5. This results in
the two largest components being Pyopoo = 0.479 and
Pr1goo = 0.498, with the biggest among the others of
the order 0.01. We then turn to maximizing |M P — P|?
subject to constraints of positivity and normalization.
We argue that this method is more desirable because
it avoids setting some arbitrary small value as the cut-
off. This was done using the optimization function ‘op-
timize.minimize’ in the python package Scipy, with the
sequential least squares programming (SLSQP) method.
The tolerance parameter ‘ftol’ was set to 10729 and op-
timization was typically done after between 300 and 400
iterations. First we apply Eq. 12 with detector param-
eters obtained from individual measurement. The ‘cor-
rected’ Pz has two dominant components, Pyggog = 0.493
and Py1900 = 0.507, with all the other components of the
order O(10~17). We evaluate the uncertainty by combin-
ing the uncertainties in the entries of M (as in Eq. 12)
and the statistical fluctuations in the measured probabil-
ities P5. The estimated uncertainties in the entries of P
vary in magnitude, with the largest of the order O(10~3)
(in particular, the uncertainties in Pyoppo and Pjigo0 are
0.002 and 0.0018 respectively). We repeat this analysis
using detector parameters obtained from parallel mea-
surement, which gives Pyoooo = 0.495 and P;1900 = 0.505
and the other components of the order O(10717). The
estimated uncertainties in the entries of Pz are of the
order O(1073) or less (in particular, the uncertainties in
Pooooo and Pr1gop are 0.0012 and 0.0010 respectively).
We would like to stress that our experiment involves ap-
plying CNOT on a particular state (i.e. |0+4)43), which
does not fully capture the errors that CNOT gate can
cause and therefore does not reflect the overall fidelity of
CNOT gate. It would require full QPT to characterize
CNOT gate.

When a number n.;, of qubits are operated on in an
experiment, the matrix M in Eq. 16 used for error mitiga-
tion needs to characterize the same qubits involved in the
experiment. To obtain this information, without making
the assumption of the qubits being independent of each
other, one should use the n.,,-qubit detector model to
carry out the detector tomography. The reason is that
in such a tomography procedure exactly the same qubits
as those in the experiment are turned on, so that the
crosstalk between detectors will be captured. To demon-
strate the use of the double-qubit detector model, we pre-
pare a Bell state on two qubits using Hadamard gate and
CNOT gate, followed by measuring only the two qubits
involved. It is worth noting that the CNOT gates used
respect the connectivity of the qubits in the real machine,
so that we know which qubits are actually operated on.

We list the measured frequencies in comparison with their
corrected versions in Table II. It is clear that with the
first-step correction Py and Pj; are brought closer to the
ideal value 0.5; and their difference is reduced. We also
note that the direct inversion with cutoff at zero and the
optimization using SLSQP give similar results.

V. GATE SET TOMOGRAPHY

Here we provide results of the GST analysis we carry
out on the two IBM machines. We begin with a brief
review of the GST scheme developed in [17, 18]. A gate
set in GST is defined as the collection of an unknown
initial state p, a set of unknown CPTP gates {G}}, and a
2-outcome unknown POVM {E, 1 — E}. The first step is
called ‘linear GST’, which broadly speaking is to express
the gate set in some arbitrary basis. Taking the Hilbert-
Schmidt space of matrices on the original Hilbert space as
the new vector space, the expressions are the following:

1 =3,  (EIF; Filp))
) = 171 2, ((E|Fy1p))

(Bl = 2k (ElFklp))
Gy =173, (BIF;GiFelp)), (18)

|p)) and ((E| are vectorized version of p and F, respec-
tively, and {F};} is a set of gates (acting on vectorized
version of density matrices and POVM) with which the
initial state and the measurement will be information-
ally complete respectively. The inner products in these
equations are obtained from experiments. This can only
determine the gate set up to a transformation:

p=Mp
E=FEM-!
G; = MéiM_l, (19)

where M is some invertible matrix. This freedom was
termed ‘gauge’ by the authors of [17], and can be re-
moved by trying to match the gate set towards some
target. Long sequences of gates are used in experiments
so as to capture the amplified gate parameter errors and
thus achieve better characterization of a certain subset
of gates {G}}, called ‘germs’. However, SPAM param-
eter errors cannot be amplified. The full GST analysis
in [18] can be summarized as follows: 1) linear GST for
the first estimate; 2) gauge optimization to match the
target gate set; 3) iteratively adding data for x? mini-
mization to avoid local minima; 4) final MLE analysis
and gauge optimization.

