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Generating photon-added states without adding a photon 
 

S.U. Shringarpure and J.D. Franson 
University of Maryland Baltimore County, Baltimore, MD 21250 USA  

We show that a continuous range of nonclassical states of light can be generated using conditional 
measurements on the idler mode of an optical parametric amplifier. The output state is prepared by 
introducing a coherent state in the signal mode of the amplifier with a single photon in the idler 
mode, followed by a conditional measurement of a single photon in the output idler mode. By 
varying the gain of the amplifier, this approach can produce a coherent state, a photon-added state, 
a displaced number state, or a continuous range of other nonclassical states with intermediate 
properties.  We note that this approach can generate a photon-added state even though the post-
selected amplifier does not add any photons to the signal or idler modes.  The ability to generate a 
continuous range of nonclassical states may have practical applications in quantum information 
processing.  
 
 

 
I. Introduction 
 

There has been a large amount of research on the 
properties of various nonclassical states of light, such as 
photon-added coherent states [1-5] and displaced number 
states [6-8].  Nonclassical states of this kind are important 
resources for quantum information processing with 
continuous variables [9],  quantum-key-distribution 
[10,11], boson sampling [12], quantum teleportation 
[13,14] and dense coding [15].  In this paper, we describe a 
method for preparing a continuous range of nonclassical 
states of light using post-selection on the idler mode of an 
optical parametric amplifier. By varying the gain of the 
amplifier, this approach can be used to generate a coherent 
state, a photon-added state, a displaced number state, and a 
continuous range of other nonclassical states with 
potentially useful properties. 

The basic approach is illustrated in Fig. 1, where a 
coherent state is incident in the signal mode of an optical 
parametric amplifier with a single photon incident in the 
idler mode.  We post-select the output state of the signal 
mode when a single photon is detected in the output idler 
mode.  Since the signal and idler photons are emitted in 
pairs, the post-selection process ensures that no photons 
were emitted or absorbed in either mode.  Nevertheless, the 
post-selection process can have the effect of creating a 
photon-added state for an appropriate choice of the gain.  
Other choices of the gain can produce a displaced number 
state or states that are orthogonal to a coherent state or a 
photon-added state, which may be useful for continuous-
variable qubits.   

Quantum state engineering methods to prepare various 
types of quantum states [16], such as photon-
added/subtracted coherent states, thermal states, displaced 
number states [17], superpositions of number states [18], 
and truncated coherent states [19] have been explored using 
conditional measurements on beam splitters. These 
techniques have been very successful, but they have limited 
tunability of the prepared state due to the fixed 
transmittance of conventional beam splitters.  

 
 FIG. 1.  Optical parametric amplifier with a coherent state in the input 
signal mode and a single photon number state in the idler mode.  A 
measurement of a single photon in the output idler mode heralds the state 
of interest in the output signal mode.  By varying the gain, this process 
can produce a continuous range of quantum states in the output. 

 
The equivalence between a lossless beam splitter and 

an optical parametric amplifier when the input and output 
signals are appropriately interchanged has been previously 
discussed [20,21].  This equivalence allows an optical 
parametric amplifier to be used with conditional 
measurements in a way that is somewhat analogous to the 
use of a beam splitter.  This has been applied, for example, 
to the noiseless attenuation of coherent states [22] and the 
preparation of various non-classical states [23-25], and it 
provides part of the motivation for the work reported here. 
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This paper is organized as follows. Section II derives 
the form of the post-selected output state and the 
corresponding probability of success. Sections III and IV 
examine the behavior of the final state as a function of the 
amplifier gain, including the special cases where the output 
is a displaced number state or a photon-added state.  
Section V describes the properties of the output in phase 
space using the Q-function for specific values of the gain.  
Section VI provides a summary and conclusions.    

 
II. State preparation 
 

The time evolution operator Ŝ  for an optical 
parametric amplifier can be written in a factored form 
given by [26,27] 
 

                 
2 2† †† †ˆ ˆˆ ˆˆ ˆ1  ˆ ˆ )/ 1 /(ˆ .1 g a b g ab ga a b bg eS e

g
g− − −− +=   (1) 

