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We propose a general method to simulate arbitrary lattice models using a single degenerate cavity.
Such a cavity supports a large number of degenerate optical modes with different angular momenta.
Couplings between different optical modes can be readily controlled. These features allow us to
simulate lattice models that are not convenient to realize using other systems, particularly models in
high dimensions and with complicated hopping amplitudes. As a concrete example, we demonstrate
how to construct two topological lattice models: the two-dimensional Haldane model and a four-
dimensional time-reversal invariant model. For the latter case, we show how topological properties
can be detected from the outputs of the cavity, where the 2nd Chern number can be extracted. In
the presence of open boundaries, the chirality of the Weyl edge modes can also be detected using the
input-output formalism of the cavity modes.

Simulating synthetic dimensions using different sys-
tems presents an important frontier in quantum simula-
tion and has received great attention in recent years [1–
23]. Physically, synthetic dimensions not only enable us
to simulate various novel physics in a simple and eco-
nomic way, it also provides the opportunity of explor-
ing new physics that cannot be implemented in conven-
tional materials, such as topologically non-trivial high
dimensional systems [5, 8, 12, 13, 23], synthetic meta-
materials [8, 10, 20, 22], etc. Currently, various degrees
of freedom have been considered to act as synthetic
dimensions. This includes the atomic internal states
[1, 2, 5], the motional degrees of freedom for atoms
in harmonic oscillators [11], the collective superradiant
states of atomic ensembles [14, 15], etc [7, 9, 23].

For photonic systems, synthetic dimensions can be
implemented using the photonic orbital angular mo-
mentum (OAM) degrees of freedom [16–22], or the
photonic frequency comb with equal-distant level split-
tings [7, 9, 23]. Constructing photonic synthetic dimen-
sions based on photonic OAM degrees of freedom was
first proposed in [16] and discussed in more depth in
Ref. [17–22], where a cavity system supporting a large
number of degenerate photonic modes with different
angular momentum is constructed. The abundance of
the OAM degrees of freedom becomes a sufficient re-
source that allows us to simulate various novel topo-
logical physics in high-dimensional systems in a very
compact manner [16]. The degeneracy of these cavity
modes enables the coupling of different OAM modes us-
ing only linear optical elements. For instance, the cou-
pling of different optical OAM modes can be realized
with the aid of spatial light modulators (SLMs). More-
over, the presence of Dove-prisms can result in OAM-
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dependent phase shift which enables the implementing
of gauge fields in the synthetic dimensions. This flexibil-
ity also opens up the possibility of implementing topo-
logical physics with tunable boundaries even when only
a single cavity is employed [17].

Currently, the construction of lattice models using
synthetic dimensions has been widely considered in dif-
ferent physical systems. From the theoretical point of
view, it is desirable to explore the ultimate potential of
these synthetic systems. One natural question is: Is it
possible to construct general lattice models in current
experimentally available systems? The positive answer
of this question will not only greatly extend the appli-
cation potential of synthetic dimensions in current se-
tups, but also provides ideal platform to emulate vari-
ous functional structures and devices in a compact and
economic way.

In this paper, we show that the proposed degenerate
cavity system have the potential to implement an arbi-
trary lattice model within a single degenerate cavity due
to its high flexibility. This is due to the following two
key reasons. First, the tremendous degeneracy of the
cavity modes enable us to represent all internal and ex-
ternal degrees of freedom (DOF) of the lattice model us-
ing the OAM modes of photons; second, arbitrary long-
range hopping can be easily implemented with SLMs
inside the auxiliary cavities. We prove that based on
these two key points, arbitrary lattice hopping ampli-
tudes with complex unit cell can be constructed. As a
result, arbitrary lattice models can be implemented in
principle using only one degenerate cavity with finite
number of auxiliary cavities. Moreover, Such a kind of
quantum simulator based on single degenerate cavity
has its own unique advantages. Since the lattice in the
synthetic dimension is contained in a zero-dimensional
physical system, this allows us to easily detect various
physical characteristics of high-dimensional systems by
using input-output relation in quantum optics. To illus-
trate this advantage, we show that the system can sim-
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ulate the four dimensional (4D) extension of the quan-
tum anomalous Hall effect, where the 2nd Chern num-
ber and Weyl chiral edge states can be detected from
the input-output formalism of the cavity system. This
model, with its complicated hopping amplitude, is very
difficult to simulate using other systems. Its realization
using degeneracy cavity as we illustrate here represents
a clear demonstration of its flexibility. Our work thus
sets up a promising way of exploring quantum topolog-
ical physics using a single degenerate cavity.

I. ARBITRARY LATTICES FOR ARTIFICIAL
DIMENSIONAL SYSTEM

The explicit construction of the degenerate cavity sys-
tem can be found elsewhere [16, 17, 20]. Our con-
struction scheme is based on the following observations.
First, the cavity supports a large number of degener-
ate optical modes characterized with different OAMs.
Practically, the degeneracy is only limited by the size
of the cavity mirrors, which can then be appropriately
adjusted to satisfy our requirement. Second, different
cavity modes can be coupled using ancillary cavities
assisted with SLMs. In principle, these ancillary cir-
cuits can be added into the cavity as we need. Finally,
coupling between different OAM modes can be imple-
mented using Dove-prisms, where an OAM-dependent
phase shift allow us to construct all possible hopping el-
ements.

Based on the above outline, we now introduce the
basic components to realize arbitrary lattice models in
artificial dimensional system, as shown in Fig. 1. The
main ideas can be summarized as follows. First, thanks
to the tremendous degeneracy of the photonic modes in
the cavity, we can number all the internal and external
DOF for the lattices model and map them to the OAM
modes of the cavity. Second, hoppings between differ-
ent sites in the lattice model now corresponds to cou-
plings between OAM cavity modes, which can be imple-
mented using auxiliary cavities with the help of SLMs.
Since the hopping range can be controlled by the hop-
ping steps of SLMs, This also enable us to realize high-
dimensional lattice models by introducing long-range
hopping terms. Thirdly, for lattice models with complex
internal structure within each unit cell, the hopping am-
plitudes usually becomes site-dependent. In this case,
a general hopping-amplitude-controlling procedure is nec-
essary to synthesize the desired lattice model. As we
will show below, this is always possible in our system
by employing finite auxiliary optical circuits.

We consider a general lattice model in d spatial di-
mension. Let Nµ (µ = 1, 2, ..., d) denote the num-
ber of sites in the ith dimension. In addition, each
site hosts N0 internal states. We define a vector ~N ≡

(N0,N1,N2, . . . ,Nd) to characterize this system. A partic-
ular state of the lattice model can be denoted by the vec-
tor ~l = (l0, l1, l2, . . . , ld) with l0 ∈ (0, 1, . . . ,N0 − 1) marking
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FIG. 1. The basic components to realize the arbitrary lattice
using the artificial degrees of freedom (DOF) with a concrete
example in Fig. 2. The basic components contain three steps in-
cluding one-dimensionalization, hopping terms mapping, and
hopping amplitudes controlling. One-dimensionalization is
just marking each DOF in lattice system with an integer corre-
sponding with that in artificial system. (a) The components of
hopping terms mapping. Hopping terms mapping is to create
hopping terms between the artificial DOF, which correspond-
ing with the lattice system DOF, using spatial light modulators
(SLMs). The SLM induces hopping terms between the light
with orbital angular momentum (OAM) L and L + δL. (b) The
components of hopping amplitudes controlling. Hopping am-
plitudes controlling process is to realize arbitrary hopping am-
plitudes, where beam rotators (BRs) induce OAM dependent
hopping amplitudes. The BR1 and BR2 induce B1 exp(iLθ1)
and B2 exp(iLθ2) hopping amplitudes for OAM mode L, respec-
tively. The hopping amplitude for OAM mode L1 (L2) is AL1

(AL2 ), respectively, which can be controlled by modifying B1

and B2, arbitrarily.

the internal state and lµ ∈ (0, 1, . . . ,Nµ − 1) labeling the
site in the d-dim space. Thus in the cavity system, each
lattice site can then be mapped to the OAM mode with
L = (~l)T · ~C, where ~C = (C0,C1, . . . ,Cd) with C0 = 1 and
Cµ = Π

