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The Robust Phase Estimation (RPE) protocol was designed to be an efficient and robust way
to calibrate quantum operations. The robustness of RPE refers to its ability to estimate a single
parameter, usually gate amplitude, even when other parameters are poorly calibrated or when the
gate experiences significant errors. Here we demonstrate the robustness of RPE to errors that affect
initialization, measurement, and gates. In each case, the error threshold at which RPE begins to fail
matches quantitatively with theoretical bounds. We conclude that RPE is an effective and reliable
tool for calibration of one-qubit rotations and that it is particularly useful for automated calibration

routines and sensor tasks.

I. INTRODUCTION

The standard, circuit model of quantum computation
requires discrete, unitary operations (gates). However,
physical implementation of these gates is not naturally
discrete. For one-qubit gates it is useful to picture a
unitary operation as a specific rotation of the Bloch
sphere, with an axis and an angle of rotation that can
be parametrized by three real numbers. Careful calibra-
tion of these parameters is necessary in order to compute
accurately using the gate [1-3].

When a single unitary operation is concatenated into
a sequence of several identical operations, the resulting
angle of rotation is linear in the number gates. Mea-
surements of the quantum state after such a sequence
can cause small changes in the angle of the individual
gate to appear quadratically as changes in the resulting
projection probabilities. As a result, the error of a com-
putation can scale as the square both of the angular error
on each operation and of the number of operations. Be-
cause of this scaling, small errors in calibrating operation
rotation angles using simple calibration experiments can
still lead to significant error in the context of longer gate
sequences.

Typical experimental methods for estimating gate an-
gles are variations of “Rabi flopping” and Ramsey exper-
iments. In both cases, the qubit is prepared in a known
state, an interaction that drives rotation is implemented
for a variable duration, and then the system is measured.
The projection onto the two qubit states ideally follows
a sinusoid as a function of the duration. Fitting the data
to this model provides the angular frequency of the si-
nusoid, which is is called the “Rabi frequency” in the
case of Rabi flopping. Multiplying this frequency by the
target gate duration provides the gate angle of rotation.
These procedures are convenient when their purpose is
to pick a gate duration that implements a fixed angle of
rotation with little prior knowledge; however, they are
not optimal for analyzing a fixed gate. Other common
gate characterization methods such as quantum process
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tomography (QPT) [4], gate set tomography (GST) [5],
and their variants are designed to fully characterize one
or more fixed gates, and they are not efficient for esti-
mating a single parameter like the gate angle.

In its original form, the Robust Phase Estimation
(RPE) protocol was proposed as a practical method for
estimating the angles and axes of single qubit rotations.
The protocol was initially developed by Kimmel et al. [6]
and tested in experiments by Rudinger et al. [7]. The
robustness of RPE refers to its ability to estimate these
parameters even when other parameters of the experi-
ment are poorly calibrated or prone to stochastic errors.
In this paper we describe three separate experiments that
demonstrate the robustness of RPE to injected errors
chosen to represent common experimental error sources.

The RPE protocol consists of performing gate se-
quences of several different lengths. In each sequence
the same gate is repeated, so that the final rotation an-
gle compounds linearly. The gate sequences themselves
are very similar to the standard Rabi flopping procedure.
Two primary differences between Rabi flopping and RPE
are: First, RPE repeats an operation with a fixed dura-
tion, instead of continuously varying the duration of a
single operation. Second, the analysis of RPE iterates
a simple estimation formula on data from each sequence
length, while Rabi flopping uses curve-fitting of the entire
data set. From a practical standpoint, RPE can deter-
mine the rotation angle of a fixed gate duration much
more efficiently than Rabi flopping, where efficiency is
measured by the number of gate applications required to
achieve a given precision in the estimation of the angle.