A. Results of single-qubit detector characterization
from GST

We also used GST and ran corresponding circuits on
IBM Qx4, with the standard gate set G = {G, =
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qubits of interest |control-target| data type Poo Po1 Pio Py ||[MP— I:’|
0,1 0-1 experiment | 0.470 | 0.040 | 0.054 | 0.436 -
inversion | 0.489 | 0.003 | 0.0 | 0.509 | 0.0055
optimization| 0.490 | 0.001 | 0.0 | 0.509 | 0.0053
uncertainty [0.0018(0.0014{0.0014|0.0016 -
3,4 3-4 experiment | 0.481 | 0.031 | 0.041 | 0.448 -
inversion | 0.480 | 0.024 | 0.0 | 0.497 | 0.0158
optimization| 0.483 | 0.019 | 0.0 | 0.498 | 0.0150
uncertainty [0.0013| 0.003 | 0.003 |0.0012 -

TABLE II: Measured frequencies in comparison with those after inversion with cutoff at zero and with those after
minimizing |[M P — P|? for (a) a 2-qubit Bell state %(|OO> +111)) on IBM Q 5 Yorktown. The experiment was

repeated for 50 runs, each run with 8192 shots. The leftmost column is the qubits operated on and measured.

R.(7/2),Gy = Ry(m/2),G; = 1} for the state prepa-
ration and measurement fiducials. GST is particularly
well suited for characterizing gates but less so for state
preparation and measurement. However, it still provides
a good comparison for detector tomography without the
bias of assuming high-fidelity gate and state prepara-
tion. To run the GST with long squence requires a
large number of different circuits to run. Since we are
only interested in the detectors, we only choose {Gr}
to be the germs and only of 6 different lengths, i.e.,
[1,121,241,361,481,601]. (Our other motivation was to
capture some simple relaxation or decoherence from the
decohered identity operation; see also App. E.) Even
for such a simple setup, there are 272 different circuits to
run (compared to just 6 for QDT). For each we take 8192
shots to obtain statistics. Ideally, we could have included
G, and Gy in the set of germs, but it will require many
more circuits to run.

We use the ‘pygsti’ package (version 0.9.6) of python
to analyze the data. We first run linear-inversion GST
(LGST) without using the long-sequence circuits to ob-
tain an initial estimate. We perform the gauge optimiza-
tion by setting gate parameters to be trace preserving
(TP). If the obtained POVMs for the detectors are not
positive, we repeat the analysis by additionally setting
a nonzero SPAM penalty factor (typically from 0.3 to
0.5) so as to obtain positive POVMs. We then project
the gates (this does not modify characterization of the
initial state nor measurement POVMSs) to be completely
positive TP (CPTP). Using such an initial estimate, we
then run the long-sequence GST (LSGST), which takes
into account long-sequence circuits by performing itera-
tive maximum likelihood by including longer sequences
successively. Since we are conerned mostly with the de-
tecors’ POVMs, if the obtained POVMs after LSGST are
not positive, we will repeat gauge optimization by setting
the spam penalty factor.