µ−1
ν=0 Nν the total number of DOF along all the ν-th

dimensions with ν < µ.
The hopping terms in the lattice model with hopping

step δ~l = (δl0, δl1, δl2, . . . , δld) corresponds the coupling
between two cavity modes whose OAMs differing by
the amount

δL = (δ~l)T · ~C. (1)

Such a coupling can be implemented using one auxil-
iary circuit by inserting two SLMs with hopping steps
±δL, respectively. Finally, the on-site energy shift terms
can be realized in the same manner with δL = 0. After
these process, we have succeed in mapping the lattice
hopping terms

Ĥδ~l =
∑
~l

Bδ~lâ
†

~l+δ~l
â~l + h.c., (2)
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FIG. 2. (a) The brick lattice structure with the nearest hop-
ping terms and next nearest hopping terms (not show), real-
ized by the OAM synthetic system. The brick lattice contains
two types internal states, including solid dot A and hollow dot
B, for each unit site, which is marked by the red dash circle.
For this case, we choose the number of unit site in the first di-
mension N1 = 5, so the lattice contains ten states in the first
line. The circles a − e are the long-distance hopping terms on
the edge induced by the hopping terms in the OAM system.
(b) All hopping terms of Haldane model (brick lattice). The
system contains nearest hopping terms, marking by the black
solid lines t1, and next nearest hopping terms t2 = t exp(iφ) and
t3 = t exp(−iφ), marking by red dash lines and green dash-dot
lines, respectively. Blue dash-dot circle is the hopping terms
with hopping step δL = 9.

to coupling of cavity OAM modes

ĤδL =
∑

L

BδLĉ†L+δLĉL + h.c., (3)

where â~l (â†
~l
) is the annihilation (creation) operator at ~l

in the lattice model, and ĉL (ĉ†L) is the annihilation (cre-
ation) operator with OAM L in the cavity system, Bδ~l
(BδL) is the hopping amplitude of lattice model (artifi-
cial, i.e., cavity, system), respectively.

To make it more clear, we consider Haldane’s
model [24], which is a 2D lattice model, as an example
to illustrate our construction scheme. The Hamiltonian
can be written as

Ĥ = t1
∑
〈i, j〉

â†i â j + t
∑
〈〈i, j〉〉

e−ivi jφâ†i â j + h.c. + M
∑

i

εiâ
†

i âi, (4)

where 〈i, j〉 is the link between nearest neighbors (black
solid line in Fig. 2(b)), 〈〈i, j〉〉 that between next nearest
neighbors (red dashed lines and green dash-dot lines in
Fig. 2(b)). The whole system can be divided into two
sublattices denoted with A (solid dots) and B (hollow
dots), and εi equal +1 (−1) for A (B) sites, and vi j equals
−1 (+1) for red dashed (green dash-dot) lines.

TABLE I. The hopping amplitudes of Haldane’s model in the
vector ~l representation

δ~l δL Aδ~l,0 Aδ~l,1
(0, 0, 0) 0 M −M

(1, 0, 0) , (1,−1, 0) , (1,−1, 1) 1,−1, 9 t1 0
(0, 1, 0) , (0,−1, 1) , (0, 0,−1) 2, 8,−10 te−iφ teiφ

In our scheme, the lattice sites in Haldane’s model can
be described by the vector ~l = (l0, l1, l2) with N0 = 2 rep-
resenting the two sublattices A and B within each lat-
tice site denoted by (l1, l2). The hopping steps δ~l contain
seven different types, and the Hamiltonian can then be
rewritten as

Ĥ =
∑
~l,δ~l,l0

Aδ~l,l0
â†
~l+δ~l

â~l + h.c., (5)

where Aδ~l,l0
is summarized in Tab. I and A

−δ~l,l0+δl0
= A∗

δ~l,l0
.

To be concrete, we choose the number of unit cell in the
first dimension to be N1 = 5, as shown in Fig. 2(a), where
the corresponding DOF of OAM modes L are also given.
Based on Eq. (1) and Tab. I, we conclude that we need
six types of hopping steps to realize Haldane’s model,
where |δL| = 0, 1, 2, 8, 9, 10.

We also note that for high-dimensional systems, the
periodic boundary condition is difficult to implement,
as the translation-invariant short-range hopping terms
do not vanish at the artificial boundaries after mapping
to the cavity system. This will induce long-distance hop-
ping in the original lattice system, and creates twisted
boundary condition on all the dimensions except for the
last one. For instance, as shown in Fig. 2(a), the short-
range hopping between L = 9 and L = 10 (L = 19 and
L = 20) in the synthetic system becomes a long-range
one after mapping back to the original lattice model. We
stress that, such twist boundaries only induce a slight
shift of the energy spectrum in the momentum space,
while the bulk topological properties are not changed,
as shown in Appendix E.

For translation-invariant lattice model with N0 inter-
nal states, each type of hopping with fixed steps δL can
possess N0 different hopping amplitudes at most. There-
fore, we need N0 optical circuits to realize these hop-
pings. As those optical circuits are all connected in the
main cavity and has the same hopping step, they can
interference to give a total amplitude

∑N0−1
j=0 BδL, j, where

BδL, j is the hopping amplitude for the j-th optical cir-
cuit. To realize site-dependent hopping terms, we use
beam rotators to induce an OAM-dependent phase shift
exp

(
iLθ j

)
with θ j = 2π j/N0. This can be realized by

inserting two Dove-prisms in the auxiliary circuits, as
shown in Appendix F. Using this method, the hopping
amplitudes in the synthetic lattices are periodic for ev-
ery N0 OAM modes. The resulting hopping amplitudes
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TABLE II. The hopping amplitudes and the number of auxil-
iary cavities

δL BδL,0 BδL,1 # of auxiliary cavities
0 0 M 1
1 t1 0 1
2 t cos φ −it sin φ 2
8 t cos φ it sin φ 2
9 1

2 t1
1
2 t1 2

10 t cos φ it sin φ 2

can then be described by

AδL,l0 =

N0−1∑
j=0

Ml0, jBδL, j =

N0−1∑
j=0

exp
(
iLθ j

)
BδL, j

=

N0−1∑
j=0

exp
(
i
2πl0 j

N0

)
BδL, j. (6)

Since Ml0, j is invertible N0 × N0 matrix, we can always
find the appropriate BδL, j for any given hopping am-
plitudes AδL,l0 . This indicates that for a general lattice
model, all site-dependent hopping elements can be well
implemented using auxiliary cavities in the degenerate
cavity system.

For instance, the hopping step with δL = 9 of Hal-
dane’s model, as shown by the blue dash-dot oval in
Fig. 2(b), contains two different hopping amplitudes
A(1,−1,1),0 = t1 and A(−1,0,1),1 = 0 for different internal
states j = 0 and j = 1 respectively. These hoppings
can be realized by the auxiliary cavities shown in Fig. 3,
which contains the main cavity and two auxiliary cav-
ities. The main cavity hold all the DOF of Haldane’s
model. The auxiliary cavities realize the hopping ampli-
tudes A(1,−1,1),0 and A(−1,0,1),1. This is achieved by adding
SLMs in the circuits which changes the OAM of the cav-
ity modes by δL = ±9. Additionally, the beam rota-
tors are inserted to induce OAM-dependent phase shifts
exp (i2πL j/2), as shown in Appendix F [25, 26]. The re-
sulting hopping amplitudes are then determined by(

A(1,−1,1),0
A(−1,0,1),1

)
=

(
1 1
1 −1

) (
B9,0
B9,1

)
. (7)

The desired hopping amplitudes are thus realized with
B9,0 = B9,1 = t1/2. Fig. 3(b) shows the relevant effective
photonic circuits of the OAM system. To realize all hop-
ping steps of Haldane’s model, we need ten auxiliary
cavities with hopping amplitudes, as shown in Tab. II.