RPE succeeds or fails in a binary fashion; the estimate
it produces is either correct (within a pre-determined
confidence region) or it is incorrect, sometimes by a large
angle. The protocol can fail at each sequence length (in-
dependently) due to shot noise or to errors in the im-
plementation of the quantum operations. When each se-
quence is repeated sufficiently many times to remove shot
noise concerns and the operation errors are small enough,
the protocol always succeeds in producing an estimate of
the rotation angle within its guaranteed confidence re-
gion. The robustness of RPE is defined by this feature
that the protocol reliably succeeds even when these errors
are significant.



Rabi flopping is useful for diagnosing experimental
problems; in this case protocol efficiency is less impor-
tant, and an experimenter can visually identify and pro-
cess unexpected deviations from the sinusoidal model.
In contrast, the robustness and efficiency of RPE make
it ideal for automated calibration of quantum systems
or for automated sensor experiments where there is no
human oversight. Ref. [7] has already examined the dif-
ferences in cost and utility between RPE and GST and
finds that RPE is significantly more efficient for single
parameter calibrations.

The remainder of this paper is organized as follows.
In Section II, we summarize our implementation of the
RPE protocol. Our experimental apparatus is described
in Section III. In Section IV, we describe the errors
against which we test the robustness of RPE. The results
of these tests follow in Section V. Finally, we comment
in Section VI on the wide range of parameter estimation
experiments which could benefit from RPE.

II. RPE PROTOCOL

In this section, we provide a practical description of
the RPE protocol as applied in our experiments, where
it is used to estimate a single rotation angle. Consider
calibrating the rotation angle 8 [8] of a qubit operation
described by

Yy = e 0/29v = co5(0/2)1 —isin(0/2)oy (1)

where T is the identity matrix and oy is the Pauli Y-
matrix.

We perform two sets of experiments, where the oper-
ation of interest is repeated {n} times for various values
of n, and the sets are differentiated by the initial qubit
state. The experiments all terminate with a single, pro-
jective measurement. We repeat each experiment M,
times (subsequently referred to as “samples”) and record
the number of times we observe the +1 eigenstate. The
observed number of the +1 results for the two sets of ex-
periments are denoted by z, and y,,, and their values in
the limit of large M,, can be predicted using the following
formulas:

T = Mo [(LYZ0)* g = My [(AY5' ), (2)
where the state |+) is equal to (|0) + [1))/v/2 and
{|0),|1)} are the Z-eigenstates of the qubit. In our
experiment we always initially prepare |0). The state
|+) = Y/20) is generated from the initial state with a
Y7 /2 operation.

In order to account for non-idealities in the experi-
ments, we follow the convention of Ref. [6] and write the
expected probability of observing the 41 eigenstate in
the experiments corresponding to z,, and y, as

1 — cos(nb)

5 =+ 0,(n)

pz(n) =

= D) ), ®

where we have introduced additive error terms 6, , which
may be n-dependent. When the d, , terms are zero, we
can estimate the total rotation nf, modulo 27, by noting
that

py(n)

_ 2py(n) —1
tan(nf) = T—2p.(n) (4)

and using x,, /M, and y,, /M, as estimates of p, ,(n) gives

_ -1 Yn — Mn/2
=t (L= MoL2), )

We note that the inability to discriminate nd = 0 from
27 can typically be remedied in practice, by repeating
the protocol with a gate using the same physics but a
smaller intended angle.

When the error terms d,, are non-zero, our estimate
of nf can be biased. Additionally, if we collect too few
samples, shot noise, which is proportional to 1/+/M,,, can
lead to erroneous results. Models for the impact of shot
noise and additive error on RPE are presented in Ref.

[6].