The circuits for GST were done in parallel for all 5
qubits on both IBMQx2 and IBMQx4. The obtained de-
tectors” POVMs characterized by the above GST pro-
cedure are shown in Tables IV and III. They agree
with a few percentages to those using simple detec-
tor tomography earlier. The particular qubit 3 of IB-
MQx4 also displays the unusual behavior that its detec-

qubit | operator ag al as as
0 I® 0.5292[-0.0116] 0.0021 | 0.4707
o  |0.4708| 0.0116 |-0.0021 |-0.4707
1 @ [0.5491] 0.0046 | 0.0058 | 0.4594
o®  {0.4509-0.0046 |-0.0058 |-0.4594
5 @ [0.5183]0.0013 [-0.0063| 0.4816
o™  10.4817(-0.0013| 0.0063 |-0.4816
5 I©  0.4521]0.0064 | 0.0061 | 0.4520
o™ 10.5478|-0.0064 [-0.0061 |-0.4520
A @ [0.5006] 0.0082 [ 0.0079 | 0.4370
o™ 10.4994(-0.0082[-0.0079 |-0.4370

TABLE III: Single-qubit detector results by using
GST on IBM Q 5 Tenerife, measured for all five qubits
in parallel. However, if we perform the same GST only

on qubit 3, then we obtain
ams=9 = (0.5182,0.0036,0.0022, 0.4449) and
ams=1 = (0.4818, —0.0036, —0.0022, —0.4449).

tor a(()nzo) = 0.4521 is smaller than aénzl) = 0.5479 in

parallel measurement together with other qubits.

We then performed individual GST procedure
only for the qubit 3 (leaving all other qubits
idle), and obtain the detectors’ characterization

ams=0) = (0.5182,0.0036,0.0022, 0.4449) and a@("s=1 =
(0.4818,—0.0036, —0.0022, —0.4449), which is closer to
what was obtained by simple detector tomography on
the qubit 3 individually with about 4% difference.

VI. CONCLUSION AND DISCUSSION

In summary we performed the standard quantum de-
tector tomography on the two devices IBM Q 5 Tenerife
and IBM Q 5 Yorktown, assuming negligible errors in
the ground state preparation and the single-qubit gates
used to prepare the eigenstates of the three Pauli op-
erators. Our resultant POVM shows deviation from the
ideal projectors {]0)(0], |1)(1|} and can be used for a first-
order correction in experiments. We also found evidence
of crosstalk between qubits in one device. In particular,
discrepancy was seen between individual measurement
and parallel measurement. We believe adopting two-, or



qubit |operator| ag ai az as
0 O® 10.5074[-0.0307[-0.0298| 0.4847
o™ 10.4926| 0.0307 | 0.0298 |-0.4847
1 @ 10.5107]0.0078 [ 0.0061 | 0.4892
o™  10.4893[-0.0078 |-0.0061 |-0.4892
) o© 10.5131]0.0230 | 0.0229 | 0.4858
o®  10.4869(-0.0230[-0.0229 |-0.4858
5 o® 10.5137]0.0170 | 0.0136 | 0.4858
o®  10.4863(-0.0170|-0.0136 |-0.4858
A @ [0.5206]0.0171 | 0.0139 | 0.4789
o®  10.4794(-0.0171(-0.0139|-0.4789

TABLE IV: Single-qubit detector results by using
GST on IBM Q 5 Yorktown, measured for all five
qubits in parallel.

more-qubit detector models can improve the results fur-
ther compared with assuming independent single-qubit
detector model. To study that more knowledge about
hardware is required. Some peculiar features were ob-
served in the qubit 3 of IBM Q 5 Tenerife that need
further investigation.

The peculiar behavior of the qubit 3 from simple QDT
agrees with that obtained from using a more sophisti-
cated approach of the GST. This method, in principle, is
capable of deducing the initial state, gate operations, and
measurement POVMs in one go, by running various cir-
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cuit sequences. Our simple QDT relies on the assumption
that the detector error rate is higher than that of state
preparation and simple single-qubit gates.

We point out some directions for future work. Given
that the total number IV of qubits can be large, complete
detector tomography will not be efficient. One can con-
sider employing compressed sensing, as done in the state
tomography [20]. On the other hand, since the character-
ization of the triad—detector, state and process—forms
a loop, there should be further improvement (to the next
order in error) on detector characterization, and then on
the state and process tomography, an idea similar to that
in [19].
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Appendix A: Review of QST and QPT

Quantum State Tomography (QST). The idea of
quantum state tomography was proposed [3, 27] early
in the context of quantum optics using quasiprobability
distributions, and it has become a standard procedure
in measuring multiple qubits [4, 5]. To infer the best
estimate of an unknown state p, one can choose a (over-
)complete set of POVM elements {TI(V} and obtain the
data p,; = Tr( pH<i)) from measurements. The approach
was later extended to a ‘hedged’ version [28] and a mean
Bayesian version [29] that deal with certain drawbacks
of MLE [30, 31]. However, QST requires O(3") different
measurement bases for n qubits, but compressed sensing
can be used to ameliorate this [20].