The properties of the artificial cavity system can be
distilled from the input-output relations of the optical
modes. The spectrum and wavefunctions of the model
can be determined from the transmission coefficients de-
fined as

TL,L′ = 〈L|
−i~γ

~ω − H0 + i~γ/2
|L′〉, (8)

BS1 BS2
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SLM 3
SLM 4

B1,0

B1,0
*
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B1,1
*

B1,0

B1,0
*

B1,1

B1,1
*

(a)

(b) (c)

BR3

BR4

A 1, 1,1( ),0 A 1, 1,1( ),0

A 1,0,1( ),1

B9,0

B9,0
*

B9,1

B9,1
*

B9,0

B9,0
*

B9,1

B9,1
*

FIG. 3. The scheme for the δL = 9 hopping step for Haldane’s
model in orbital angular momentum (OAM) degeneracy cavi-
ties system. (a) The structure of cavities including a main cav-
ity and two auxiliary cavities. The main cavity contains four
beam splitters (BSs), which connect the main cavity and the
two auxiliary cavities. Each auxiliary cavities contains a pair
of spatial light modulators (SLMs) to modify the OAM of pho-
tons. After crossing S LM1 and S LM3 (S LM2 and S LM4), the
photons increase (decrease) nine OAM, respectively. One of
auxiliary cavity contains a pair of beam rotators (BRs), addi-
tionally. The BRs rotate the light through the propagating di-
rection, where the photons with OAM L gain a phase exp(iLθ),
θ is the angle of rotation. The angle θ of BR3 (BR4) equals π (−π),
respectively. (b) The effective cavity structure of δL = 9 hop-
ping step of Haldane’s model including a main cavities chain
and auxiliary cavities. The main cavities chain is realized by
the main cavity in (a) through the OAM DOF. The top row aux-
iliary cavities have the same hopping amplitude B9,0. But the
hopping amplitudes of the bottom row cavities are modified
by B9,1 and −B9,1, periodically, as the gain of phases through
BRs is periodic for OAM L. (c) The lattice structure of δL = 9
hopping step, where each unit cell contains two internal DOF.
The hopping amplitudes are A(1,−1,1),0 = t1 and A(−1,0,1),1 = 0,
which is determined by Eq. (7).

where TL,L′ is the transmission amplitude from the in-
put mode L′ to the output mode L, H0 is the Hamilto-
nian to be detected, ω and γ are the effective frequency
of input-output fields and homogeneous loss rate of
the main cavity, respectively. For small loss rate γ and
proper input-output optical modes with narrow band-
width, the detection of the transmission coefficients al-
low us to determine the wavefunctions together with its
topological properties, as shown in Appendix B.

Based on these discussions, we thus succeed in pro-
viding a promising route of implementing arbitrary lat-
tice models using a degenerate cavity system with finite
auxiliary optical circuits and a general method of de-
tecting the spectrum and wavefunctions of the model.
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All the hopping elements can be realized by chang-
ing the hopping steps using SLMs and gaining site-
dependent phase shifts using beam rotators. We note
that such beam rotator can be implemented using two
Dover prisms with a rotating angle θ/2 respect to each
other, which can then rotate the light with an angle θ
inducing a phase exp (iLθ) to the photonic mode with
OAM L.

In the following, we will construct a 4D topologically
non-trivial model using the above method. We also
show that even the 2nd Chern number and the chiral-
ity of the corresponded edge states can be detected in
this cavity system.

II. REALIZATION OF HIGH DIMENSIONAL SYSTEM:
4D TOPOLOGICAL HAMILTONIAN

A typical 4D topology Hamiltonian with a complex
unit cell N0 = 4 can be written as

Ĥ =
∑

k

5∑
a=1

ψ̂†kda (k) Γaψ̂k, (9)

where ψ̂k =
(
â1,k, â2,k, â3,k, â4,k

)T is the annihilation op-
erator in momentum k with four spin components (σ
in âσ,k labels the spin component). In the particular
model we study here, da = sin ka for a = 1, 2, 3, 4 and
d5 =

(
m +

∑4
µ=1 cos kµ

)
, and Γa are the 4 × 4 gamma matri-

ces, which satisfy the Clifford algebra
{
Γa,Γb

}
= δab. The

explicit forms of these gamma matrices read

Γ1 = σ3 ⊗ I2, Γa = σ2 ⊗ τa−1, Γ5 = σ1 ⊗ I2, (10)

where a = 2, 3, 4, σa−1 and τa−1 is Pauli matrices, I2 is the
identity matrix in two dimension. This model is studied
in Ref. [27] and is know to support topological phases.

The corresponding Hamiltonian in real space can be
written as

Ĥ =
∑
δx

∑
x
ψ̂†x+δxGδxψ̂x + h.c. + m

∑
x
ψ̂†xΓ5ψ̂x, (11)

where ψ̂x = 1
√

L4

´
dkeik·xψ̂k is the annihilation operator

in real space, Geµ = Γµ/2i + Γ5/2 with µ = 1, 2, 3, 4 is the
hopping term along the µth direction, and eµ is the unit
vector in the µth direction.

The topological properties of the system can be deter-
mined by the 2nd Chern number defined as

Ch2 =
1

32π2

ˆ
d4kεµνρσtr

[
BµνBρσ

]
, (12)

Bαβµν = ∂µAαβ
ν − ∂νA

αβ
µ + i

[
Aµ, Aν

]αβ
, (13)

Aαβ
µ (k) = −i 〈α,k| ∂µ |β,k〉 , (14)

where repeated indices are summed over, Bµν is the
Berry curvature, Aµ is the Berry connection, the indices

µ, ν = 1, 2, 3, 4 label the spatial dimension, the ∂µ is the
shortcut of ∂kµ , and |α,k〉 is the αth eigen wavefunction
at momentum k. The model of Eq. (9) has two twice-
degenerate bands with opposite Chern numbers. Topo-
logical phase transition happens when we change the
mass parameter m across the critical points, where the
2nd Chern number of the low-energy band changes as
follows

Ch2 =



0 m < −4
1 −4 < m < −2
−3 −2 < m < 0
3 0 < m < 2
−1 2 < m < 4
0 4 < m

. (15)

In the following, we will show the explicit construction
of the model using the cavity system, and the detection
of its Chern number and edge states in the presence of
artificial open boundaries.

A. Construct the model in cavity system

We construct this model following the procedure out-
lined above. First, we map all the internal and external
DOF in the original Hamiltonian to the OAM modes in
the degenerate cavity system. The effective Hamiltonian
in terms of the cavity modes can be written as

Ĥ =

4∑
µ=1

∑
L

ψ̂†L+Nµ−1Gµψ̂L + h.c. + m
∑

L

ψ̂†LΓ5ψ̂L, (16)

where the number of internal states N0 = 4 and the num-
ber of sites is set to be Nµ = N (µ = 1, 2, 3, 4) in each
dimension for simplicity; ψ̂L = (ĉ4L, ĉ4L+1, ĉ4L+2, ĉ4L+3)T

with ĉL (ĉ†L) the annihilation (creation) operator on OAM
L, respectively, Gµ = Γµ/2i + Γ5/2 (µ = 1, 2, 3, 4).

Secondly, we use the auxiliary cavities with SLMs
to create all types of hopping terms, characterized by
different steps in OAM coupling. For instance, each
term ψ̂†L+Nµ−1Gµψ̂L contains at most seven types hopping
elements with the OAM increasing 4Nµ−1 + δl0 (δl0 =

−3 . . . 3). As we have 5 terms in the Hamiltonian, we can
roughly count the number of all types of hopping terms
as 35. After considering the zero elements in Gµ and the
possible double counting of the some hopping elements
sharing the same OAM modification, the number of to-
tal auxiliary cavities can be reduced. For example, hop-
ping elements with δl0 = −1 in ψ̂†L+1G1ψL term has the
same OAM modification δL = 3 with those terms δl0 = 3
in ψ̂†LΓ5ψ̂L, which can then be group together to improve
the efficiency of the circuits.

Finally, we use the interference between the auxiliary
cavities with BRs to realize the site-dependent hopping
amplitudes within each complex unit cell. For each type
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of the hopping term with the same hopping step δL,∑
L,l0 AδL,l0 ĉ†4L+l0+δLĉ4L+l0 + h.c. contains four hopping am-

plitudes, which are AδL,l0 with l0 = 0, 1, 2, 3. This can
be implemented using at most 4 auxiliary cavities with
bare hopping amplitudes BδL, j ( j = 0, 1, 2, 3), respec-
tively. Each auxiliary cavity is inserted with different
BRs (θ = 0, π/2, π, 3π/2) to realize those hopping ampli-
tudes based on the equation


AδL,0
AδL,1
AδL,2
AδL,3

 =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i




BδL,0
BδL,1
BδL,2
BδL,3

 . (17)

Specifically, the hopping matrices Γ5 and G1 = (σ3/2i+
σ1/2) ⊗ I2 contains hopping elements with OAM steps
δL = 2, 4, 6. We can get these hopping amplitudes by
solving Eq. (17). After dropping all the circuits with
zero hopping amplitudes BδL, j, we find that only (3, 2, 3)
auxiliary cavities are needed respectively, as shown in
Tab. III. Similarly, we need 22, 22, 8 auxiliary cavities
to realize the hopping terms ψ̂†L+NG2ψ̂L, ψ̂†L+N2G3ψ̂L, and
ψ̂†L+N3G4ψ̂L respectively. Thus, we need roughly 60 aux-
iliary cavities in total to realize the model.

