aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Resource-efficient analyzer of Bell and Greenberger-Horne-
Zeilinger states of multiphoton systems
Tao Li, Adam Miranowicz, Keyu Xia, and Franco Nori ([J[)
Phys. Rev. A 100, 052302 — Published 1 November 2019
DOI: 10.1103/PhysRevA.100.052302


http://dx.doi.org/10.1103/PhysRevA.100.052302

Resource-efficient analyzer of Bell and Greenberger-Horne-Zeilinger states of

multiphoton systems

Tao Li''?, Adam Miranowicz??, Keyu Xia*, and Franco Nori®?®

LSchool of Science, Nanjing University of Science and Technology, Nanjing 210094, China

2 Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan

3 Faculty of Physics, Adam Mickiewicz University, 61-614 Poznari, Poland
4College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
5 Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA

(Dated: September 26, 2019)

We propose a resource-efficient error-rejecting entangled-state analyzer for polarization-encoded
multiphoton systems. Our analyzer is based on two single-photon quantum-nondemolition detectors,
where each of them is implemented with a four-level emitter (e.g., a quantum dot) coupled to a one-
dimensional system (such as a micropillar cavity or a photonic nanocrystal waveguide). The analyzer
works in a passive way and can completely distinguish 2" Greenberger-Horne-Zeilinger (GHZ) states
of n photons without using any active operation or fast switching. The efficiency and fidelity of
the GHZ-state analysis can, in principle, be close to unity, when an ideal single-photon scattering
condition is fulfilled. For a non-ideal scattering, which typically reduces the fidelity of a GHZ-
state analysis, we introduce a passively error-rejecting circuit to enable a near-perfect fidelity at
the expense of a slight decrease of its efficiency. Furthermore, the protocol can be directly used

to perform a two-photon Bell-state analysis.

This passive, resource-efficient, and error-rejecting

protocol can, therefore, be useful for practical quantum networks.

I. INTRODUCTION

Quantum entanglement is a fascinating phenomenon
in quantum physics [1], which provides a promising plat-
form for various quantum technologies, including quan-
tum communication networks [2]. Sharing quantum en-
tanglement among distant network nodes is a prereq-
uisite for many practical applications [3-9]. There are
two main obstacles for practical applications of multipar-
tite quantum entanglement, i.e., entanglement genera-
tion over desired nodes and entanglement analysis within
a local node. Usually, it is difficult to distribute local en-
tanglement over spatially-separated nodes due to chan-
nel high losses [10]. An efficient method to overcome
channel noise uses quantum repeaters [11-14], which are
based on entanglement purification [15-18] and quan-
tum swapping [19-23]. By applying a proper entangle-
ment analysis and local operations, one can complete an
entanglement-purification protocol to distill some entan-
glement of a higher fidelity, and enlarge the distance of
an entangled channel through quantum swapping. In
addition to entanglement purification and entanglement
swapping, Bell-state analysis is crucial, e.g., for quantum
teleportation [8, 9], quantum secure direct communica-
tion [24-27], and quantum dense coding [28]. It plays
an essential role in various entanglement-based quantum
information processing protocols [7—28].

Multipartite entanglement, compared to two-particle
entanglement, is more powerful to reveal the nonlocality
of quantum physics [1, 28-30]. The Greenberger-Horne-
Zeilinger (GHZ) states enable more refined demon-
strations of quantum nonlocality, and can be used
to build more complex quantum networks involving
many nodes [31-34] and to perform, i.e., conference-
key agreement [35]. Furthermore, GHZ states enable

efficient methods for large-scale cluster-state genera-
tion for measurement-based quantum computing [36-
42], and also provide a useful basis for quantum metrol-
ogy [43, 44]. The generation and analysis of n-photon
GHZ entanglement are highly demanding. To date, vari-
ous efficient methods to generate the GHZ entanglement
have been developed for different physical systems [45—
53]. In photonic systems, an eight-photon GHZ state
and a three-photon high-dimensional GHZ state have
been experimentally demonstrated [54-57] by perform-
ing quantum fusion combined with post-selection oper-
ations and quantum interference [28, 58, 59]. By using
a time delay, a resource-efficient method was proposed
and demonstrated [60] for generating a six-photon GHZ
state. It is possible to generate photonic GHZ states
or other multipartite-entangled states in a deterministic
way based on nonlinear processes [61-65]. However, it is
difficult to distribute such a GHZ state efficiently to dis-
tant nodes, due to the inefficiency of the GHZ sources and
high losses during transmission [10, 66]. One possible so-
lution is to establish entanglement pairs between a center
node and distant nodes in parallel [11-14], and then to
perform quantum swapping together with a GHZ-state
analysis in the center node [67, 68].

In 1998, Pan and Zeilinger proposed, to our knowledge,
the first practical GHZ-state analysis with linear-optical
elements [69]. Their proposal can identify two of n-
photon GHZ states by post-selection operations. In prin-
ciple, one can constitute a nearly deterministic n-photon
GHZ-state analysis with linear optics, when massive an-
cillary photons are used [70]. However, according to
the Cansamiglia-Liitkenhaus no-go theorem [71]: Perfect
and deterministic Bell-state analysis on two polarization-
encoded qubits is impossible by using only linear-optical
elements (in addition to photodetectors) and auxiliary



modes in the vacuum state. By taking into account non-
linear processes, a complete GHZ-state analysis for pho-
tonic systems becomes possible [72, 73], and can achieve
perfect efficiency and fidelity for an ideal process. More-
over, a complete entangled-state analysis for hyperentan-
gled or redundantly encoded photon pairs is possible [74—
79]. The existing GHZ-state analyses typically require
active operations and/or fast switching, and always re-
quire more quantum resources when the photon number
of a given GHZ state increases. Furthermore, the fidelity
of the Bell-state or GHZ-state analyses significantly de-
pends on the nonlinearity strength of realistic nonlinear
processes [65]. A deviation from an ideal nonlinear pro-
cess leads to errors and, thus, reduces the fidelity. These
disadvantages significantly limit applications of a GHZ-
state analysis for practical quantum networks.