Nevertheless, quantum state tomography remains an
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qubit |operator ao a1 as as
0 1 10.590(2) | -0.006(3) [-0.0063(4) | 0.3562(5)
M | 0.410(2) | 0.006(3) | 0.0063(4) |-0.3562(5)
. m®  [0.544(1) | 0.001(3) [0.0008(3) | 0.4059(5)
M | 0.456(1) | -0.001(3) [-0.0008(3)|-0.4059(5)
5 I 10.5427(5)[-0.0179(9) [-0.0173(5) | 0.4294(4)
M 10.4573(5) [ 0.0179(9) | 0.0173(5) |-0.4294(4)
5 1 10.5381(5)| -0.003(1) [-0.0030(4) | 0.4054(4)
™ 10.4619(5)| 0.003(1) | 0.0030(4) |-0.4054(4)
1 ®  [0.521(1) | -0.012(2) [-0.0122(4)] 0.3798(4)
M 1 0.479(1) | 0.012(2) |0.0122(4) |-0.3798(4)
(a) Individual measurement.
qubit |operator ao ai as as
0 ®  10.587(2) | -0.000(3) [-0.0001(4)] 0.3618(5)
I | 0.413(2) | 0.000(3) | 0.0001(4) |-0.3618(5)
. I®  10.5483(8)| 0.006(2) |0.0053(4) | 0.4116(4)
M 10.4517(8) | -0.006(2) [-0.0053(4) |-0.4116(4)
5 I 10.5329(5) |-0.0065(7) [-0.0064(5) | 0.4430(5)
M 10.4671(5) | 0.0065(7) | 0.0064(5) |-0.4430(5)
5 I 10.4535(8)| 0.002(1) [0.0023(4) | 0.4229(5)
M 10.5465(8) | -0.002(1) [-0.0023(4) |-0.4229(5)
4 m®  [0.522(1) | 0.000(2) [-0.0002(4)]0.3975(4)
oW | 0.478(1) | -0.000(2) | 0.0002(4) |-0.3975(4)

(b) Parallel measurement.

TABLE V: Single-qubit detector results for IBM Q 5
Tenerife, (a) measured individually for each physical
qubit leaving the other qubits idle; (b) measured for all
five qubits in parallel.

indispensable ingredient in characterizing small quantum
systems, and even a partial tomography (for some part
of a larger system) can also be useful when one is ver-
ifying some properties, such as the existence of entan-
glement, that may not require a complete global wave-
function. However, most of the description relies on the
assumption that almost perfect projective, von Neumann
measurements can be performed. Here, we will consider a
more realistic scenario where measurements are not nec-
essarily projective, as in e.g. For example, IBM quantum
computers whose measurement errors are not negligible,
of order 2% to 5%. (See manufactures’ released data for
devices’ properties, e.g. on IBM Q Experience or Rigetti
Computing, but some useful information was listed in the
Appendix of Ref. [32]).

Quantum Process Tomography (QPT). Related to
state tomography is the characterization of a quantum
process, which may arise from application of a gate or
evolution of a system that possibly couples to its envi-
ronment. In the later case, it is commonly considered
in the Markovian limit, and one arrives at the so-called
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Figure 3: The left panels explain the comparison scheme: the single-qubit detector on the left is obtained by
tracing out another qubit in a two-qubit detector while that on the right is from parallel measurement. The tables
contain the distances between these two: the entry in i-th row and j-th column is the distance between single-qubit
detector of qubit ¢ conditioned on qubit j and that for qubit i obtained from parallel measurement. Values between
0.01 and 0.1 are highlighted in blue and those above 0.1 in green. The right panels are schematic influence diagrams
where each arrow points from the qubit traced out to the qubit of interest and the thickness is proportional to the
distance. This comparison is shown for IBM Q 5 Tenerife (upper panels) and IBM Q 5 Yorktown (bottom panels)

respectively.