Next, we will show how the 2nd Chern number can be
extracted from the transmission coefficients of the cav-
ity. In the presence of open boundaries, the chirality of
the edge states can also be detected as a direct conse-
quence of nontrivial bulk topology of the model.

B. Detecting the 2nd Chern number

To obtain the value of the 2nd Chern number, we need
to find the wavefunction at every momentum point and
then calculate using Eq. (12). This is certainly not prac-
tical. In fact, due to the offset boundary condition in our
system, we can only obtain the values of the wavefunc-
tions at discrete momentum points defined by Eq. (E-8)
in Appendix E, through detecting the transmission coef-
ficients using input-output formalism. In the following,
we will introduce an approximate method to calculate
the Berry curvature and the 2nd Chern number in dis-
cretized Brillouin zone, and the method to obtain wave-
functions using the input-output formalism.

We use the wavefunctions to approximatively calcu-
late the Berry curvature

Uµ (k) = u† (k) u (k + eµ) , (18)

Ωµν (k) = i log
{
Uµ (k) Uν (k + eµ)

×Uµ (k + eν)−1 Uν (k)−1
}
, (19)

where u(k) is the wavefunction space including ndeg
degenerate wavefunctions, Uµ (k) is the link variable,
Ωµν (k) is the field strength [28], each of Uµ(k) and Ωµν(k)
is a ndeg × ndeg matrix. In our cases, the link variable

and the field strength can be extended to those in ar-
bitrary quadrangle discrete Brillouin zone, e.g. momen-
tum space in Eq. (E-8) of Appendix E, where each of the
field strength Ωµν (k) can be defined by four wavefunc-
tion spaces near k. The 2nd Chern number [5] can be
approximated as

Ch2 '
1

4π2

∑
k

Tr
[
Ω12 (k) Ω34 (k)

+Ω41 (k) Ω32 (k) + Ω31 (k) Ω24 (k)
]
, (20)

where we have approximated the integral in Eq. (12)
by a discrete summation over the first Brillouin zone.
This is to anticipate that we can only obtain the values
of wavefunctions at discrete momentum points. To ob-
tain the 2nd Chern number, we need the wavefunctions
in momentum space. To this end, we use the standard
input-output formalism of the cavity to define the trans-
mission coefficients as

Tσx,σ′x′ = 〈σx|
−i~γ

~ω − H0 + i~γ/2

∣∣∣σ′x′〉 . (21)

where ω is the frequency of the input fields, H0 =∑
σx,σ′x′ |σx〉H0,σx,σ′x′ 〈σ

′x′|withσ the spin label at the lat-
tice site x, and γ the homogeneous loss rate of the main
cavity. Using the spectrum representation of the Hamil-
tonian in momentum space, we find that the Fourier
components of Tσx,σ′x′ can be rewritten as

Tσ0,σ′k′ (ω) ' −2
∑
ωk,n=ω

u∗n,σun,σ′ , (22)

where we have set x = (0, 0, 0, 0), and γ → 0 such that
only states with the eigen-energy ωk,n = ω contribute
most to the summation, and un,σ is the nth eigen-vector
of the Hamiltonian Hk with spectrum ωk,n = ω. By scan-
ning the frequency of the input photons and the lattice
index in Txσ,x′σ′ , we can obtain similar constraints as
Eq. (22), which can then be used to determine all the lin-
ear independent wavefunctions of the original Hamilto-
nian. Accordingly, all the relevant topological quantities
related to H0 can be calculated.

Figure 4 shows the approximate value of 2nd Chern
number Ch2 of the twice-degenerate ground state as
functions of various experimental parameters including
the mass parameter m, the number of sites in each di-
mension N, and the cavity loss rate γ in discrete mo-
mentum space shown in Eq. (E-8) with Lµ = N. As can
be seen from Fig. 4(a), the 2nd Chern number exhibits
the desired staircase-like pattern as m is varied. This re-
sult provides a clear signature of different topological
phases.

Figure 4(b) plots the Chern number as the function of
N, the number of sites in each dimension, for m = −1
and γ = 10−5, which indicates that a larger N is al-
ways helpful to obtain the correct Chern number Ch2.
A large loss rate γ would make Eq. (22) invalid, and
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TABLE III. The hopping amplitudes and the number of auxiliary cavities for 4D topological model.

δL BδL,0 BδL,1 BδL,2 BδL,3 # of auxiliary cavities
2 (2m + 1) /4 (2m − 1) (−1 + i) /8 0 (2m − 1) (1 + i) /8 3
4 0 − (1 + i) /4 0 (1 − i) /4 2
6 1/4 (1 − i) /8 0 (1 + i) /8 3

4N − 3 −1/8 −i/8 1/8 i/8 4
4N − 2 1/4 (−1 + i) /8 0 − (1 + i) /8 3
4N − 1 −1/8 1/8 −1/8 1/8 4
4N + 1 −1/8 i/8 1/8 −i/8 4
4N + 2 1/4 (1 − i) /8 0 (1 + i) /8 3
4N + 3 −1/8 −1/8 −1/8 −1/8 4
4N2 − 3 i/8 −1/8 −i/8 1/8 4
4N2 − 2 1/4 (−1 + i) /8 0 − (1 − i) /8 3
4N2 − 1 −i/8 i/8 −i/8 i/8 4
4N2 + 1 −i/8 −1/8 i/8 1/8 4
4N2 + 2 1/4 (1 − i) /8 0 (1 + i) /8 3
4N2 + 3 i/8 i/8 i/8 i/8 4
4N3 − 2 1/8 i/8 −1/8 −i/8 4
4N3 + 2 1/8 1/8 1/8 1/8 4

cause the unwanted derivation of Ch2 away from the
ideal values. However, our calculation indicates that
such derivation is almost neglectable when γ < 10−1,
as shown in Fig. 4(c) for m = −1 and N = 15. We also
calculated standard deviation of the Chern number Ch2,
when BδL, j is assumed to have a Gauss fluctuation as in
realistic experimental situations. It shows that the Chern
number is robust against such noises and the above re-
sults are not qualitatively affected.

C. Weyl chiral edge states detection

In this section, we will discuss the Weyl chiral edge
states of 4D topological Hamiltonian with open bound-
ary conditions [27]. Firstly, we introduce the basic re-
sults of Weyl chiral edge states, including the spectrum
and wavefunctions of the edge Hamiltonian. Next, in
the presence of open boundary along the synthetic 4th
direction in the 4D system, which is explicitly discussed
in Appendix G, we provide a feasible scheme to reveal
the chirality of the edge states using the input-output
formalism.