The RPE protocol achieves high efficiency by specify-
ing that only certain values of n (gate repetitions) need to
be performed, namely n = 2/~1 where j € {1,2,3,...,L}
and L is chosen as a function of the desired precision of
the estimate. The jth measurement restricts the estimate
of 0:

(6)

0~ bactna € (— 27 o]

]

Each successive doubling of the repetition number cuts
the range of the angle estimate bound in half. The sup-
plemental information to [7] provides pseudocode for de-
termining 6 including enforcement of the range restric-
tion from preceding steps. Ref. [6] also provides the pro-
jected probability of protocol success conditioned only on
statistical errors. Here success is defined to be an applica-
tion of the protocol in which the true value of 0 lies within
the bounds output by the protocol. With the range re-
striction provided in Eq. (6), Kimmel et al. proved in
[6] that RPE is robust in the presence of errors and will
succeed provided the total additive error is bounded by
|0,/ (n)] < dbouna = 1/V/8 for all repetitions {n}. When
RPE does fail, there is no warning as RPE does not have
a built-in failure detection method.

In practice, it is likely to be difficult to estimate the
additive error a priori. For example, without knowing
the angle of the gate under inspection the experimenter
will not know the expected final state of the length n
sequence and cannot estimate the impact of asymmet-
ric measurement errors. Even more difficult is the case
of gate errors associated with colored noise, where no
single rotation angle consistently describes the gate for
every sequence length. Further study is needed to un-
derstand how RPE will perform in this case. Errors that
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FIG. 1. (a) '™ Yb" energy level diagram. The required 369
nm laser transitions are shown for Doppler cooling (C), initial
state preparation (SP), and detection (D). (b) State labels in
%S, /2 hyperfine manifold. The qubit levels are |0) and |1). (c)
System overview. Laser beam geometry and microwave horn
for qubit operations are overlaid on an image of the trap chip.

are mutually uncorrelated, such as measurement errors
or errors due to decay events, are simpler to bound as
a function of sequence length, and we focus on them in
this manuscript.

It is important to note that as additive error increases,
more samples are required for RPE to succeed, and the
required M,, diverges at the 1/1/8 bound, as described in
[6]. A prescription for choosing M,, as a function of the
predicted additive error and sequence length is provided
therein. Furthermore, because each sequence length con-
strains the next estimate of 6, the probability that RPE
fails is the sum of the probability of failing at each step.

In this paper, we demonstrate experimentally that, for
three error sources that are expected to behave addi-
tively, the RPE protocol is as robust as promised. This
is evaluated by observing the failure rate of RPE for
the gate Y/, as a function of injected (artificially in-
troduced) error sources.

III. EXPERIMENTAL SYSTEM

All experiments described herein are performed on
a single '""Yb™ ion trapped above a GTRI-Honeywell
BGA trap [9]. The relevant portion of the atomic en-
ergy level diagram is shown in Figure 1a. Doppler cool-
ing, state preparation, and state detection are all per-
formed with the same 369 nm beam through electro-optic
modulation, similar to [10]. This beam is switched on
and off with an acousto-optic modulator (AOM). The
qubit states are chosen from the ground-state hyperfine
manifold (Figure 1b) to be [0) = |F = 0,mr = 0) and
[1) = |F=1,mp =0). We label the auxiliary states
|£1) = |F =1,mp = £1).

One-qubit rotations are driven with microwaves emit-
ted from a horn outside the vacuum chamber as de-
picted in Figure lc. We control the frequency, ampli-
tude, and phase of the microwave drive by mixing an
approximately 200 MHz DDS signal with a local oscil-

lator at 12.442812 GHz. The upper sideband of this
mixing is resonant with the transition from |0) to |1).
The mixer output is amplified to a maximum of ap-
proximately 1.6 W, high enough to achieve a minimum
7 /2-rotation time of Tr/2 =~ 4 pus. However, for all the
reported RPE measurements, we reduce the amplitude
and use T /o = 10 to 30 us to reduce amplitude errors
caused by the thermal duty cycle of the microwave am-
plifier chain.

While RPE can be used to calibrate any rotation, we
choose Y/, (i.e. 0 = 7/2 in Eq. (1)) for our base gate.