Here we propose a resource-efficient passive protocol of
a multiphoton GHZ-state analysis using only two single-
photon nondestructive (quantum nondemolition, QND)
detectors, three standard (destructive) single-photon de-
tectors, and some linear-optical elements. The GHZ-
state analysis circuit is universal, and can completely
distinguish 2" GHZ states with different photon numbers
n, according to the measurement results of single-photon
nondestructive and destructive detectors. The circuit
works in a passive way as the Pan-Zeilinger GHZ-state
analyzer does [69]. During the entangled-state analysis,
there are neither active operations on ancillary atoms
nor adaptive switching of photons [80]. The efficiency
of our GHZ-state analysis can, in principle, be equal to
one. Moreover, our protocol has no requisite for direct
Hong-Ou-Mandel interference which requires simultane-
ous operations on two individual photons. Thus, we can
significantly simplify the process of GHZ-state analysis
and, subsequently, the structure of multinode quantum
networks. Furthermore, the detrimental effect on the fi-
delity, introduced by a non-ideal scattering process, can
be eliminated passively at the expense of a decrease of
its efficiency. Therefore, our protocol is resource-efficient
and passive, and can be used to efficiently entangle dis-
tant nodes in complex quantum networks.

The paper is organized as follows: A quantum in-
terface between a single photon and a single quantum
dot (QD) is introduced briefly in Sec. II for performing
QND measurements on linearly-polarized photons. In
Sec. 111, a passive GHZ-state analysis circuit is presented.
In Sec. IV, a method to efficiently generate entanglement
among distant nodes is described. Subsequently, the per-
formance of the circuit, with state-of-the-art experimen-
tal parameters, is discussed in Sec. V. We conclude with
brief discussion and conclusions in Sec. VI and Sec. VII.
Moreover, Appendices A and B present the two simplest
examples of our method for the analysis of two-photon
Bell states and three-photon GHZ states.
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FIG. 1: Proposal of quantum-nondemolition detection based
on spin-dependent transitions for the negatively-charged ex-
citon X 7. (a) Relative-level structure and optical transition
of a singly-charged quantum dot (QD), (b) a QD coupled to
an optical micropillar cavity. Here, |1) (|])) denotes the elec-
tron spin state with J, equal to 1/2 (—1/2), and [1) ([T44))
denotes the trion state of X~ with J. equal to 3/2 (=3/2). A
photon in a right- (left-) circularly-polarized state |R) (|L))
can only couple to the transition |[1) < |T) ([4) + | T).
Therefore, the cross transitions are forbidden by the quantum-
optical selection rules.

II. SINGLE-PHOTON QND DETECTOR

An efficient interface, between a single photon and
a single emitter, constitutes a necessary building block
for various kinds of quantum tasks, especially for long-
distance or distributed quantum networks [2, 65]. To be-
gin with, we consider a process of single-photon scatter-
ing by a four-level emitter coupled to a one-dimensional
system, such as a QD coupled to a micropillar cavity
or a photonic nanocrystal waveguide [81-86]. A singly-
charged self-assembled In(Ga)As QD has four energy lev-
els [85-87]: two ground states of J, = +1/2, denoted as
[1) and |]), respectively; and two optically-excited trion
states X ~, consisting of two electrons and one hole, with
J, = £3/2, denoted as |[Tft) and |TLI}), respectively.
Here the quantization axis z is along the growth direction
of the QD and it is the same as the direction of the in-
put photon. Therefore, there are two circularly-polarized
dipole transmissions which are degenerated when the en-
vironment magnetic field is zero, as shown in Fig. 1. A
right-circularly polarized photon |R) and a left-circularly
polarized photon |L) can only couple to the transitions
1) ¢ [T and 1) ¢ [1L4), respectively.

The single-photon scattering process of a QD-cavity
unit is dependent on the state of the QD. There are two



individual cases: (1) If an input photon does not match
the circularly-polarized transition of the QD, the photon
excites the cavity mode that is orthogonal to the po-
larization transition of the QD, and it is reflected by a
practically empty cavity with a loss probability caused
by photon absorption and/or side leakage. (Hereafter,
for brevity, we refer to the side leakage only, but we also
mean other photon absorption losses.) However, (2) if
an input photon matches a given transition of the QD,
the photon interacts with the QD and is reflected by the
cavity that couples to the QD. Therefore, a j-circularly
polarized photon (where j =right or left) in the input
mode dlwin of frequency wj, after it is scattered by a
QD-cavity unit, evolves into an output mode &I,j’out as
follows [84-87]:

dl’j:inm’ 0’ §> - rodij,out|07 07 §>7

il 110,0,8) — 116l ]0,0,5), (1)

wj,out

where the state |0, 0, s) (|0, 0, 5)) denotes that both input
and output fields are in the vacuum state and the QD
is in the state |s) (]5)) that couples (does not couple) to
the input photon. Under the assumptions of both adia-
batic evolution of the cavity field and negligible excita-
tion of the QD, the state-dependent reflection amplitudes
ro and 71, corresponding, respectively, to the aforemen-
tioned cases (1) and (2), are given by [84-87]:

ro(w) = 1—- ,

(2)
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where the auxiliary function f is given by f = i(wx- —
w) + 3. Here wx- is the transmission frequency of the
QD and w, is the resonant frequency of the cavity. These
frequencies can be tuned to be equal to wx- = w,
for simplicity. Moreover, k describes a directional cou-
pling between the cavity modes and the input and output
modes; g denotes the coupling between the QD and cav-
ity; ks represents the cavity side-leakage rate, and ~ is
the trion decay rate. These formulas for the reflection
coefficients are valid in general for both weak and strong
couplings [88].