1. Weyl chiral edge states

Weyl chiral edge states appear for the 4D topological
non-trivial system if an open boundary is present due
to the bulk-edge correspondence. These edge states are
protected by the 4D topology and robust against pertur-
bation and disorders that do not break the bulk sym-
metry. In our case, the 4D Hamiltonian Eq. (11) with
an open boundary in the fourth direction x4 = 0 can
be solved analytically. The spectrum and the wavefunc-
tions of the edge states at boundary (x4 = 0) along x4 < 0

-4 -2 0 2 4m
-3

-2

-1

0

1

2

3

C
h 2

10 20 30
N

-3

-2.8

-2.6

C
h 2

10-5 10-3 10-1
-3

-2

-1
C

h 2

(a)

(b) (c)

FIG. 4. The approximate 2nd Chern number varies with the
mass parameter m, the number of sites in each dimension N,
and the cavity loss rate γ in discrete momentum space shown
in Eq. (E-8) with Lµ = N. (a) the 2nd Chern number Ch2 varies
with the mass parameter m with N = 15 and γ = 1 × 10−5.
The mass m varies from −5 to 5. (b) The Chern number varies
with the number of sites in each dimension N. We set the mass
m = −1, and γ = 1 × 10−5. (c) The Chern number varies with
the loss rate γ with m = −1 and N = 15.

reads

E± = ±d, (23)∣∣∣ψk,±
〉

= ψ±
(
~k, k4

) ∑
x4≤0

eik4 x4 |x4〉

∣∣∣∣~k〉 , (24)
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with

ψ±
(
~k, k4

)
=

1
√

2d (d ∓ d1)


0

−id2 + d3
− (d1 ∓ d)

0

 , (25)

where d =

√∑3
µ=1 d2

µ, and ~k represents the momentum in
the remaining three dimensions. Since d5 − id4 = 0 for
the edge states, we have

k4 = i ln

−m −
3∑
µ=1

cos kµ

 . (26)

Therefore, k4 is an imaginary number, which means that
the wavefunction decays exponentially along the 4th
direction when

∣∣∣−m −
∑3
µ=1 cos kµ

∣∣∣ < 1, which is typical
for edge-state wavefunctions. Since da(−~k) = −da(~k) for
a = 1, 2, 3, we have ψ†+

(
~k
)
ψ+

(
−~k

)
= 0, which confirms the

chiral property of the edge states, shown in Appendix C.
In the OAM system, artificial sharp boundaries can

be implemented using beam splitters with holes, as ex-
plicitly discussed in Ref. [17] for 1D system. We note
that simpler version of the idea can be generalized here
to implemented open boundaries in high dimensional
case, as shown in Appendix G. This allow us to detect
the chirality of the edge states, which is topologically
protected by the bulk gap.

2. Detection

In addition to calculating the Chern number of the
system, topological properties can also be detected from
the characteristic edge modes in the presence of open
boundaries as a result of the bulk-edge correspondence.
These edge states exhibit novel transportation proper-
ties protected by the bulk topology. In the following, we
will propose a method to detect the chirality of the 4D
edge states through the input-output formalism, which
provides another simple way to illustrate the topologi-
cal properties of the system.

Near a Weyl point located at ~k = ~k0, the Hamiltonian
can be linearized as

H
(
~k
)

=
∑

a

wa

(
~k
)
σa '

∑
a

(
~k − ~k0

)
· ~vaσa , (27)

where ~va = 〈ψa| ∂H/∂~k |ψa〉 at the Weyl point, |ψa〉 is the
eigen-vector of positive eigen-value of the Pauli matrix
σa. The chirality of the edge state can be correspond-
ingly defined as

C = ~v1 ·
(
~v2 × ~v3

)
, (28)

To measure the chirality, we need to link the vector ~va
and the transmission coefficients defined in Eq. (8).

(a) (b)

FIG. 5. The iso-surface of the detection chirality C̃
(
~k
)

= 〈~x〉1 ·
〈~x〉2 × 〈~x〉3, which is approximation of Eq. (28) using 〈~x〉a to
replace ~va, of Weyl chiral edge states with (a) the mass m =

−3, the Chern number Ch2 = 1 and (b) the mass m = −1, the
Chern number Ch2 = −3, where 〈~x〉a is defined by Eq. (29) and
|C̃m| is the maximum value of |C̃| in momentum space ~k, the
frequency of input light is ω = 0.5, the loss rate is γ = 0.1, the
number of unit cells on each direction is N = 11, and the width
of wavepacket is Ω = 1.

The information of~va can be extracted from the output
fields of the cavity by detecting the average displace-
ment of the output photons with momentum ~kc as

〈
~x
(
~kc

)〉
a
'

∑
~x,σ

~x

∣∣∣∣∣∣∣∣
∑
~x′,σ′

Tσ~x0,σ′~x′0ψ
a
σ′ f (~x′,~kc)

∣∣∣∣∣∣∣∣
2

, (29)

where f (~x′,~kc) = exp
(
−~x′2/2Ω2 + i~kc · ~x′

)
is the distribu-

tion of the initial excitation around the center of lat-
tice with the wavepacket width Ω and momentum ~kc,
ψa
σ′ is the pseudo-spin state of the input fields and

ψa = (0, 1, 1, 0)T /
√

2, (0, 1, i, 0)T /
√

2, and (0, 1, 0, 0)T for
a = 1, 2, 3, respectively. After detecting the strength
of the output fields for pseudo-spin state σ at ~x site,

Ia
σ~x0 =

∣∣∣∣∑~x′,σ′ Tσ~x0,σ′~x′0ψ
a
σ′ f (~x′,~kc)

∣∣∣∣2, we can calculate the

average displacement of the output photons
〈
~x
(
~kc

)〉
a
.

Here, it should be mentioned that the input pump with
arbitrary modulation is unique to such kind of single
degenerate cavity system, that can be easily realized by
crossing holographic plate like SLM, unlike the optical
delay lines in Ref. [29], which is hard to be realized by
using the coherent light at different position to pump
the system.

We note that the above-defined 〈~x〉a is proportional
to the parameter ~va. This is obvious if we consider the
wavepacket approximation with ~k ∼ ~kc + δ~k near the gap
close point En = 0, the average displacement then reads〈

~x
(
~kc

)〉
a

= i
|D1D2|

2 D3

Ω2 〈ψa|

(
T †
~kc

∂

∂~kc

T~kc
− h.c.

)
|ψa〉

'
|D1D2|

2 D3D4

Ω2 〈ψa|
∂H

∂~kc

|ψa〉 , (30)
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where D1 =
∑
~x′ exp

(
−~x′2/2Ω2

)
, D2 =

∑
δ~k exp

(
−Ω2δ~k2/2

)
,

D3 =
∑
~x exp

(
−~x2/Ω2

)
/x2

3, D4 = ~3γ3/
(
~2ω2 + ~2γ2/4

)2

and T~kc
= −i~γ/

(
~ω − H~kc

+ i~γ/2
)
. Explicit derivation

of this result can be found in Appendix D. Therefore, by
detecting the average displacement of the output pho-
tons, the chirality of each Weyl point can be obtained.

Fig. 5(a) (Fig. 5(b)) plots the iso-surface of the detec-
tion chirality C̃, which is proportional to the chirality C
in Eq. (28) with ~va replaced by 〈~x〉a, when the mass pa-
rameter m = −3 (m = −1) and Chern number Ch2 = 1
(Ch2 = −3), respectively. For m = −3, the system has
one Weyl point located at ~kc = (0, 0, 0), where the chi-
rality reaches its local minimal. For m = −1, the system
has three Weyl points located at ~kc = (π, 0, 0), (0, π, 0) ,
and (0, 0, π), respectively, where the chirality is maximal.
When the Chern number equals zero, such as m = −5,
the system does not possess Weyl points and the chiral-
ity vanishes.

III. CONCLUSIONS AND DISCUSSIONS

In summary, we have proposed a method to realize ar-
bitrary lattice model in a single degenerate optical cav-
ity setup. Different from previous researches [16, 18] in
which the synthetic dimensions combined with the real
physical dimensions are used, in the present scheme,
the synthetic dimensions support the construction of
the entire lattice models. Due to the highly tunability
of the OAM photon, we demonstrate that we can im-
plement all relevant hopping elements of a given lat-
tice model after mapping all the internal and external
DOF of the model to the OAM modes of cavity pho-
tons with the help of auxiliary cavities. To illustrate
the validity of our approach, we provide two examples,
the 2D Haldanes model and the 4D topologically non-
trivial model. The latter model, in particular, is very dif-
ficult to simulate using any other systems. We propose
two methods to probe the topology of the 4D system:
the detection of the Chern number through transmis-
sion coefficients and the chirality of edge states using
the photonic displacement around the synthetic bound-
aries. The present work greatly extends the ability of
simulating lattice models using synthetic materials, and
may provide new possibilities to design functional de-
vices in photonic systems.

In the present system, the degeneracy of the optical
modes is a crucial feature. Meanwhile, different OAM
modes has its typical electric field distribution in trans-
verse direction, and the beam size is determined by the
explicit cavity parameters. Experimentally, the scalabil-
ity of the scheme is closely related to our ability of im-
plementing these beams inside the cavity. In our case,
two typical size effect should be taken care of:

The first one is the beam size of the OAM modes on
the cavity mirrors. Since the radius of LG modes de-

pends on its topological charge l as r ∼
√

lr0, the max-
imal OAM Lm allowed in the cavity is then determined
by the size of cavity mirrors.Following the current ex-
perimental parameters shown in reference [19], we find
that Lm can reach up to 200 or more depending on the ex-
plicit setup. This indicates that degenerate OAM modes
supported in current system is large enough to simu-
late high-dimensional lattice models, and can be act as a
testbed to verify our construction ideals.