This means that we prepare |+) = (|0) + [1))/v/2 with
the same gate we repeat for the RPE sequence. Prior to
each measurement set, we use an RPE sequence with no
intentionally injected errors to calibrate the 7/2 opera-
tion for a fixed Ty /o by adjusting the microwave ampli-
tude. With a maximum sequence length of 27 gates and
128 repetitions of each sequence, RPE bounds the cal-
ibration at +7/2%, or a fractional uncertainty of 0.8%.
In practice, however, we observe much lower statistical
uncertainty, similar to the behavior observed in [7], and
repeated calibration produces the same microwave am-
plitude to within 0.04%. Following the full set of RPE
trials for each type of error, we repeat the amplitude cal-
ibration and find that it is consistent to within 0.2%, or
one quarter of the RPE estimate bound, at worst.

We initially calibrate the microwave frequency to
within 1 Hz of the qubit resonance using Ramsey spec-
troscopy. Upon recalibrating after each data set, we find
that the qubit frequency changed less than 2 Hz. Based
on a maximum delay of 100 us between pulses in our
RPE sequences, this contributes at most an inconsequen-
tial 2 x 10~ phase slip between pulses. With these sta-
ble, well-calibrated gates, we inject known errors with a
significantly larger magnitude as described in the next
section.

IV. INJECTING ADDITIVE ERRORS
A. Measurement error

We inject error in the measurement process by inten-
tionally misinterpreting the results of our detection op-
eration. The detection consists of counting photons scat-
tered from the ion over a specified duration. When the
ion is measured in the |1) state (bright), we collect on
average 19 photons during the 400 us detection interval,
and when the ion is measured in the |0) state (dark), we
collect 0.1 photons. The experimental dark and bright
measurement histograms (Figure 2) are nearly Poisso-
nian, except for mixing of the two Poissonians caused by
errors in preparation and by the low end tail observed
in bright detection events due to off resonant scattering
of the detection light [11]. The measurement error as-
sociated with these histograms (before error injection) is
1.2%.
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FIG. 2. Relative distribution of observed photon counts for
putative |0) (dark) and |1) (bright) states. Each experiment
is repeated 2500 times. The dashed line shows the optimal
detection threshold of 2 photons. Larger detection errors are
introduced by choosing a different threshold. At the optimal
threshold, the measurement error is 1.2% (sum of the left-
most two red bars).

To distinguish which state is present after a measure-
ment, we define a threshold for the number of detected
photons. If the detected number of photons is less than
the chosen threshold, we infer that the ion was in the
|0) state; otherwise we infer that it was in the |1) state.
The optimal threshold in our experiment was two pho-
tons. By intentionally choosing a suboptimal threshold,
we introduced an error source in post-processing that is
easy to quantify.

In order to convert from a choice of threshold to an
additive error estimate dyeas, we must identify the maxi-
mum error over all possible sequence outcomes. From the
measured reference histograms, we calculate the proba-
bility that the chosen threshold mis-identifies an observed
photon count as bright (when the ion was dark) or dark
(when the ion was bright). For a general sequence, we
do not know which of the results to expect, so we take
the maximum of these probabilities as our pessimistic
estimate of dpeas-

B. Preparation error

The preparation of the |0) state is a stochastic process.
The initial state after cooling is a mixture of 29, /2 Mani-
fold states. During preparation, the population in the |0)
state exponentially approaches some limiting value close
to one within a time = 2 us as depicted in Figure 3.
In order to artificially introduce preparation errors, we
simply limit the preparation time.

At the laser frequency used for preparation, 369 nm
light excites the 231/2, F=1to 2P1/2, F’" =1 transitions
(see Figure la). From the F’ = 1 states, the ion may
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FIG. 3. State preparation error as a function of operation
duration. We typically use a 50 us optical pumping duration
to ensure high fidelity initialization in |0); intentionally using
a shorter duration injects error. Over the plotted range, the
exponential fit to the infidelity F as a function of initialization
duration t is E(t) = 0.95¢~ %Y +0.025. At short duration, the
infidelity limit is due to asymmetric state populations after
Doppler cooling. At long duration, the apparent initialization
infidelity is limited by measurement error. The 1/+/8 limit for
additive error in RPE corresponds to a preparation time of
about 700 ns.

decay into any of the 25; /2 manifold states. Repetition
of this scattering process depletes population from the
2512, F = 1 manifold. With our beam polarization, we
expect the rates of scatter from the |£1) states to be
symmetric and faster than the scatter from the |1) state.
Because the |£1) states are unaffected by the gates of the
RPE sequence, population in these states after initializa-
tion is always measured in the bright state and may or
may not appear as an error, depending on the ideal re-
sult of the sequence. In the worst case, this population
sums with the population in the |1) state to constitute
the additive error of initialization.