 
Here cosh( )g tκ=  is the gain, where κ  is the coupling 
strength of the amplifier and t  is the interaction time, 

while â  and b̂  are the annihilation operators of the signal 
and the idler modes respectively. Note that we can 
effectively tune the amplifier gain by varying the intensity 

of the pump.  We will define 2 1 /G g g≡ − for 
convenience. 
 We assume that a coherent state sα  is 

introduced in the signal mode while a single photon 
number state 1 i   is incident in the idler mode of the 

amplifier.  This corresponds to an input state of 1s iα  , 

which is a simplified notation for 1s iα ⊗  in the tensor 

product space of the signal and idler modes. The 
transformation produced by the optical parametric 
amplifier is followed by a conditional measurement of a 
single photon in the idler mode, which can be represented 
by a projection operator Π̂  given by  
 
                                   ˆ 1 1 .i iΠ =   (2) 

 
Thus, the final state ψ  after these operations is given by 

 
                                ˆˆ 1 .s iSψ α= Π   (3) 

 Using a Taylor series expansion of the final 
exponential in Eq. (1) gives  
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We see that only the first two terms of the expansion 
contribute after it acts on the input state. Similarly, the 
adjoint of the Taylor series expansion of the first 
exponential factor in Eq. (1) acting on the projection 
operator to the left also gives only two non-vanishing 
terms: 
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 Next, we let the middle exponential factor in Eq. 
(1) act on the state obtained in Eq. (4). Expanding the 
coherent state in the number basis gives  
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Inserting Eqs. (1), (4), (5) and (6) in Eq. (3), we get the 
following post-selected (unnormalized) state in the signal 
mode 
 

               2| | /2 2 †
2

1 1 / .G
se G a g

gg
αψ α α− ⎛ ⎞

= −⎜ ⎟
⎝ ⎠

  (7) 

Eq. (7) shows that the post-selected output state is a 
superposition of an attenuated coherent state and a photon-
added coherent state, where the probability amplitudes of 
those two states can be controlled by varying the gain.  
 Eq. (7) can be rewritten in another useful form by 
using the fact that  ˆ/ /s sg ga gα α α=  which gives  
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                   2| | /2 2 †
2

1 ˆ ˆ / .G
se G a a g

g
αψ α− ⎛ ⎞

= −⎜ ⎟
⎝ ⎠

  (8) 

 
Since †ˆ ˆ ˆsa a n= , this gives the following expression for the 
final state: 
 

                    2| | /2 2
2

1 ˆ / .G
s se G n g

g
αψ α− ⎛ ⎞

= −⎜ ⎟
⎝ ⎠

  (9) 

 
This form of the post-selected output state provides useful 
insight into the effects of the post-selection process as 
viewed in a number-state basis, as will be discussed in the 
next section.   

The probability sP  of success for the post-

selection process is given by the norm of the final state ψ  

in Eq. (7), which can be shown to be 
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The final state can then be normalized to give 
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It can be seen that the probability of success is 
exponentially small for large values of | | .Gα   
 
III. Displaced photon number states 
 
 Eqs. (7) and (9) show that the post-selection 
process of Fig. 1 can be used to generate a continuous 
range of quantum states as we vary the gain.  In this 
section, we will describe some of the properties of these 
states as a function of the gain.  In particular, we will show 
that a specific value of the gain can be used to generate a 
displaced single-photon state.   
 Eq. (9) suggests that the value of the gain can be 
chosen in such a way that the coefficient nc  in an 

expansion of the state in a basis of number states will 
vanish for a specific value of .n   For example, an 
appropriate choice of the gain can cause nc  to vanish when 
n  is equal to the mean photon number.  In that case, the 
final state will have an asymmetric probability amplitude in 
the number state basis as illustrated in Fig. 2.  This allows 
the final state ψ  to be chosen to be orthogonal to the 

coherent state / sgα , which may be useful in generating 

two orthogonal states for use as a qubit, for example.   
 
 
 
 
 
 
 
 
 
 

 
  

 FIG. 2.  Coefficients nc  in the expansion of two states of interest in a 

basis of number states .n  The solid red line shows the coefficients nc  

for an attenuated coherent state 0/ gα  for the case of 2| | 10,α =  with 

0g  given by Eq. (12).  The dashed blue line shows the coefficients nc  of 

the final post-selected state for a value of the gain 0 ,g g=  which causes 

the final state to be orthogonal to the attenuated coherent state / .gα  It 
can be seen that the cancellation of the two terms on the right-hand side of 
Eq. (9) gives 0nc =  near the center of the distribution, so that the final 
state is approximately asymmetric about the mean photon number.  The 
final state in this case is a displaced single photon state. 