For ideal scattering in the strong-coupling regime with
ks < Kk and v, k < g (or in the high-cooperativity regime
with ks < K, 7 < g < K, and vk < ¢%) [88], an in-
put photon, that is resonant with a QD transition, is
deterministically reflected by the QD-cavity unit. A 7-
phase (zero-phase) shift is introduced to the hybrid sys-
tem comnsisting of a photon and the QD with ro = —1 for
g =0 (ry =1 for iy < g?), if the photon decouples (cou-
ples) to a transition of the QD. When the QD is initial-
ized to be in the superposition state |+) = (| 1) £]1))/V2,
an input photon in a linearly-polarized state evolves as
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FIG. 2: Schematics of the passive optical GHZ-state ana-

lyzer using single-photon QND detectors. Here PBS denotes
a polarizing beam splitter, which transmits photons with hor-
izontal polarization |H) and reflects those with vertical po-
larization |V). HWP represents a half-wave plate that per-
forms the Hadamard transformation on photons passing it,
e, [H) = (H) + V))/v/3 or [V) — () — V))/v/3. OND
detection completes a nondestructive measurement on sin-
gle photons, and D; (i = 1,2,3) is an ordinary (destructive)
single-photon detector.

follows:

[H)|£) = V)IF),
(V)I£) = [H)[F)- 3)

Equation (3) means that if a QD receives a single pho-
ton, then it receives the Pauli o, unitary. On the one
hand, if the QD does not receive any photon, then it does
not change its state. Thus, if we can identify whether
the QD receives the Pauli o, unitary, then it works as a
QND measurement for photons [85, 88-90]. Furthermore,
when the QD receives a photon, then it flips the polar-
ization state of the photon simultaneously [91, 92]. We
will show in Sec. V that the QND measurement can work
faithfully with a limited efficiency for practical scatter-
ing, i.e., when 71 (w) and ro(w) significantly deviate from
their ideal values +1.

ITI. PASSIVE GHZ-STATE ANALYZER
A. The setup

So far, we have described a QND detection of linearly-
polarized single photons. In this section, we describe how
to incorporate a QND detector into the setup for the
passive optical GHZ-state analysis, as shown in Fig. 2.
The setup is composed of two half-wave plates (HWPs),
two polarizing beam splitters (PBSs), two single-photon
QND detectors in the state |+)1|+)2, and several stan-
dard (destructive) single-photon detectors. The HWP is



tuned to perform the Hadamard transformation on pho-
tons passing it, i.e., |H) — (H) + V))/vV2 or |V) —
(J[H) — V))/v/2. The PBS transmits linearly-polarized
photons in the state |H) and reflects photons in the state
|[V). The single-photon QND and standard detectors
complete the photon on-off measurements in nondestruc-
tive and destructive ways, respectively.

B. GHZ states

For m-photon polarization-encoded GHZ states, the
simplest two can be expressed as [28]:

|GHZgo...0) = ([H)®™ +[V)e"),

1
V2
1
GHZ = — (|[H)®"
| 00...1> \/i (| >
where the last (nth) bit in the subscript of |GHZqo.. )
refers to the phase (). If a photon is determined in the
state |[H) or |V), the remaining (n — 1) photons collapse
into the same polarization. To constitute a complete ba-
sis for the n-photon system, one should take the remain-
ing (2" — 2) orthogonal basis states into consideration,

= V)=, (4)

n—1
L) = ®o§£ ® o2 |GHZo...0)
j=1

= w;’:L ® O’;J; |GHZqo...0), (5)

Jj=1

|GHZ;,4,...i

which can be generated from |GHZg. o) by performing
a single-photon rotation on each photon, and

®J“:a ®U;22® ®U’"

Here, the superscripts i1, i2, ..., i, € {0,1}, the Pauli
operators o, = [H);(V|+ |V);(H| perform a polariza-
tion flip on the jth photon with j = 1,2,...,n; oy, =
_Z(‘H>n<v| - |V>n<HDv Oz, = |H>n<H| - |V>n<V| per-
forms a phase flip on the nth photon; and the relative
phase between the two components of Eq. (5) is deter-
mined by i,; i.e., i, = 0 (i,, = 1) leads to a relative phase
of 0 ().

C. State transformations for the GHZ-state
analysis

Now we focus on completely distinguishing the afore-
mentioned 2" GHZ states, which is of vital importance
for multiuser quantum networks [67-69]. According to
stabilizer theory [93-96], the n-photon state |GHZgg.. o),
given in Eq. (4), is a stabilizer state that can be uniquely
defined by n stabilizing operators Sg,

_ Ogq ®O’£2®"'®O’$n’ kzl,
S = { Oy ® 02y, k=23 ..n O

Here the operators o,, perform a phase flip on the kth
photon with k£ = 1,2, ..., and n; there is an implicit iden-
tity 7®("=2) acting on the remaining photons that is sup-
pressed in Si>9 for simplicity.

The set of operators S1, S2, ..., S, forms a complete
set of commuting observables; the 2" GHZ states are
common eigenvectors of all Si’s with different eigenval-
ues [94], i.e., |GHZgo.. o) gives an eigenvalue +1 for all
Si’s. Therefore, we can measure the stabilizing opera-
tors Si’s to completely discriminate 2" GHZ states of an
n-photon system.

Here the n-photon observable S; corresponds to the
measurement of the relative phase between the two terms
in a GHZ state and can be nondestructively measured
by using two QND detectors introduced in Sec. II; Si>2
corresponds to parity detection on the pair of (k — 1)th
and kth photons and is measured with direct polarization
measurements on each photon scattered by the QND de-
tectors. To explain in detail our GHZ-state analysis, we
use the ket notation instead of the stabilizer codes, since
the stabilizer states change during the analysis.

For clarity, we divide this GHZ-state analysis into sev-
eral steps. Let us suppose that there is a spatial sepa-
ration between each two optical elements such that all
photons can pass a given optical element before entering
another element. Note this requirement is not necessary,
and we will demonstrate, in the next section, that our
proposal also works when each photon is passing one by
one from the input port to the output port and is mea-
sured by a single-photon destructive detector.

After passing n photons though the HWP, the
Hadamard transformation is performed on each photon,
and the 2" GHZ states are changed into superposition
states of 2771 (out of 2" possible) product states, each
with an even (odd) number of V-polarized photons for
|GHZ;,4y..4,,_10) (|IGHZiy4y. 4,_,1)) - For instance, the
states |GHZZ‘1¢2___Z'”710> and ‘GHZiliQ...in,711>7 after the
Hadamard transformation of each photon, evolve into

mh

7)) = o= JCW\G“’
on—1 o
L‘H
[@1) = W Z VEmTGEIT), ()

respectively. Here [z] is the integer value function that
rounds the number x down to the nearest integer; C)* =

ﬁ is the binomial coefficient; the state |Gy """ )
is an n-photon superposition state that contains m V-
polarized photons and (n — m) H-polarized photons as

follows:

Tlyeeln—1\ Z

n 11,4..,1716{0,1}

5m,m/ ® leJJ |H>®n
j=1
(8)

where m’ = > I; and &y, is the Kronecker delta.
The phase of each component is determined by the op-

[



erator Z = ®;L;11 02., which is simplified to an identity

operator when analyzing |GHZqo.. o) and |GHZgg...1).