Second, the numbers of ancillary cavities that needed
for the construction of specific lattice systems, are usu-
ally model-dependent. For models with complex hop-
ping elements, many ancillary circuits should be in-
volved. The main cavity should be designed to have
enough room for incorporating these auxiliary systems.
This is possible to use a modified cavity with longer op-
tical length D. Since a round trip of optical fields inside
the cavity induces a phase kD = 2mπ with m an integer
number, a longer optical length indicates a larger integer
m.The free spectral range of the resonator is inversely
proportional to the cavity length and reads ∆vFS R = c/D.
For current setup shown in reference [19], the cavity
length can be tunned from 60cm to 600cm, while the FSR
of the cavity can change from 500MHz to 50MHz, which
is still much larger than the cavity linewidth (12MHz).
This elongated cavity provides enough room for intro-
ducing different ancillary circuits into the main cavity.

After mapping into the lattice model, this degeneracy
ensures lattice translation invariance. Furthermore, we
can also exploit this property, by using the input-output
formalism, to extract useful information about the sys-
tem, such as the wave function and the associated topo-
logical characters. Moreover, in this optical synthetic
system, parallel manipulation for the synthetic lattice
can be achieved by only adjusting individual optical el-
ements, which opens up the possibility of developing a
special-function all-optical device [20, 22]. This can lead
to new applications of topological photonics.
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APPENDIX A

In this appendix, we discuss the input-output formu-
lation [30], which is the key to measure the Chern num-
ber and the chirality. We consider the interaction be-
tween the cavity fields and the external fields to get the
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transmission properties of the cavities, which reveal the
wavefunctions and spectrum of the effective Hamilto-
nian.

In the cavity system, the Hamiltonian of the cavity
fields and external fields can be written as

Ĥ = Ĥ0 + V̂ (t) + Ĥext, (A-1)

where Ĥ0 =
∑

ll′ â†l H0,ll′ âl′ is the Hamiltonian for the cav-
ity fields,

V̂ = i~
ˆ

dω
∑

il

gil (ω)
[
â†l b̂i (ω) − b̂i (ω)† âl

]
, (A-2)

is the interaction term between the cavity fields and
the external fields, Ĥext =

∑
i
´

dω~ωb̂i (ω)† b̂i (ω) is the
Hamiltonian for external field, âl (â†l ) is the annihilation
(creation) operator of the lth cavity field, respectively,
and b̂i (b̂†i ) is that of the ith external fields, respectively.
Though the Langevin equation, we can obtain the equa-
tion of motion of the cavity fields as

∂tâl = −
i
~

[
âl, Ĥ

]
= −

i
~

[
âl, Ĥ0

]
+ g
ˆ

dωb̂l (ω) , (A-3)

and that of the external field

∂tb̂i = −gâi − iωb̂i (ω) , (A-4)

where we assume gil (ω) = gδil. By solving these equa-
tion, we have

∂tâl = −
i
~

[
âl, Ĥ0

]
+
√

2πgd̂in,l (t) − πg2âl (t) , (A-5)

∂tâl = −
i
~

[
âl, Ĥ0

]
+
√

2πgd̂out,l (t) + πg2âl (t) , (A-6)

where

d̂in,l ≡ −
1
√

2π

ˆ
dωb̂l (ω, t0) eiω(t0−t), (A-7)

d̂out,l ≡ −
1
√

2π

ˆ
dωb̂l (ω, t1) eiω(t0−t), (A-8)

t0 (t1) is the initial (final) time, respectively. After Fourier
transformation in time, we obtain the input-output for-
mulation

d̂out (ω) =

(
1 −

i2π~g2

~ω − H0 + iπ~g2

)
d̂in (ω) , (A-9)

where d̂in,l (t) =
´

dωe−iωtb̂l (ω). Then the transmission
coefficient is

Tll′ = 〈l|
−i~γ

~ω − H0 + i~γ/2

∣∣∣l′〉 , (A-10)

where H0 =
∑

ll′ |l〉H0,ll′ 〈l′|, l and l′ label the cavity
modes, and γ = 2πg2 is the loss rate.

APPENDIX B

In this appendix, we will introduce the method to de-
tect the wavefunctions through the input-output formu-
lation, with which we can calculate the Chern number.
Assume that the cavity system with low loss rate, we
consider the input light with momentum k in the syn-
thetic dimension and detect all the quasi-spin σ of the
unit cell located at x = 0. By scanning the frequency
of the input field, we can obtain the spectrum and the
wavefunctions to calculate the Chern number.

The Hamiltonian of the cavity can be written as

H0 =
∑

σ,σ′,x,x′
|σx〉Hσ,σ′,x−x′

〈
σ′x′

∣∣∣ , (B-1)

where x (x′) is the unit cell location, σ (σ′) is the quasi-
spin in one unit cell. The transmission coefficient in co-
ordinate space can be written as

Tσx,σ′x′ (ω) = 〈σx|
−i~γ

~ω − H0 + i~γ/2

∣∣∣σ′x′〉 (B-2)

After Fourier transformation on x′, we have

Tσx,σ′k′ (ω) = e−ik′x
∑

n

u∗n,σ′
−i~γ

~ω − ~ωn + i~γ/2
un,σ, (B-3)

where un,σ is the wavefunction at momentum k′, whose
energy is ~ωn. After setting x = 0, ω = ωn′ , γ → 0, we
find that the transmission coefficient is proportional to
the eigenvector of Hamiltonian H0 with the energy ωn′

as

Tσ0,σ′k′ (ωn′ ) ' −2
∑

ωn=ωn′

u∗n,σun,σ′ . (B-4)

Although the transmission coefficient is the sum of all
the wavefunctions of the energy, we can obtain each
wavefunction, by detecting all the quasi-spin σ to get
the linear independent wavefunction space for the de-
generacy Hamiltonian, as u∗n,σ is the sum coefficients of
wavefunctions. The transmission coefficient is the key
to detect the wavefunctions to calculate the Chern num-
ber.

APPENDIX C

In this section, we will introduce the basic results of
the edge states in the 4D topological non-trivial sys-
tem [27] with an open boundary condition using the
method shown in the paper [31]. By introducing the
ansatz wavefunctions with exponential decay on the
boundary, we can obtain the Hamiltonian and chirality
condition in the quasi-spin space for edge states. Subse-
quently we can obtain the spectrum and the correspond-
ing chiral wavefunctions, which satisfy ψ†±

(
~k
)
ψ±

(
−~k

)
=

0, where ψ±
(
~k
)

is wavefunction of spin at momentum ~k.
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The bulk Hamiltonian can be written as

H =
∑

k

5∑
a=1

da (k) Γa |k〉 〈k| (C-1)

where da (k) =
(
sin k1, sin k2, sin k3, sin k4,

(
m +

∑4
µ=1 cos kµ

))
a
,

and Γa is the gamma matrix defined by Eq. (10). After
Fourier transformation |k〉 =

∑
x4

eik4 x4

∣∣∣∣~k, x4

〉
, we can

get the Hamiltonian with an open boundary in the 4th
direction

H =
∑
~k

∑
x4≤0

∣∣∣∣~k, x4

〉  3∑
a=1

da

(
~k
)
Γa +

m +
∑
µ,4

cos kµ

 Γ5

 〈~k, x4

∣∣∣∣ +
∑
~k

∑
x4≤0

(∣∣∣∣~k, x4 − 1
〉 1

2

(
Γ5 − iΓ4

) 〈
~k, x4

∣∣∣∣ + h.c.
)
. (C-2)

The wavefunctions of edge states can be written as

|ψk〉 = ψs

(
~k, k4

) ∑
x4≤0

eik4 x4 |x4〉

∣∣∣∣~k〉 . (C-3)

From the Schrödinger’s equation, we have

H |ψk〉 =
∑
x4≤0

5∑
a=1

[
da (k) Γaψs

(
~k, k4

)
eik4 x4

∣∣∣∣~k, x4

〉
−

1
2

(
Γ5 − iΓ4

)
ψs

(
~k, k4

)
eik4

∣∣∣∣~k, 0〉 ]
= E |ψk〉 , (C-4)

so we get

5∑
a=1

da (k) Γaψs

(
~k, k4

)
= Eψs

(
~k, k4

)
, (C-5)

1
2

(
Γ5 − iΓ4

)
ψs

(
~k, k4

)
= 0. (C-6)

By solving it, we can get the wavefunctions of the edge
states

ψ± =
1

√
2d (d ∓ d1)


0

−id2 + d3
− (d1 ∓ d)

0

 , (C-7)

and the spectrum

E± = ±d, (C-8)

where d =

√∑3
a=1 d2

a , d5 − id4 = 0, which means

k4 = i ln

−m −
3∑
µ=1

cos k3

 . (C-9)

When
∣∣∣−m −

∑3
µ=1 cos kµ

∣∣∣ < 1, the edge states exist as
limx4→−∞ exp(ik4x4) = 0.