 
We will now show that a displaced number state can 

be produced by choosing a value of the gain given by 
 

                            0 2

1 .
1 1/ | |

g g
α

≡
−

=   (12) 

 
A displaced numbers state has the property that it is 
orthogonal to the corresponding coherent state, which may 
be a useful way to represent two orthogonal qubits.  
Inserting the value of the gain from Eq. (12) into Eq. (11) 
gives 
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This state can be simplified by making use of the 
displacement operator ˆ ( )D α  defined as usual by 

 
                            †ˆ ˆ* ,ˆ ( ) a aD eα αα −=   (14) 

 
which has the property that [7] 
 
                             ˆ ( ) | 0 | .D α α〉 = 〉        (15) 

 
 The displacement operator satisfies the following 
commutation relationship with the photon creation operator 
[7] 
 
                        †[ , ]ˆ ˆˆ ( ) * ( ).a D Dα α α=   (16) 

 
Eqs. (15) and (16) allows the 

† †
0 0ˆ ˆ (| / / ) 0

ss Da g a gα α〉 =  term in Eq. (13) to be 

rewritten in the opposite order of the operators.  The 
commutator cancels the 0/ gα  term in Eq. (13), which 
gives 
 

                       
0 0

| | ˆ ( / ) |1 .
*

| g sD gαψ α
α

⎛ ⎞
⎜ ⎟
⎝ ⎠

− 〉=〉   (17) 

 
Eq. (17) shows that the post-selected amplifier 
produces a displaced number state as desired for this 
value of the gain.   
                 Since ˆ ( )D α  corresponds to a unitary 
transformation and 1 0 0,=  it can be seen that the 
displaced number state produced in this way is 
orthogonal to the corresponding coherent state 

0| / sgα 〉 .  The orthogonality of these two states can 
be understood from the asymmetric nature of the 
amplitudes nc  in the photon number basis as shown 
in Fig. 2. 
           The displaced number state 

0
| gψ 〉  also has the 

interesting property that it has the same average 
photon number as the initial coherent state in the 
input to the optical parametric amplifier.  This can be 
shown by rearranging Eq. (12) into the form 

 
                            2 2

0/ | 1| | |gα α= − .  (18) 

 
The average photon number for a displaced photon number 
state is given by [7] 
 

                         2
ˆ ( ')| | | .ˆ 'D nn nα α

〉
=〈 〉 +        (19) 

 
Combining Eqs. (18) and (19) for 1n =  and ' / gα α=  , 
we see that the average photon number remains unchanged 
for 0.g g=   

However, the variance in the photon number for 
the output state 

0
| gψ 〉  is not the same as the input state.  

The variance for a displaced number states is given by [7] 
 
                       2

ˆ ( ')|Var( ) (2 1) | | .'D nn nα α
〉

= +   (20) 

 
Combining Eq. (18) and Eq. (20) gives a photon-number 
variance of  2 2

0/ 3 | | 33 | |gα α= − . 

We have shown that a gain of 0g g=  gives a 
displaced number state with 1n = .  We will now consider 
an arbitrary value of the gain and show that there is no 
contribution from displaced photon number states with 
photon number greater than 1. Using Eq. (16) in Eq. (11) 
allows the final state to be written in the form 
 

            
2

2 2
2 ,| 1 1 ,1G

g g g gg
G

N
α α α αψ

⎛ ⎞
⎜ ⎟〉 = − −
⎜ ⎟
⎝ ⎠

  (21) 

 
where we have used the notation ˆ ( ) | | ,D n nα α〉 = 〉  and  
 

                       
22 2

2 4
2 .1N G

g g
G

g
α α⎛ ⎞

⎜ − +⎟≡
⎜ ⎟
⎝ ⎠

  (22) 

Eq. (21) shows that the final signal state completely lies in 
the subspace of only two orthogonal states – the attenuated 
coherent state / gα  and the corresponding displaced 

single photon state.  
 
IV.  Photon added states 
 
 We showed in the previous section that the post-
selection process can produce a displaced number state that 
is orthogonal to a coherent state.  We now show that the 
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post-selection process can also produce a photon added 
state in the limit of large gain.   
 This can be seen intuitively from Eq. (7), where 
the 2 /G g  term becomes much larger than the 21/ g  term 
in the limit of large gain.  As a result, the first term can be 
neglected in that limit and the second term gives a photon 
added state proportional to †ˆ / .a gα  Figure 3 shows a 

plot of the absolute value squared of the inner product 
between the final state and a single-photon added coherent 
state.   The inner product approaches unity in the limit of 
large gain, which shows that the post-selected amplifier can 
generate a photon-added state in that limit as expected.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 FIG. 3.  A plot of the magnitude squared of the inner product of the 

output state with a photon-added state proportional to †ˆ / .a gα  The 

inner product is plotted as a function of the gain g  with 

10 ( 100).nα = =  It can be seen that the output state approaches a 
photon-added state in the limit of large gain, and that there is a gain 

1g g=  where the output is orthogonal to a photon-added state.  