In this worst case, the probability of initialization error
after a preparation interval ¢ is equal to the population
in the F' = 1 manifold after that interval. Figure 3 shows
this population as a function of the preparation time ¢
in our diagnostic experiment. We use this result to con-
vert between ¢t and dp,,cp. For example, we observe that a
preparation time of about 700 ns corresponds to the the-
oretical 6 = 1/ V/8 threshold for RPE success. Because
this comparison represents a worst case error, the RPE
protocol is expected to tolerate even shorter preparation
times in some instances.

C. Phase damping error

In order to investigate an additive error that scales
with the length of the gate sequence, we illuminate the



ion during the entire sequence with dim 369 nm light
tuned to the 251/2,F =1— 2P1/2,F’ = 0 transition.
A 369 nm photon scattering off the ion causes it to ex-
cite and spontaneously decay if and only if the ion is
in the F = 1 manifold (including the |1) state). Be-
cause we rotated the polarization of the 369 nm light to
excite o /o~ transitions preferentially, any population
that decayed to the |+1) states was quickly re-excited
and transferred to the |1) state. The effect of this ag-
gregate process, considered as an error, is to dephase the
qubit: it does not lead to population mixing of the |0) or
|1) states, but it does lead to decay of superpositions of
those states. Nielsen and Chuang refer to this as phase
damping [4]; an example of controllably inducing a de-
phasing/phase damping channel is given by Urrego et al.
[12]. The decay events we introduce through this scat-
tering process occur discretely and independently, so we
expect the aggregate error probability they induce to ap-
proach one as a simple exponential in time.

We control the intensity of the 369 nm light addressing
the ion by changing the RF power applied to an AOM.
Calibrating the absolute magnitude of the phase damp-
ing errors is challenging because we do not have a direct
measurement of the rate of photon scatter by the ion. To
the extent that the AOM responds proportionally to RF
power, however, we can estimate the relative scattering
rates at different AOM settings. In the course of per-
forming RPE experiments with a known rotation angle,
we can also directly observe the additive error we in-
troduce in each sequence by comparing results with and
without the injected errors.

Because the phase damping error only affects super-
positions of |0) and |1) states, its effective instantaneous
strength changes over the course of each RPE sequence
as the superposition state changes. As long as the char-
acteristic time scale of the error is longer than the 7-time
of the applied rotations and many rotations are applied,
it is possible to average this effect out and treat the error
as if it has a constant effective strength.

We note as an aside that this approximation breaks
down and the error behavior changes notably when the
369 nm intensity is high and the inverse scattering rate
is faster than the gate time. In this case, the possibility
of excitation and decay constantly project the state and
the unitary gates are suppressed. This limit was evident
in experiments performed with large injected errors, al-
though it is not relevant for the results presented in the
next section.

V. RESULTS

For all experiments testing the robustness of RPE to
injected error, we used a maximum sequence length of 27
calibrated Y/, gates and a constant number of samples
(M,,) independent of the sequence length. For each trial
of the RPE protocol, we computed the RPE estimate g
of the gate angle using the pseudocode in the supplemen-

PO XXX

o
©

o
o

6l)ound

©
iN

o
[N]

Detection Error,
Observed Rate of RPE Failure

— Detection Error
e RPE Failure

L]
T kY NN RN R NNNN]