master equation for the system state p(t) [2],

W) Lt 0]+ £0p)

1

FH. o1+ (2LipL] —{LiLs,0}) . (A2)

where H is the system Hamiltonian, and L;’s are the
Lindblad operators, representing the effect of coupling
to environment. One can describe the change of p in
a discrete time step At as a quantum process, p(ty) —
p(to + At) = E(p). A general quantum process £ can
be described by a set of Kraus operators F;, so that

(A1)

its action on p is E(p) = >_; EjpE]T, where without loss
of generality we can assume £ to be trace preserving:
> j E;Ej = I, unless there is some loss or leakage. The
procedure to infer £ is called quantum process tomog-
raphy, which is natural to consider given QST [2, 6-
8]. Tt is possible to infer the quantum process because
of linearity and if one applies (unkonwn) £ to a com-
plete basis of a density matrix, e.g. |k){I| — E(|k){l]),
then by measuring the output the process can be deter-
mined [2]. The matrix element |k)(l| can be expressed
in terms of a linear combination of different states |¢)v)]
in, e.g. A = {/0/1(0/1], |+ /=) (+/ — |, | & i) (+i]} for
one qubit, and thus quantum process tomography uses
quantum state tomography as a sub-routine. Instead of

varying the input states over some ‘complete’ (or even
over-complete) set, such as 4; above, one can also use
a bi-partite maximally entangled state |¥) 45, where the
party A corresponds to the system that will be acted on
by the process €4, and the party B acts as an ancillary
role. Then state tomography on the resulting bi-partite
system (after A undergoing the process &) gives identical
determination of the process £ [33].

However, in currently available small-scale quantum
computers, both measurement and state preparation
have errors, and if there is some separation of rates in
these different types of errors, as in IBM and Rigetti
quantum computers, then we can give better individual
characterization.

Appendix B: Tables and figures

We list Tables V, VI containing processed experimen-
tal data. The error estimated for each parameter is
typically of the order O(10*), with the largest error
among them up to 0.003. We adopt the precision accord-
ing to the estimated errors. To further demonstrate the
crosstalk, we present the comparisons between the single-
qubit detector obtained by tracing out the other qubit in
a double-qubit detector and the single-qubit detector ob-
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Figure 4: The left panels explain the comparison scheme: the single-qubit detector on the left is obtained by
tracing out another qubit in a two-qubit detector while that on the right is from pairwise parallel measurement. The
tables contain the distances between these two: the entry in i-th row and j-th column is the distance between
single-qubit detector of qubit ¢ conditioned on qubit j and that for qubit ¢ obtained from pairwise parallel
measurement. Values between 0.01 and 0.1 are highlighted in blue and those above 0.1 in green. The right panels
are schematic influcence diagrams where each arrow points from the qubit traced out to the qubit of interest and the
thickness is proportional to the distance. This comparison is shown for IBM Q 5 Tenerife (upper panels) and IBM Q
5 Yorktown (bottom panels) respectively.

tained from parallel measurement (Fig. 3) and pairwise
parallel measurement (Fig. 4). We can see that by tracing
out one qubit in a pair, the double-qubit detector result
is reduced to the single-qubit result obtained from pair-
wise parallel measurement within statistical fluctuations
for most pairs. In Tenerife, one significant exception is
qubit 3’s detector under the influence of qubit 2’s de-
tector, and in Yorktown, qubit 1 detector is influenced
by that of qubit 2. This significant discrepancy could
be a consequence of basis-dependent influence, since in
the two-qubit detector the two qubits are treated inde-
pendently whereas in pairwise parallel measurement the
operations on them are always the same. We have seen
in Fig. 2 sign of influence on qubit 3 by qubit 2. If qubit
2 is the single source of crosstalk, one would expect that
the result for qubit 3 from parallel measurement or pair-
wise parallel measurement to agree with the result condi-
tioned on qubit 2 (operating only qubits 2 and 3). From
the upper panels of Figures 3 and 4, however, we can
see that this is not the case. In fact, the result for qubit
3 measured in parallel with all the other qubits differs
from any of the results obtained by tracing out the other
qubit from two-qubit detectors. This could imply basis-
dependent influence and/or nontrivial correlation when
several physical qubits are being operated on.