D. Measurements for the GHZ-state analysis

As follows from the above analysis, the relative phase
of |GHZ;,i,. i), which is determined by i,,, can be read
out by measuring the number of V-polarized photons in
the even-odd basis after applying the Hadamard transfor-
mation to |GHZ;,;,. i, ). This measurement can be com-
pleted by a setup consisting of a PBS and two QD-cavity
units (referred to as QND detectors). As demonstrated
in Sec. II, a linearly-polarized photon, after being scat-
tered by a QND detector, changes its polarization state
into an orthogonal state and flips the state of the de-
tector QD. After all photons are either transmitted or
reflected by the first PBS, and scattered by the QND
detectors, the hybrid states of the two QDs and the n
photons, corresponding to the states |GHZ;,;,..i,,_,0) and
|GHZ;,4,...4,_,1), evolve, respectively, into

75) = @) o, [¥1)[+)1] )2,

[25) = @) 0, [D1)[—)1] )2, 9)
j=1

if n is even, and into

5) = () oa, [¥1)|+)1]- )2,
j=1

23) = ) 0w, |P1)[-)1[+)2, (10)

if n is odd. The combined states of the two QDs in QND
detectors are different, and can be used to determinis-
tically distinguish |#;) from |@;) for both cases of even
and odd n.

To make this point clearer, we continue our analysis to
measure the parity of each photon pair [k — 1, k] for the
case of an arbitrary even n. Now, photons in different po-
larization states combine again at the first PBS, which is
followed by an HWP. The HWP completes the Hadamard
transformation on each photon passing through it and
evolves the photonic component of the hybrid states into
its original GHZ state, up to a phase difference w. For
the states |¥§) and |95), given in Eq. (9), they evolve
into

W3) = £|GHZiiy. i, y0)|+)1]+)2,
|®3) = £|GHZjyiy. i, 11)|—)1]—)2- (11)

Here |GHZ;,i,. i,_,0) and |GHZ; i, ;. _,1) are the n-
photon GHZ states given in Eq. (5); and their sign is
determined by the summation of the first (n — 1) sub-

. . 1.,
scripts with m” = Z;‘Zl ij, i.e., “4+” for even m” and

“~” for odd m”. Subsequently, a photon-polarization
measurement setup, consisting of a PBS and two destruc-
tive single-photon detectors D; and Ds, is used to de-
tect the polarization of each photon and then divides the
measurement results according to the number of clicks
of each detector, i.e., when n H-polarized (V-polarized)
photons are detected, the n input photons are projected
into either |GHZo. o) or |GHZgo...1), which can be dis-
tinguished by detecting the state of the QD in each QND
detector.

It is seen that there is neither active feedback nor fast
switching operations involved in the entangled-state anal-
ysis. The setup works in a completely passive way, which
is similar to that based on linear-optical elements and
single-photon detectors. When n = 2, the GHZ-state
analysis setup enables a passive Bell-state analysis for
two-photon systems, which are typically denoted as

1
) = 5 (M) £[V)V)).
W) = — (V) £|V)|H)). (12)

V2

Detailed analyses for n = 2 and 3 are presented in Ap-
pendices A and B, respectively.

IV. EFFICIENT DISTANT MULTIPARTITE
ENTANGLEMENT GENERATION FOR
QUANTUM NETWORKS

In quantum multinode networks, multipartite entan-
glement among many nodes is useful for practical quan-
tum communication or distributed quantum computa-
tion [28, 29]. A direct method for sharing the GHZ
entanglement among several distant nodes can be en-
abled by a faithful entanglement distribution after lo-
cally generating the GHZ entanglement. However, the
efficiency of such a multipartite entanglement distribu-
tion significantly decreases with the increasing photon
number involved in the GHZ entanglement [10]. Fur-
thermore, the experimental methods for generating mul-
tiphoton GHZ entanglement are still inefficient due to the
limited experimental technologies. A significantly more
efficient method for distant GHZ state generation can be
achieved by entanglement swapping. In the following,
we describe a scheme for the GHZ entanglement genera-
tion among three stationary qubits, and these stationary
qubits can be atomic ensembles, nitrogen-vacancy (NV)
centers, QDs, and other systems [97].

Suppose there are three communicating nodes in a
quantum network, say, Alice, Bob, and Charlie. An an-
cillary node (Eve) shares hybrid entanglement pairs with
Alice, Bob, and Charlie, respectively, as follows [11-18]:

b
V2

where the subscript ¢ (with ¢ = a,b,c) represents the
photons owned by Eve, and it is entangled with the jth

|92 i ()51 H )i + 14)51V)i) (13)
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Schematics of nonlocal GHZ-state generation for
multiparty quantum networks. Here a red circle with an arrow
represents a stationary qubit, while a yellow circle represents
a photon. Each wave line represents entanglement between
the particles it connects.

QD (with j = A, B,C), which belongs to Alice, Bob,
and Charlie, respectively. The state |®)aq|®) Bo|0)ce of
the three hybrid entanglement pairs Aa, Bb, and Cc can
be rewritten as

‘¢0> = 2\[2|GHZ7,jk>ABC|GHZ'ij>abc (14)
0,4,k

Here the subscripts 4, j, k € {0, 1}, and the polarization-
encoded GHZ states |GHZ; ) qpc are defined in Eq. (5) for
n = 3. The eight distant stationary GHZ states among
Alice, Bob, and Charlie are of the following forms

|GHZoox) A 7[\T>A|T>B|¢>c+( D) alh)sld)e],
|\GHZ101) ABC = 7[H>A|T>B|T>C+( DM all) slde],
|GHZo1k>ABc=EUT>A|$>B|T>C+(—1)k|¢>A|T>B|$>C],
|\GHZ111) ABC = ! [DalD st e+EDAN a5l e],

Sl

(15)

with k € {0,1}. These states constitute a complete basis
for three-QD systems.