The edge state is chiral, as the quasi-spin states are
orthogonal the opposite momentum at the same energy
by ψ†+

(
~k
)
ψ+

(
−~k

)
= 0 , where

ψ+

(
±~k

)
=

1
√

2d (d ∓ d1)


0

−id2 + d3
− (d1 ∓ d)

0

 . (C-10)

APPENDIX D

In this section, we will introduce the method to detect the chirality of Hamiltonian, including the definition of chi-
rality of a general Hamiltonian near the Weyl point, and the connection between the definition and detection method
through the average displacement. For Weyl point ~kc, the eigen-energy of Hamiltonian En = 0, the Hamiltonian can
be expanded by

H
(
~k
)

=
∑

a

va

(
~k
)
σa

'
∑

a

(
va

(
~kc

)
+

(
~k − ~kc

)
·
∂

∂~kc

va

)
σa

'
∑

a

((
~k − ~kc

)
· ~va

)
σa, (D-1)

where va

(
~kc

)
= 0 vanishes and ~va = ∂va/∂~kc is finite. Then the chirality can be written as

C = ~v1 ·
(
~v2 × ~v3

)
, (D-2)



12

where

~va = 〈ψa|
∂

∂~k
H

(
~k
)
|ψa〉 , (D-3)

|ψa〉 is the eigen-vector of σa with a positive eigen-value [32]. In the condition of Weyl point va

(
~kc

)
= 0, the vector

becomes

~va =
∑

n

〈ψa|

[
∂

∂~k
En |ϕn〉 〈ϕn| + En

∂

∂~k
(|ϕn〉 〈ϕn|)

]
|ψa〉

=
∑

n

∂

∂~k
En

∣∣∣∣∣〈ψa

∣∣∣∣ϕn

〉∣∣∣∣∣2 , (D-4)

where |ϕn〉 is the eigenvector of the Hamiltonian. Here
∑

n En
∂

∂~k
(|ϕn〉 〈ϕn|) = 0, as we have complete relation and the

energy En is constant in Weyl point.
Then we need to prove that the average distance can be written as

〈
~x
〉

a =
~3γ3(

~2ω2 + ~2γ2/4
)2

|D1D2|
2 D3

Ω2

∑
n

∂

∂~kc

En

(
~kc

)
|〈ψa| |ϕn〉|

2 ,

in the Weyl point, where D1 =
∑
~x′ exp

(
−~x′2/2Ω2

)
, D2 =

∑
δ~k exp

(
−Ω2δ~k2/2

)
, D3 =

∑
~x,σ exp

(
−~x2/Ω2

)
x2

1.

Through Fourier transformation Tσ~x0,σ′~x′0 =
∑
δ~k

∑
n exp

[
−i

(
~kc + δ~k

)
·
(
~x′ − ~x

)]
T~kc+δ~k,n

, the output fields can be written
as

f σout,a
(
~x
)
≡

∑
~x′,σ′

Tσ~x0,σ′~x′0ψ
a
σ′ f

(
~x′,~kc

)
= ei~kc·~x

∑
~x′,σ′

∑
δ~k

∑
n

e−iδ~k·(~x′−~x)− ~x′2

2Ω2 Tσ,σ′

~kc+δ~k,n
ψa
σ′

= ei~kc·~x
∑
~x′,σ′

∑
δ~k

eiδ~k·~x
∑

n

e−iδ~k·~x′− ~x′2

2Ω2 Tσ,σ′

~kc+δ~k,n
ψa
σ′ (D-5)

where Tσ,σ′

~kc,n
= −i~γ/ (~ω − En + i~γ/2)ψσnψ

σ′∗
n , f

(
~x′,~kc

)
= exp

(
−~x′2/2Ω2 + i~kc · ~x′

)
is the wavepacket with momentum

~kc. After integrating ~x′ and expanding Tσ,σ′

~kc+δ~k,n
near δ~k = 0, the output fields become

f σout,a
(
~x
)

= ei~kc·~xD1

∑
δ~k

∑
n

e−
Ω2δ~k2

2 +iδ~k·~xTσ,σ′

~kc+δ~k,n
ψa
σ′

' ei~kc·~xD1e−
~x2

2Ω2

∑
δ~k

∑
n

e−
Ω2
2

(
δ~k−i 1

Ω2 ~x
)2

(
Tσ,σ′

~kc,n
+ δ~k

∂

∂~kc

Tσ,σ′

~kc,n

)
ψa
σ′ ,

where D1 =
∑
~x′ exp

(
−~x′2/2Ω2

)
. After integrating δ~k, we can get

f σout,a
(
~x
)

= ei~kc·~xD1D2e−
~x2

2Ω2

∑
n

(
Tσ,σ′

~kc,n
+ i

1
Ω2 ~x ·

∂

∂~kc

Tσ,σ′

~kc,n

)
ψa
σ′ ,

where D2 =
∑
δ~k exp

(
−Ω2δ~k2/2

)
. Then the average distance〈

~x
〉

a =
∑
~x,σ

~x
∣∣∣ f σout,a

(
~x
)∣∣∣2

' |D1D2|
2
∑
~x

~xe−
~x2

Ω2 〈ψa|

(
T †
~kc
− i

1
Ω2 ~x ·

∂

∂~kc

T †
~kc

) (
T~kc

+ i
1

Ω2 ~x ·
∂

∂~kc

T~kc

)
|ψa〉

=
i |D1D2|

2

Ω2

∑
~x

~xe−
~x2

Ω2 ~x · 〈ψa|T †
~kc

∂

∂~kc

T~kc
−

∂

∂~kc

T †
~kc

T~kc
|ψa〉

=
i |D1D2|

2 D3

Ω2 〈ψa|T †
~kc

∂

∂~kc

T~kc
−

∂

∂~kc

T †
~kc

T~kc
|ψa〉 (D-6)
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where D3 =
∑
~x exp

(
−~x2/Ω2

)
x2

1. We note that all the operators and wavefunctions are in the spin space, and only the
even function of xi can survive in the integral. Here T~kc

=
∑

n (Gn + iFn) |ϕn〉 〈ϕn|, Gn = −~2γ2/
[
2 (~ω − En)2 + ~2γ2/2

]
,

Fn = −~γ (~ω − En) /
[
(~ω − En)2 + ~2γ2/4

]
T †
~kc

∂

∂~kc

T~kc

∣∣∣∣
En=0

=
∑

n

(Gn − iFn)
(
∂

∂~kc

Gn + i
∂

∂~kc

Fn

)
|ϕn〉 〈ϕn|

=
∑

n

(
Gn

∂

∂~kc

Gn + Fn
∂

∂~kc

Fn + iGn
∂

∂~kc

Fn − iFn
∂

∂~kc

Gn

)
|ϕn〉 〈ϕn| .