0 5 10 15 20 25 30 35
Detection Threshold

FIG. 4. Observed RPE failure rate as a function of the de-
tection threshold (circles). The solid black curve shows the
maximum detection error probability, dmeas, defined in Sec-
tion IV A and computed from the histograms in Figure 2. We
observe a sharp onset of RPE failure when the threshold is set
at 17 counts, in good agreement with when dmeas > Ibound-
Similarly, RPE also fails when enough dark detections are mis-
labeled as bright, a situation which only occurs for a threshold
of zero.

tal information to [7]. For each value of injected error,
we conducted between 25 and 100 trials of the RPE pro-
tocol. The rate of failure, based on Eq. (6), is defined as
the fraction of experiments where |Qes; — 7/2| > 7/28.

A. Detection

A common error source in experimental trapped-ion
measurements comes from drift in the intensity of the
detection light at the ion, due for example to positional
drift of the beam. This drift changes the photon scat-
tering rate and leads to a different optimal threshold as
described in Section IV A. Measurement degradation is
easily observed in, e.g., Rabi flopping, experiments as a
decrease in contrast between measurements of |0) and |1)
states. It provides an obstacle for automated calibrations
because it eliminates the possibility of calibrating against
a fixed reference measurement value.

In order to mimic this error and test RPE, we inten-
tionally degrade the measurement operation in RPE by
changing the detection threshold used in post-processing.
Each RPE sequence used M, = 32 samples, and the
observed rate of failure for 100 trials is shown in Fig-
ure 4. RPE succeeds in accurately estimating the gate
angle despite large measurement error. As expected (see
Eq. (V.16) in [6]), we observe a steep transition be-
tween success and failure near the theoretical bound of

6meas ~ 1/\/g
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FIG. 5. Observed RPE failure rate as a function of qubit
preparation duration (bottom axis) and number of samples
(left axis). The background shading also indicates the ob-
served failure rate. The top axis shows the maximum additive
error dprep corresponding to the qubit preparation duration.
We estimate that dprep exceeds dpound = 1/4/8 beyond 700 ns
(vertical red line). The boundary of the onset of failure shifts
as a function of the number of samples as expected.

B. Initialization

We intentionally degrade the fidelity of our state prepa-
ration by shortening its duration, with consequences de-
scribed in Section IV B. While preparation is not fre-
quently a large source of error in quantum applications, it
can become one when the preparation involves entangled
states, such as for recent clock and sensor experiments
[13, 14].

We chose to explore the combined effects both of in-
jecting error and of changing the number of samples (M,,)
used in the protocol. In the interest of efficiency, espe-
cially when measurement is a relatively slow operation,
calibration protocols should be optimized to use as few
samples as possible. However, when operating near the
bounds of the statistics allowed by shot noise, stochastic
errors, e.g., due to degraded initialization, can combine
with shot noise to lead to calibration failure.

In Figure 5, we show the rate of RPE failure for dpep
between 0.54 (0.40 us) and 0.24 (0.99 us). For the center
row of Figure 5, we performed M,, = 32 samples of each
RPE sequence, and we observe agreement between the
onset of failure and the 1/ /8 bound based on our esti-
mate of additive error. The number of samples required
to reliably achieve a correct estimate increases with the
injected error, as indicated by the prescription for M,
given by Eq. (V.17) in [6]. For M,, < 32, RPE fails fre-
quently even with injected error below the bound due to
increased measurement shot noise.

C. Gate Error: Phase Damping

Spontaneous decay and phase damping bound the co-
herence time of quantum computations. As with both
previous injected errors, phase damping leads to a re-
duction in contrast in the expected results of calibra-
tion experiments. Unlike those errors, the phase damp-
ing errors we introduce here accumulate as the experi-
ment duration increases, causing longer sequences to re-
turn lower-contrast results. These processes will bound
the maximum sequence length that can be used in the
RPE protocol before the additive error exceeds its bound.
In order to observe this effect, we intentionally induce
phase damping by allowing 369 nm (measurement) light
to leak into our experiment, with its intensity reduced
by {—20, —23, —26, —100} dB from our measurement set-
tings. This process is described in greater depth in Sec-
tion IV C.