When the ancillary node Eve performs a quantum
swapping operation with a three-photon polarization-
encoded GHZ-state analysis, the states of the three sta-
tionary qubits, which belong to Alice, Bob, and Charlie,
are projected into a deterministic GHZ state according
to the analysis result of Eve. That is, we can, in princi-
ple, generate multipartite GHZ entanglement efficiently
among distant stationary qubits with a perfect efficiency.

In Sec. III, we have described a particular pattern of
the GHZ-state analysis with a preset time delay between
each two optical elements. Now we demonstrate that the
GHZ-state analysis also works for a time-delay free pat-
tern, by performing the aforementioned quantum swap-
ping as an example. Suppose both QDs in the QND de-
tectors are initialized in the state |[+) = (|1) + |1))/V2,
and all the linear-optical elements perform the same op-
eration as that described in Sec. III. The three photons

from hybrid entanglement pairs Aa, Bb, and Cc, sub-
sequently pass though the analysis setup independently,
rather than transmitting them in a block pattern. Af-
ter photon a passing through the setup and being routed
into two spatial modes that are ended with single-photon
detectors, the hybrid system, consisting of three entan-
glement pairs and two QDs in the QND detectors, evolves
into

61) = 5 [Ia() 4l 0102 +1-)al-hl+))

~V)a(lH)al+)1l=)2 — |—>A|—>1|+>2)}
®|}) Bv|d) e (16)

For clarity, we assume that the standard (destructive)
single-photon detectors work nondestructively and a pho-
ton survives after a measurement on it, such that we can
directly specify the state of the distant stationary qubits
according to the state of the photon a. Subsequently, the
photon b is input into the setup when the photon a has
passed through the setup and lead to a click of either
single-photon destructive detector Dy or Ds. The hybrid
system evolves into

62) = 5[ (90 asl+)1 402
H®7) sl 1l =)2) [ H)a H)o = (19F) anl+)1+)2
HE ) anl1l=)2) [ H)al Vs = (185 anl+)1l+)2
[T ) apl )1l =)2) [V)alH)y + (197) apl+)1]+)2
07 AN 1)) Vel V] @ d)ee,  (17)

where the four Bell states of the two QDs, belonging to
Alice and Bob, are as follows:
[®) ap = 7(|T>A|T>B = D) ald)s),
\f
— + , 18
ﬂ(|T>A|¢>B [ alt)s) (18)

Now, if Eve terminates the input of photon ¢ and detects
the two QDs of the QND detectors, the two distant QDs
A and B are collapsed to one of the Bell states given in
Eq. (18), according to the results of the QND detectors
and the measurement on photons ab. That is, a deter-
ministic quantum swapping operation can be completed
between two hybrid entanglement pairs Aa and Bb by
using the passive entanglement analysis setup.

If Eve inputs the photon c¢ into the analysis setup
rather than terminating it with a measurement on the
two QDs of the QND detectors, the state |¢2) of the hy-
brid system evolves into the final state

1
|¢3) = Tﬁ%:(_l>

+|GHZ;j1) aBc|GHZij0) abe|—)1|+)2 |, (19)

[UE) ap =

i+j|:|GHZijO>ABC|GHZij1>abc|+>1|_>2



with the subscripts ¢,j € {0,1}. Three distant QDs A,
B, and C are projected into a predetermined GHZ state,
according to the results of the QND detectors and the
single-photon destructive detectors, when Eve applies a
polarization-encoded GHZ-state analysis on three pho-
tons of the hybrid entangled pairs. Therefore, in princi-
ple, the passive GHZ-state analysis works faithfully for
both cases, i.e., the time-delay and time-delay-free cases,
when an ideal single-photon QND detector is available.

V. PERFORMANCE OF THE PASSIVE
GHZ-STATE ANALYSER

A. Realistic photon scattering

A core element of the passive GHZ-state analysis is the
QND detector for single photons. Here a unit consisting
of a QD and a micropillar cavity enables such QND de-
tection. In principle, the QND detector can perfectly
distinguish two orthogonal polarization states |H) and
|V} of a single photon with perfect efficiency. However,
there are always some imperfections that introduce a de-
viation from ideal single-photon scattering [82—-86], such
as a finite single-photon bandwidth, a finite coupling g
between a QD and a cavity, and the nondirectional cav-
ity side leakage ks, etc. This leads to realistic (nonideal)
scattering for a linearly-polarized photon. Thus, the hy-
brid system consisting of a linearly-polarized single pho-
ton and a QD, evolves as follows:

H)2) - V;*N[m o) H)JE) + (r — ro)[V)[F)],
VI) = ——[(r1 — ro) H)[F) + (1 + ) V)], (20)

VCn

where the parameters r and rg are frequency-dependent
reflection coefficients given in Eq. (2); Oy = 2(|r1|* +
|70|?) is the normalized coefficient. After scattering, the
state of the photon and the QD evolves in two ways in-
dependent of its initial state:

(1) It is flipped simultaneously with a probability p; =
|11 — 70|?/4, which is the desired output and it can be
simplified to perform an ideal QND detection, as given
in Eq. (3), when ideal scattering with y = 1 and ro = —1
is achieved.

(2) The state of the photon and the QD are unchanged
with the probability ps = |r1 + r9|?/4, which leads to
errors and results in an unfaithful QND detection for
single photons.

Fortunately, this nonideal scattering does not affect
the fidelity of the passive GHZ-state analysis, since the
undesired scattering component is filtered out automati-
cally by the PBS and only leads to an inconclusive result
rather than infidelity result by a click of the single-photon
destructive detector Ds.
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FIG. 4: Average efficiencies (a) 15 of the two-photon Bell-
state analyzer and (b) n3 of the three-photon GHZ-state
analyzer versus the coupling strength g/ks and the direc-
tional coupling rate of a cavity k/ks in units of the cav-
ity side-leakage rate ks. These averages are calculated over
all detunings of input photons, with the Gaussian spectrum
given by Eq. (23) and o, = . The decay parameters are
(ks,v) = (30 neV,0.3 peV).