Here we ignore the variation of the wavefunctions, because ∂

∂~kc

∑
n |ϕn〉 〈ϕn| = 0, when En = 0. Then

T †
~kc

∂

∂~kc

T~kc

∣∣∣∣
En=0
− h.c = 2i

∑
n

(
Gn

∂

∂~kc

Fn − Fn
∂

∂~kc

Gn

)
|ϕn〉 〈ϕn|

= 2i
∑

n


~2γ2/2(

~ω−En

(
~kc

))2
+~2γ2/4

(
~γ

(
~ω − En

(
~kc

))
∂

∂~kc

1(
~ω−En

(
~kc

))2
+~2γ2/4

− 1(
~ω−En

(
~kc

))2
+~2γ2/4

~γ ∂

∂~kc
En

(
~kc

))
−

~γ
(
~ω−En

(
~kc

))
(
~ω−En

(
~kc

))2
+~2γ2/4

∂

∂~kc

~2γ2/2(
~ω−En

(
~kc

))2
+~2γ2/4

 |ϕn〉 〈ϕn|

= −i
~3γ3(

~2ω2 + ~2γ2/4
)2

∑
n

∂

∂~kc

En

(
~kc

)
|ϕn〉 〈ϕn| (D-7)

〈
~x
〉

a =
~3γ3(

~2ω2 + ~2γ2/4
)2

|D1D2|
2 D3

Ω2

∑
n

∂

∂~kc

En

∣∣∣∣∣〈ψa

∣∣∣∣ϕn

〉∣∣∣∣∣2 , (D-8)

Comparing with

~va =
∑

n

∂

∂~k
En

∣∣∣∣∣〈ψa

∣∣∣∣ϕn

〉∣∣∣∣∣2 ,
we know that the chirality vector is proportional to the average distance.

APPENDIX E

In this section, we will introduce the effects of the off-
set boundaries, which is one of the results to simulate
a high dimensional system using a long distance hop-
ping in the one-dimensional system. For simplicity, we
consider a 2D system with an offset boundary along the
1st dimension and a periodic boundary along the 2nd
dimension, whose Hamiltonian can be written as

H =

L−2∑
x1=0

∑
x2

Hx1 |x1 + 1, x2〉 〈x1, x2|

+

L−1∑
x1=0

∑
x2

Hx2 |x1, x2 + 1〉 〈x1, x2|

+
∑

x2

Hx1 |0, x2 + 1〉 〈L − 1, x2| + h.c. (E-1)

with the offset boundary terms like∑
x2

Hx1 |0, x2 + 1〉 〈L − 1, x2|. After Fourier transformation
on the 2nd direction, we can get the Hamiltonian on the

1st direction with k2 as a parameter

H =
∑

k2

Hk2 |k2〉 〈k2| , (E-2)

with

Hk2 = Hx1

L−2∑
x1=0

|x1 + 1〉 〈x1| + Hx2 e−ik2

L−1∑
x1=0

|x1〉 〈x1|

+Hx1 e−ik2 |0〉 〈L − 1| + h.c.. (E-3)

After setting the eigenstate of Hamiltonian Hk2 as∣∣∣ψk1,k2

〉
= ψs

(
~k
)∑

x′1

eik1 x′1
∣∣∣x′1〉 , (E-4)

and solving the Schrödinger’s equation, we have

Hx1 x2ψs

(
~k
)

= E~kψs

(
~k
)
, (E-5)

e−ik2 eik1L − 1 = 0, (E-6)

where Hx1 x2 = Hx1 exp(−ik1) + H†x1 exp(ik1) + H2 exp(−ik2) +

H†2 exp(ik2). So the momentum k1 should be

k1 =
2n1π + k2

L1
. (E-7)
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Using the similar methods, we find that the momentum
in the 4D topological model should be

k4 =
2πn4

L4
,

k3 =
2πn3

L3
+

2πn4

L3L4
,

k2 =
2πn2

L2
+

2πn3

L2L3
+

2πn4

L2L3L4
,

k1 =
2πn1

L1
+

2πn2

L1L2
+

2πn3

L1L2L3
+

2πn4

L1L2L3L4
, (E-8)

where nµ = 0, 1, . . . , Lµ − 1, Lµ is the length on the µth
direction. The offset boundary shifts the momentum
slightly, which does not change the methods to detect
the Chern numbers and the edge states.

APPENDIX F

In this section, we will discuss the beam rotator (BR)
that induces an OAM-dependent phase shift to the cav-
ity field, as shown in Fig. 6 [25, 26]. The BR consists of
two Dove prisms, each of which transforms the photon
phase exp (iLϕ) to exp

[
iL(2θ1 − ϕ)

]
, where θ1 is axis an-

gle of the Dove prism. After crossing two Dove prism
with an intersecting angle θ/2, the photon gains an ad-
ditional phase exp (iLθ), which induces OAM dependent
hopping amplitudes.

22 +
2

Dove Prime Dove Prime

eiL eiL( + )

FIG. 6. Beam rotator. The beam rotator includes two Dove
Primes intersect each other with an angle θ. It induces a extra
phase exp (iLθ), when a photon with orbital angular momen-
tum (OAM) L crosses it.

APPENDIX G

In this section, we discuss the basic construction idea
to implement the open boundaries along the 4th dimen-
sion in this synthetic 4D system based on a simpler ver-
sion of the idea proposed in Ref. [17].

In the degenerate-cavity system, the beam size of the
LG mode increases along with the OAM |l|. It is expected
that beam spitters with holes can reflect the light, only
when the light carries an OAM l that satisfies |l| ≥ Lb.
This induces a boundary at |l| = Lb, as shown in Fig. 7(a-
b) with Lb = 1. Fig. 7(a) is the scheme of experimental
setup to simulate 1D lattice with open boundary condi-
tion on OAM |l| = 1. The beam spitters (BS 1 and BS 2)
with a hole block the hopping between OAM modes
l = 0 and l = 1, that induces the open boundary on l = 1,
where the effective cavities line is shown in Fig. 7(b).

The above scheme can also be generalized to construct
sharp boundaries in high dimensional case. To intro-
duce sharp boundaries along the fourth dimension dis-
cussed in the main text, the hole size in BSs should be
designed such that Lb = 4N3. This ensures that all hop-
pings l→ l + Lb, with |l| < Lb, are blocked as expected for
a sharp boundary.

To estimate the sharpness of the boundaries, we calcu-
late the reflected portion of the Laguerre-Gaussian (LG)
modes on the BSs. The amplitude distribution of the
vector potential of LG modes can be written as

ulp (r, z, φ) =
E0

w (z)

 √2r
w (z)

|l| exp
(
−

r2

w2 (z)

)
L|l|p

(
2r2

w2 (z)

)
× exp

−ik
r2z

2
(
z2 + z2

R

)  exp (−iφl) exp (−ikz)

exp
(
i (|l| + 2p + 1) arctan

(
z
zR

))
, (G-1)

where r is the radial distance from the center axis of the
beams, z is the axial distance from the beams’ focus, φ
is the azimuth, p is the radial index, w = w0

√
1 + z/zR,

zR = πw2
0/λ, w0 is the waist radius, and L|l|p (x) is associ-

ated Laguerre polynomial. When the BS is located at
the waist of the modes and p = 0, the reflected parts of
the light can be written as

ηl =
1
I0

ˆ ∞
rh

rdr
ˆ 2π

0
dφ |ul0 (r, 0, φ)|2 , (G-2)

where I0 =
´ ∞

0 rdr
´ 2π

0 dφ |ul0 (r, 0, φ)|2, and rh is the radius
of the hole. In Fig. 7(c), we plot the intensity rI (r) ≡´ 2π

0 dφr |ul0 (r, 0, φ)|2 /I0 of LG modes with OAM l. The
maximum intensity locates at r0 = w0

√
2 |l| + 1/2, while

the intensity has the same full width at half maximum
(FWHM) when l→ ∞. After choosing rh, we can get the
effective hopping terms ηlηl+mc†l+mcl, instead of c†l+mcl.

Fig. 7(d) plots the effective hopping factor ηl, where rh
is determined through the equation η4N3 = 1−η4N3+1 with
4N3 the hopping distance on the 4th-direction. In this
system, the blocked hopping terms, started from l = 0 to
l = 4N3, create open boundaries along the 4th-direction
in the effective 4D system. The result indicates that the
boundary is very shape, sufficient for the detection of
the edge states, as discussed in the main text.
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FIG. 7. (a) The scheme of experimental setup to simulate 1D lattice with open boundary condition on the left edge. The main
cavity contains two beam splitters (BS 1 and BS 2 ) with one hole to block the hopping on the light with OAM l = 0. (b) The effective
cavities line of (a). The holes in BSs block the hopping on the light with OAM l = 0. (c) The strength of light of Laguerre-Gaussian
with p = 0 and OAM l. (d) The effective hopping factor ηl varies with the OAM l by choosing rh to guarantee η4N3 = 1 − η4N3+1,
where the number of unit cells on one dimension N = 11.
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