In Figure 6 we compare the histograms of RPE esti-
mates for these four levels of laser intensity. Because
the intensities are well below saturation, we expect spon-
taneous scattering to be proportional to intensity. Al-
though assigning an absolute phase damping error rate
is difficult in our experiment, we observe the same qual-
itative behavior for RPE failure as is observed for other
error sources: the onset of RPE failure is abrupt, and
RPE succeeds over a wide range of injected phase damp-
ing errors rates.

In contrast to the detection and initialization errors de-
scribed previously, the total additive spontaneous emis-
sion error for a given gate sequence grows with sequence
length. Depending on the type of error, some sequence
lengths within the RPE protocol can be more likely to
cause the RPE estimate to fail. We observed that for the
strongest scattering laser intensity tested (-20 dB), the
RPE estimate of the rotation angle only exceeded the
bound of Eq. (6) at the longest sequence length leading
to a clustering of failure events within twice the claimed
range of the true value. In the tests with injected prepa-
ration or measurement errors, failures were equally likely
for any sequence length, resulting in a flatter error dis-
tribution.

VI. CONCLUSIONS

We have shown experimentally that the RPE protocol
is robust to errors which occur during state preparation,
measurement, and gates, in good agreement with the ad-
ditive error bound of 1//8. Our results are promising
for noisy or initially uncalibrated experiments, where the
efficiency and robustness of RPE makes it an effective
tool for automated gate calibrations.

In order to apply RPE efficiently and successfully, we
find that it is important to take into account the depen-
dence of the success probability on the number of samples
(M,,). A greater number of samples becomes more im-
portant when the additive error is high, so, in order to
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FIG. 6. Histograms of rotation angle estimates from RPE
with and without additional phase damping errors. The
bounds for protocol success are shown as vertical dashed lines.
We injected 369 nm (measurement) light at four intensities to
drive phase damping. RPE only fails at the strongest inten-
sity (-20 dB), although even here the majority of trials suc-
ceed. At lower intensities, we observe that the distribution
of estimates is significantly tighter than the provable bounds
reported by the protocol.

maximize efficiency, it is useful to bound the expected
error.

Similarly, we observe that the failure of RPE changes
in nature depending on whether the error is constant or
depends on the sequence length. When initialization and
detection errors are larger than gate errors, failures in
the RPE protocol can result in estimates that are very
far from the true value. In a quantum computing context,
this could lead to rare events of mis-calibration causing
gates with poor behavior to persist until a new calibra-
tion. This catastrophic behavior needs to be treated
differently with respect to fault tolerance than typical
small-angle coherent errors.

We expect that RPE can also find use within the quan-
tum sensor community. RPE could allow a user to op-
erate a sensor in a poorly controlled environment and
with poor initialization and detection operations, as long
as the interaction of interest can be repeated reliably.
Furthermore, the robustness of RPE to poorly calibrated
operations makes it particularly appealing for automated
initial calibration of sensors. The main caveat for sensor
applications appears to be the need to prepare two or-
thogonal initial states, although RPE can tolerate sig-
nificant errors in this operation. In practice, this re-
quirement would be similar to the often-used technique
of preparing alternating states for clock measurements
[15].

Extensions of RPE to non-static parameters and to
two-qubit gates are possible directions for future re-
search. Ion temperature and laser intensity variations
are just two examples of time-varying parameters. De-
pending on the root cause, the rotation angle of a gate
may change reliably as a function of sequence length or
instead may drift randomly; it should be possible to mod-
ify RPE to address or mitigate both of these possibilities.

An extension of RPE that calibrates two-qubit gate
angle seems straightforward. One simple and necessary
adjustment is to rework RPE to account for measure-
ments from two qubits. However, the full calibration of
two-qubit gates typically involves more control parame-
ters, so an important challenge is to describe a routine
based on RPE that is capable of calibrating all these pa-
rameters together both efficiently and robustly.
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