B. Realistic analyzer efficiency

For ideal scattering, the analyzer efficiency approaches
unity. Here, we evaluate the performance of a realis-
tic analyzer for the general reflection amplitudes given
in Eq. (2). Nonideal scattering in practical QND detec-
tion does not reduce the fidelity of an n-photon GHZ
analysis. However, this realistic scattering decreases the
efficiency 7;,, which is defined as the probability that all
photons are detected by a single-photon destructive de-
tector, either Dy or Dy. For monochromatic photons of
a frequency w, the efficiency 7} is defined as

iy, = 1gm' (@), (21)
where 79 is the efficiency of a single-photon detector D;
and 7 (w) is the error-free efficiency of a practical scat-
tering with

(22)

The average efficiencies of the passive two-photon Bell-
state and the three-photon GHZ-state analyzers are
shown in Fig. 4 with decay parameters (ks,v) =
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FIG. 5:  Average fidelities F},, F,/, and efficiency 1 ver-

sus photon number n. Here F,, = F,(T> = 10.9 ns) and
F]! = F,(T> = 2 pus). These averages are calculated over
all detunings of input photons, with the Gaussian spectrum
given by Eq. (23) and 0., = 2v. The decay parameters are
(ks,v) = (30 neV,0.3 peV), g = ks, and K = 9ks with
C = 10. Meanwhile, the line of the fidelities at 1/2 is shown
for reference.

(30 ©neV,0.3 peV), which are adopted according to the
QDs that are embedded in electrically controlled cavities
around 4 K [98, 99]. We plotted the average efficien-
cies n5 and nj versus the coupling strength g/ks and the
directional coupling rate of the cavity x/ks for a given
Gaussian single-photon pulse defined by the spectrum

1 w—w.\’
c

exp |— , 23
VT, P [ ( Ow ) ‘| (23)
where w, is the center frequency and o,, denotes the pulse
bandwidth with w, = wx- and o, = 7. Here the average
efficiencies are calculated in the frequency domain. The
reflection coefficients appear as a frequency-dependent

redistribution function that is proportional to |ri(w) —
ro(w)|?™ as follows [100, 101]:

flw) =

ri(w) = ro(w) [

5 (24)

m = [ dosm

In general, the average efficiencies of the passive two-
photon Bell-state and three-photon GHZ-state analyzers
increase when the coupling g/ks between a QD and a
cavity is increased for a given directional coupling rate
k/ks. This is because the cooperativity

2 2

c=2 -9 (25)

Y(k + Ks)’

which is defined as an essential parameter quantifying
the loss of an atom-cavity system, increases when we in-
crease g/ks and keep other parameters unchanged. For a

given g/ks, the average efficiencies of these two analyzers
first increase and then decrease when k/k; is increased,
as shown in Fig. 4. This is mainly due to the competi-
tion between an increased ratio of k/ks and a decreased
cooperativity C. Therefore, one can maximize the effi-
ciencies by using cavities with a mediate x, which can
be achieved, e.g., by decreasing the number of the Bragg
reflector of a micropillar cavity. For simplicity, we set
the efficiency of a single-photon destructive detector as

o = 1.
For the two-photon Bell-state analyzer, its average ef-
ficiency 75 = 0.304 for an experimental demonstrated

coupling g/ks = 1 and the directional coupling rate of a
cavity, k/ks = 3, which corresponds to a cooperativity
C = 25. For the three-photon GHZ-state analyzer, one
can obtain the average efliciency n5 ~ 0.168 for the same
systematic parameters. If x is increased to k/ks = 19
with a cooperativity C' = 5 [98], the average efficiencies
are increased to 75 ~ 0.664 and 713 ~ 0.541, respectively.
Note that the adiabatic condition is still satisfied in this
case, since the photon bandwidth o,, = v is much smaller
than 2¢%/kr = 2C~. The protocol works with a higher
efficiency for analyzing photons with a narrower band-
width. However, this, in-turn, usually increases the time
period of the scattering process, and, thus, decreases the
analyzer fidelity limited by QD decoherence [86, 88]. The
fidelity of our analyzer is given by

Fo(Ty) = = [1 + exp(—ta/T5)], (26)

N

which is determined by the process for distinguishing
|GHZi,i,..0) from [GHZ 1) (measuring X-type sta-
bilizer Sy), since the process for measuring Z-type sta-
bilizers is completed directly by single-photon detectors
and is independent of QD decoherence. Here, the time
required to complete the n-photon GHZ-state analysis is
given by t, =~ ntg. In our numerical calculations shown
in Fig. 5 and Table I, we assumed ¢ty ~ 1.10 ns for per-
forming a single-photon scattering process with a band-
width o, = 27. Moreover, T5 is the coherence time of
the electron spin in a QD.

Typically, the coherence time 75 is in the 1-10 nanosec-
onds range [87, 102, 103]. Taking an experimental acces-
sible value of T = 10.9 ns [102], we obtain the corre-
sponding analyzer fidelity F), = F,,(T> = 10.9 ns) ver-
sus the photon number n for the parameters (g, ks,7y) =
(30 peV,30 pev,0.3 peV) and k/ks = 9 with C = 10,
as shown by the green dash-dot curve in Fig. 5 and listed
Table I. For a four-photon system, the analyser fidelity
can reach Fy ~ 0.70. For an eight-photon system, F} is
still larger than 0.5.

The fidelity of our GHZ-state analyzer is influenced by
the coherence time T5. Note that the coherence time
Ty can be optimized and improved to be longer than
2 ps, when the high-degree nuclear-spin bath polarization
or spin-echo refocusing methods are applied [87, 103].
When 75 = 2 ps, we can achieve the fidelity F)/ =
Fo(To = 2 us) > 0.988 for n < 20 (see the red solid



Fl F// ns
0.826 0.9989 0.5893

F/ F// 773
0.5981 0.9967 0.2047
0.7564 0.9984 0.4524 0.5583 0.9962 0.1572
0.6961 0.9978 0.3473 0.5235 0.9956 0.1207
0.6437 0.9973 0.2666|20 0.3141 0.9886 0.0039

[S IOV N
o o3

TABLE I: Average fidelities F),, F)/, and efficiency 7}, versus
photon number n for the parameters assumed in Fig. 5. Here
F), = F,,(T> = 10.9 ns) and F}, = F,(T> = 2 pus).

curve in Fig. 5) assuming all the other parameters to be
the same as for F, in this figure.