 It can also be seen from Fig. 3 that the inner 
product vanishes for a specific value of the gain 1g g=  
where  
 
                                  1 ./ 0ˆg aα ψ =   (23) 

 
We can determine the value of 1g  by combining Eq. (23) 
with the requirement that the gain be real and greater than 
or equal to 1.  It can be shown that this occurs for 
 

                    
2 4

1
42 | | | |

.
2

g g
α α+ +

=
−

≡   (24) 

 

Thus, the final state is orthogonal to the photon added state 
proportional to †ˆ /a gα  for this value of the gain. The 

orthogonality of these two states may also be useful for 
generating continuous-variable qubits with two orthogonal 
states. 
 The contributions to the final state from an 
attenuated coherent state, a photon added state, and a 
displaced number state are summarized in Fig. 4, where the 
square of the projection of the final state onto these states is 
plotted over a relatively large range of the gain.  It can be 
seen that there are values of the gain where the output state 
is purely a coherent state, a displaced number state, or a 
photon added state.  In addition, it can be seen that the 
output is orthogonal to an attenuated coherent state or a 
photon added state for values of the gain equal to 0g  and 

1,g  respectively. 
 
 
 
 
 
 
 
 
 
 
 

 
 FIG. 4.  Magnitude squared of the projection of the final state onto 
specific quantum states with 2.α =   The solid black line shows the 
projection onto an attenuated coherent state, while the dashed blue line 
shows the projection onto a photon-added coherent state.  The dotted red 
line shows the projection onto a displaced photon number state.  Values of 
the gain g  where the final state is orthogonal to an attenuated coherent 
state or a photon added state can also be seen.  A logarithmic scale for the 
gain has been used in order to illustrate all of the relevant features. 

 
V.  Q-functions 
 

The Husimi-Kano Q-function [28,29] provides a 
convenient tool for visualizing the properties of quantum 
states as well as for calculating the expectation value of 
observables. For a single mode of the field, the Q-function 

( )Q α  is defined as  
 

                               ,( |) 1 ˆ|Q α α ρ α
π
〈= 〉   (25) 
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where ρ̂  is the density operator of the state. The Q-
function corresponds to the diagonal matrix elements of the 
density operator in a basis of coherent states.  For pure 
states, which we have here, this becomes 
 

                             21 | | |( ) ,Q α α ψ
π

〈 〉=   (26) 

 
where ψ  is given by Eq. (21). 

 Figure 5 shows a plot of the Q-function for some 
specific values of the amplifier gain. Fig. 5(a) shows the Q-
function for the initial coherent state α  corresponding to 

a gain of unity, while Fig. 5(b) shows a state that is 
orthogonal to a photon added state at a gain of 

1 1.111.g g= =   The Q-function for a displaced number 

state that occurs at a gain of 0 1.154g g= =  is shown in 
Fig. 5(c), and an arbitrary state at a higher gain of 

1.195g =  is shown in Fig. 5(d); the output state 
approaches a photon-added state in the limit of large gain.  
All of these plots correspond to a coherent state amplitude 
of 2,α =  but similar results are obtained for other values 
of .α  
 Fig. 5 exhibits the wide range of quantum states 
that can be produced using the post-selected amplifier 
illustrated in Fig. 1.  It can be shown from Eq. (9) that 
cancellation between the 21/ g   and 2G  terms will cause 

the probability amplitude nc  in a number-state basis to 

vanish at a particular value 0n  given by 
 

                                   0 2 2

1 .
g G

n =  (27) 

It can also be shown that the Q-function vanishes at a 
coherent state amplitude *α  given by  

                              0* .
( / )

n
g

α
β

=                                (28) 