Appendix C: Scatter plots for detector parameters

In Figures 5 and 6, we present scattered plots for de-
tector parameters in IBM Q 5 Tenerife and in IBM Q 5
Yorktown for 100 different runs. These are detector char-
acterization in higher dimensional parameter space pro-
jected onto two dimensional cross sections. They show
signs of separation of the single-qubit detectors for dif-
ferent physical qubits in the parameter space. For some
cross sections, data from different detectors seem to clus-
ter to five groups (and their corresponding ‘inverse’), e.g.
panels 1 and 2 in Fig. 5a (i.e. those involving parameter
a). For others, the data seem to all clump together, e.g.
4th panel in Figures 5a and 5b (i.e. those involving ar,
and ary, as these have small values). The parameters of
the vectors are the signatures of the detectors. As they
are not made identical (e.g. such as atoms), they can dif-
fer slightly, despite the experimental effort to make them
as much identical to the ideal ones. These may be of in-
terest from the machine learning perspective to learn the
detectors, but this is beyond the scope of this work.
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(b) Parallel measurement.

Figure 5: Visualizing the single-qubit detector parameters for the five qubits in IBM Q 5 Tenerife obtained by (a)
individual measurement and (b) parallel measurement. The parameters ary . = a1,2,3. These are displayed for
both I and T1(),

Appendix D: QDT for IBM Q 16 Melbourne The results are presented in the form of Bloch spheres in
Fig. 7, done via data taken in parallel for all 14 qubits.

For completeness, we present the detector tomogra- As in the other machines, all detectors align pretty much

phy on all 14 qubits of the IBM Q 16 Melbourne device. along the vertical z-axis. We notice that the POVMs for
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Figure 6: Visualizing the single-qubit detector parameters for the five qubits in IBM Q 5 Yorktown obtained by (a)

individual measurement and (b) parallel measurement. The parameters ary . = a1,2,3. These are displayed for

both TIM and T1(9),

qubit 3 have arrows that are relatively shorter than all

the rest. Its detectors have the largest imperfection. We
note that one can repeat individual, pairwise, or triple
characterization we discussed in the main text, but we

do not present them here.
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Figure 7: Detector spheres for qubits 0 to 13 of IBM Q 16 Melbourne (from left to right, the rows corresponding to
qubits 0 to 3, 4 to 7, 8 to 11, 12 and 13, respectively).

Appendix E: Relaxation from GST

Here we illustrate the relaxation from GST. Since in
our GST implementation we have only used the indentity
gate G; = 1 in the germ set, we can examine whether the
identity operation, which is essentially letting the qubit
idle, can allow us to extract relaxation of a qubit in the
excited state |1). Since the circuits for the GST include
gate sequence such as (G7)™G,G,., we already have the
data for relaxation. Note that (G,)? = io, flips |0) to
the excited state |1) and the m identity gates represent
an idling of m units of gate duration, including gate and
buffer times. The sequence measures relaxation. Let us
use qubit 0 of ibmgx4 for illustration. Note that each
single-qubit gate duration, including the buffer time, is
70ns. The identity gate we obtained from GST before
imposing TP or CPTP condition, expressed in the Pauli
basis, is

0.998699 0.001783 —0.001243 0.002354
G — —0.047276 1.044539 —0.065670 0.083989
I= 1 0.030418 —0.068910 0.980521 —0.054349
0.049455 —0.093771 0.056438 0.904232

(E1)

Note that the element (Gr)q, s represents the amplitude
that o is mapped to o, (with og = 1), under the idling
operation that is supposed to be the indentity gate. This
allows us to extract a relaxation time 77 ~ 29.5us. In
Fig. 8a, we show the probability of obtaining |1) after
first applying an ideal o, gate to |0) and then applying m

(=120, 240, ..., etc.) such discrete identity gates. The
curve is an exponential decay fit to the discrete data.
Since the obtained idenity gate is not positive, using it
to simulate other process, such as 75 decoherence time,
we would obtain some probability that is negative, an
unphysical result (not shown).