In contrast to the fidelity, the average efficiency 7n; is
independent of T5, because the effective output compo-
nent, which is involved in a scattering process, is inde-
pendent of the state of the QD, as shown in Eq. (20).
In general, 1} decreases when the photon number n in-
creases (see the blue dashed curve in Fig. 5 and Table I).
For a twenty-photon system, the average efficiency of our
protocol is equal to 13, = 0.0039, which is many orders
higher than the efficiency given by 1/2(*=1) = 2719 for
the standard analyzers consisting of linear-optical ele-
ments and single-photon detectors [69].

VI. DISCUSSION

The linear-optical implementation of the GHZ-
state analyzer passively distinguishes two GHZ states
|GHZo...0) and |GHZqo...1) from the remaining (2" — 2)
GHZ states, and enables a complete analysis for 2" GHZ
states when many ancillary photons and detectors are
used [70]. This kind of GHZ analysis is much like a
GHZ-state generation that is constructed by linear op-
tics and post-selection [28, 58, 59]. Currently, the GHZ
state of a ten-photon system has been demonstrated by
using linear optics [104, 105]. The existing GHZ-state an-
alyzers, which are based on optical nonlinearities, have
been proposed by cascading two-photon parity QND de-
tectors [17, 106]. Such an analyzer can, in principle, dis-
tinguish 2" GHZ states of n-photon system nondestruc-
tively, when it is assisted by fast switching and/or active
operations during the entangled-state analysis. These
operations dramatically increase its experimental com-
plexity and consume more quantum resources. Further-
more, such implementations always require a strong op-
tical nonlinearity to keep the analysis faithful.

Our scheme of a passive GHZ-state analysis for n
polarization-encoded photons uses only linear-optical ele-
ments, and single-photon destructive and nondestructive
detectors. This analyzer can, in principle, determinis-
tically distinguish among 2" GHZ states for n-photon
systems, and hence it combines the advantages of those
based on linear optics with those based on optical non-
linearities. Moreover, our scheme eliminates disadvan-
tages of such standard analyzers by designing an error-

tolerant QND detection for single photons, and can be
useful for efficient implementations of all-photonic quan-
tum repeaters, even including those without quantum
memory [107, 108].

The proposed QND detector consists of a four-level
emitter coupled to a microcavity or waveguide [81-86],
such as a negatively charged QD coupled to a micropillar
cavity. This analyzer is also compatible with the propos-
als of realistic QND detection [85, 88-90] for single pho-
tons; however, as we have shown, it is more efficient than
the standard ones for several reasons: Our QND detector
can work in a passive way and can faithfully distinguish
photon numbers subsequently passing through it in an
even-odd basis. Furthermore, it is error-tolerant, when
it is used to detect linearly-polarized photons.

Our description of scattering imperfections include: fi-
nite photon-pulse bandwidth o, cavity loss k4, and fi-
nite coupling g. This realistic scattering process leads
to a hybrid entangled state of a photon and a QD, con-
sisting of ideal scattering component and the error scat-
tering component. When the two QDs couple equally
to their respective micropillar cavities, the error compo-
nent is passively filtered out by a PBS and then is her-
alded by a click of a single-photon destructive detector,
leading to an inconclusive result rather than an unfaith-
ful GHZ-state analysis. In practice, the two QDs might
be different due to inhomogeneous broadening and could
couple differently to their respective cavities [87]. This
would lead to different scattering processes, which result
in different hybrid entangled states of a photon and a
QD, when a photon is reflected by different QND de-
tectors. This effect, in principle, can be suppressed by
inserting a passive modulator before the QND detector
with a larger ideal scattering component and by tuning
it to match that of the other QND detector [109].

Furthermore, a QD is a candidate for quantum in-
formation processing due to its very good characteris-
tics concerning its optical initialization, single-qubit ma-
nipulation, and readout, based on well-developed semi-
conductor technologies [97, 103, 110-112]. The coher-
ence time of a QD electron spin can be several mi-
croseconds at temperatures around 4 K [87, 103], while
a single-photon scattering is accomplished on nanosec-
ond timescales. Moreover, the present protocol of en-
tanglement analysis can be generalized to other systems
with a required level structure [113, 114]. Recently, a
five-photon polarization-encoded cluster state has been
demonstrated with a confined dark exciton in a QD [113]
and an all-photonic quantum repeater protocol was de-
scribed with a similar solid-state four-level emitter [114].

VII. CONCLUSIONS

In summary, we proposed a resource-efficient analyzer
of Bell and Greenberger-Horne-Zeilinger states of mul-
tiphoton systems. Quantum-nondemolition detection is
implemented in our analyzer with two four-level emitters



(e.g., quantum dots), each coupled to a one-dimensional
system (such as optical micropillar cavity or a photonic
nanocrystal waveguide). This QND measures the num-
ber of photons passing through it in the even-odd basis
and constitutes a faithful element for the GHZ-state an-
alyzer by introducing a passively error-filtering structure
with linear optics.

The main idea of our proposal can be simply explained
in terms of stabilizers for GHZ states defined in Eq. (6).
Specifically, we proposed to measure the parity of the
X-type stabilizer [k = 1 in Eq. (6)] with two quantum
dots and to measure the parity of the Z-type stabilizers
[k = 2,3,...,n in Eq. (6)] with direct polarization mea-
surements on each photon scattered by the QDs. There
are neither active operations nor adaptive switching in
the proposed method, since the faithful GHZ-state anal-
ysis for multiple photon systems works efficiently by pas-
sively arranging two QND detectors, single-photon de-
structive detectors, and linear-optical elements. Further-
more, the described method is universal, as it enables
two-photon Bell-state and multiphoton GHZ-state anal-
yses. All these distinct characteristics make the proposed
passive analyzers simple and resource-efficient for long-
distance multinode quantum communication and quan-
tum networks.
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Appendix A: Analyzer of two-photon
polarization-encoded Bell states

Here we give a pedagogical example of our method
limited to the polarization-encoded Bell-state analysis.

The passive analyzer, in principle, enables a deter-
ministic analysis of two-photon polarization-encoded Bell
states. For any two-photon system, the four Bell states
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can be described as follows,

1
) = (DI £ VIV),
W) = — (M) £VIE). (A1)

V2

Photon pairs in these states, after passing through the
analyzer, lead to four different results that are heralded
by single-photon destructive and QND detectors.

|HH)/|VV) [HV)/IVH) |++) |=-)

l¢7) v v

l¢7) v v

™) v v

) Vv v
TABLE II: Complete two-photon Bell-state analy-
sis. Here |ij) represents the measurement result of
the two single-photon detectors (QDs) with [ij) =

{[HH),[VV),[HV),[VH)} (lij) = {| + +),| = =)}). We use
the standard notation for the Bell states |¢*) and |[¢F), as
given in Eq. (Al).

Suppose now that the QD in each QND detector is
initialized to the state |+). The HWP introduces a
Hadamard transformation on photons passing it, i.e.,
) — (H) + V)V, or V) — (H) — V))/v2, and
evolves the states |¢1), [¢7), [T), and |1p~) into [11) =
|¢+>, |1h2) = |¢+>> [3) = [¢7), and |[ps) = —[¢)7), re-
spectively. The original states |¢T) and |[¢pT), with a
relative phase of zero, are changed into states consisting
of even numbers of V-polarized photons, i.e., |H)|H) and
[V}|V). While the original states |[¢~) and |[¢)~) with a
relative phase of 7 are changed into states consisting of
odd numbers of V-polarized photons, i.e., |H)|V) and
V) H).

Subsequently, photons in the V-polarized (H-
polarized) states are reflected (transmitted) by the PBS,
and are scattered by the detector QND; (QND3). Pho-
ton pairs in the states |11), |12), |13), and |i4), which
are combined with two QDs, are changed into the states

1) = l¢D)H)l+)2,
o) = [)=)l-)2,
[W5) = —lo7)+)1l+)e,
W) = [} =)l-)2 (A2)

The original Bell states with relative phases zero and 7
can be distinguished from each other, according to the
states of the QDs.

To read out the original polarization information of the
photon pair, the HWP between two PBSs introduces a
Hadamard transformation on photons passing through it



ct C2 C3 C4 |+-) |-+
|GHZooo) v/ v
|GHZo01) v/ v
|GHZ100) v v
|GHZ101) v v
|GHZo10) vi v
|GHZo11) v v
|GHZ110) v v
|GHZ111) v Vv
TABLE III: Complete three-photon GHZ-state analysis.

Here the measurement results C1, C2, C3, and C4 of the
two single-photon detectors D; and Ds correspond to ei-
ther |HHH) or |VVV), and similarly for |[HVV) or |VHH),
[VHV)or |HVH), and |VV H) or |[HHV), respectively. Here,
|+ —) and | — +) denote two possible results of the measure-
ment on the two QDs.

and transforms |¢}) into |¢}) for i = 1,2, 3,4, with

[WY) = 167) ]+l

[W5) = 1o )=hl-)2

[W5) = —[¥ )+l

W9y = —[¥7)=)il=)e, (A3)

which transforms the photon pair state to their original
state, up to an overall phase w. Therefore, we can dis-
tinguish |¢{) and |[¢)) from [¢5) and |¢)) by performing
single-photon destructive measurements in the vertical-
horizontal basis. Thus, one can distinguish |¢*) from
|F). Finally, we can completely identify the four Bell
states by the measurement results of the single-photon
destructive and QND detectors, as shown in Table II.

Appendix B: Analyzer of three-photon
polarization-encoded GHZ states

Here we give another pedagogical example of our
method of state analysis for polarization-encoded three-
photon GHZ states.

For a three-photon system, the eight GHZ states can
be written as follows,

|GH%%nmz§%wﬂaHnW%+eﬂfwnwnW»L

Km&wm;§§M#mwww4ﬂmm%M¢

|GHzmwdm=;%[wumwbwmﬁwelfwwuﬂwaL
1

IGHZ114)abe = —= [V)alV Do H) e+ CL)NH) o H )V ) ]
(B1)

S

To distinguish these eight GHZ states from one another,
we input photons (a,b,c) into the setup for the GHZ-state
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analysis. Photons (a,b,c) in the GHZ states |GHZ; ;) qbe,
i,j5,k € {0,1} pass through the HWP that performs a
Hadamard operation on them, and are changed, respec-
tively, into the states

L i ij
|<I>ij0>ab6:§(|G0J> +V3|GY)),

1 y .
|cI)ij1>abC:§(\/§|Glj> +1G5)), (B2)

where the ancillary states |G%) with m = 0,1,2,3, are
given in Sec. ITTC and can be detailed as follows:

‘G8j> = IH>alH>§lH>C7

i J
Uza ® O-Zb

61) = T (V) ).
)V W+ )V,
Gy = e 2% vy, ).

V3
FVYGlHY VYo + V) alV YolH)),
GY) = oL, @al, V)V )V )e: (B3)

The GHZ states |GHZijO>abc (|GHZij1>abc) with the
relative phase 0 (7) can be distinguished from one an-
other by measuring the numbers of V-polarized photons
in the even-odd basis with QND detectors. The QND
detectors initialized to the state |+) flip the states of the
QD and photon during the scattering process, and evolve
photons (a,b,c) and two QDs into the states:

Oz, ® Oy, & 0y,

D7 0) abe = 5 (IGF) + VBIGT)) [4)1] )2,
Oz, @ 0gy, &0y, ij ij
|¢;j1>abc:f(\/§|G1]> +1GF))[=)1l+)2.

(B4)

The original GHZ states with relative phases 0 and 7
can be distinguished from one another, according to the
states of the QDs.

To read out the original polarization information of
photons (a,b,c), the HWP between two PBSs introduces
a Hadamard transformation on photons passing through
it and transforms |®;;, ) into [®7},) with

|©750)abe = (1) [GHZ4j1 ) abe|+)1]—)2,
@751 ) abe = (1) |[GHZ4j0) abe|—)1]+)2- (B5)

Now the photons (a,b,c) are transformed to their original
state, up to a phase difference 7, which is independent
of the results of the single-photon destructive measure-
ments in the vertical-horizontal basis. Therefore, we can
completely identify the eight GHZ states by the measure-
ment results of the single-photon destructive and QND
detectors, as shown in Table III.
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