Projecting the gate to be TP, then the identity gate
becomes

1. 0. 0. 0.
G — —0.047276 1.044539 —0.065670 0.083989
= 0.030418 —0.068910 0.980521 —0.054348
0.049455 —0.093771 0.056438 0.904232
(E2)

From simulating the relaxation using this identity gate,
we extract a relaxation time 77 ~ 43.2us; see Fig. 8b.
This value differs about 50% with one obtained earlier
without projecting the identity gate to be TP.

Projecting the gate to be CPTP, then the identity gate
becomes

1. 0. 0. 0.
G — 0. 0.9731358 —0.02961343 0.08478270
= 10. —0.03283288 0.9433932 —0.05294062
0. —0.08548849 0.05312586 0.9170383
(E3)

However, from this matrix, we cannot extract a mean-
ingful relaxation time; see Fig. 8c. Although it is out of
the scope of this paper, it will be interesting to see if one
can characterize the identity gate (which lets the qubit
idle) and obtain its correct CPTP description that can



qubit | operator ao a1 as as
0 ®  [0.545(2) [ -0.013(2) | -0.012(3) | 0.424(3)
™ ] 0.455(2) | 0.013(2) | 0.012(3) | -0.424(3)
. I®  10.530(2) | 0.003(1) [0.0028(5) | 0.4625(5)
M | 0.470(2) | -0.003(1) [-0.0028(5) |-0.4625(5)
5 @ 10.5159(2) 0.0007(3) | 0.0005(4) | 0.4788(4)
oW {0.4841(2)[-0.0007(3) |-0.0005(4) |-0.4788(4)
5 I®  10.534(1) | 0.003(1) [0.0029(4) | 0.4600(5)
oY | 0.466(1) | -0.003(1) |-0.0029(4) |-0.4600(5)
4 ©®  [0.5181(6)| 0.001(4) |0.0004(4) | 0.4417(4)
M 10.4819(6) | -0.001(4) [-0.0004(4) |-0.4417(4)
(a) Individual measurement.
qubit |operator ao ai as as
0 ®  [0.544(1) | 0.016(1) [0.0163(4) [ 0.4130(4)
M | 0.456(1) | -0.016(1) |-0.0163(4)|-0.4130(4)
. I®  10.5199(3)] 0.0115(3) | 0.0109(4) | 0.4703(4)
I 10.4801(3) [-0.0115(3) [-0.0109(4) |-0.4703(4)
9 I®  10.5181(2)] 0.0320(3) | 0.0318(3) | 0.4749(4)
I 10.4819(2) [-0.0320(3) |-0.0318(3) |-0.4749(4)
3 I®  [0.5304(4) | 0.0244(3) | 0.0250(3) | 0.4634(4)
M 10.4696(4) [-0.0244(3) |-0.0250(3) |-0.4634(4)
4 I©  10.5149(2)] 0.0121(1) | 0.0121(4) | 0.4594(4)
M 10.4851(2)[-0.0121(1) [-0.0121(4) |-0.4594(4)

(b) Parallel measurement.

TABLE VI: Single-qubit detector results for IBM Q 5

Yorktown, (a) measured individually for each physical

qubit leaving the other qubits idle; (b) measured for all
five qubits in parallel.

describe relaxation or even dephasing.
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Figure 8: Qubit relaxation: probability p of
measuring |1) vs. a time ¢, calculated using the identity
gate from (a) best GST estimate without imposing TP

nor CPTP condition; (b) projecting the identity gate
from (a) to be TP; (c) projecting the identity gate from
(a) to be CPTP.