 
 The zero in the Q-function indicates that the state 
is orthogonal to the corresponding coherent state * .α  As 

the gain is increased for a fixed input signal amplitude, the 
zero can be seen to move inwards from infinity towards the 
origin. This can be viewed as a generalization of the 
orthogonality of the displaced number state of Eq. (17) to 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 FIG. 5. Contour plots of the Q-function of the output state for an initial 
amplitude of 2  α = for various amplifier gain values. (a) 1.g = This 

corresponds to the input coherent state.  (b) 1 1.111.g g= =  This state is 

orthogonal to a photon added coherent state with an amplitude attenuated 
to 1/ .gα    (c) 0 1.154.g g= =  This is a displaced single photon state 

with the amplitude of displacement attenuated to 0/ .gα   (d) 1.195.g =  

This is an arbitrary state with a larger gain, which approaches a photon-
added state in the limit of large gain. 
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the coherent state 0| / .sgα 〉  It is consistent with the fact 
that, in the limit of large gain, the state becomes a single 
photon state that is orthogonal to the vacuum state.  
Roughly speaking, the existence of the zero in the Q-
function corresponds to the orthogonality of the 
asymmetric nc  coefficient in Fig. 2 to a particular coherent 
state. 
 
VI.  Experimental Considerations 
 
In any practical implementation of this approach, it will be 
essential to consider the effects of experimental errors such 
as photon loss, detector dark counts, and limited detector 
efficiencies.  In order to analyze the effects of these 
experimental errors, we will consider the specific 
implementation shown in Fig. 6. 
 It will be assumed that the single photon input to 
the idler mode of the optical parametric amplifier in Fig. 1 
is generated in one of the two output modes of a 
spontaneous parametric down conversion crystal (SPDC) 
as shown in Fig. 6.  The presence of the single photon is 
heralded by post-selecting on a detection event in the other 
output path of the SPDC.  We will assume that the 
spontaneous parametric down conversion process generates 
only a single pair of entangled photons at a time, which is a 
good approximation when the intensity of the laser used as 
a pump for the nonlinear crystal is sufficiently low. With 
this assumption, the only error in heralding a single photon 
is due to the dark counts in detector D1. 

 
FIG. 6. Possible experimental setup for the generation of a continuous 
range of quantum states. The single photon required for input to the idler 
mode of an optical parametric amplifier (OPA) is generated by 
spontaneous parametric down-conversion (SPDC) in the lower nonlinear 
crystal which  pumped by a laser. The detection of a single photon in 
detector D1 located in one of the output modes of the SPDC crystal 
heralds the presence of a single photon in the other mode. The single 
photon then enters an second nonlinear crystal used as an OPA, which is 
pumped by a second laser.  The gain of the OPA can be varied by 
controlling the intensity of the second laser, which allows a continuous 
range of quantum states to be generated. 

Post-selecting on the case in which a single 
photon is present in the output of the idler mode of the 
optical parametric amplifier in Fig. 1 will require a number 

resolving detector D2 as shown in Fig. 6.   Here a dark 
count in detector D2 will produce an error in which it is 
assumed that an idler photon was present even when there 
were none. In addition, limited detection efficiency in 
detector D2 can produce an error in which it was concluded 
that one idler photon was present even though there were 
actually two or more.  Errors of that kind are equivalent to 
photon loss combined with a perfect detection efficiency.   

We will assume that there is negligible probability 
that higher photon number states ( 3)n ≥  will falsely 
indicate that a single photon was present in detector D2, 
which is a good approximation for relatively high detection 
efficiencies.  We will also assume that there is negligible 
probability of having a dark count and a photon loss 
simultaneously.  With these assumptions, we will denote 
the dark count probability in both detectors by d  and the 
probability that a photon count is lost (due to detector 
inefficiency or actual photon loss) by a probability .l   

The fidelity F  of the final mixed state ρ̂  with 
the ideal output state |ψ 〉  of Eq. (9) is defined as  

 
                                   ˆ .F ψ ρ ψ=  (29) 

F   can be written as a sum of terms corresponding to the 
inner products of |ψ 〉  with the various states that are 
actually present in the output when a dark count or photon 
loss occurs.   There are six different possibilities that could 
contribute significantly to an outcome in which both 
detectors appear to register a single photon. These 
outcomes will be labelled (0, 0), (0, 1), (0, 2), (1, 0), (1, 1) 
and (1, 2), where the first and second entries denote the 
actual photon number in the input and output modes of the 
amplifier respectively. For example, (0, 0) is an event in 
which two dark counts occurred, while (1, 1) corresponds 
to the case in which both detectors functioned correctly. 

All six of these states can be calculated using 
techniques similar to those described above.  The outcome 
(0, 0) corresponds to the noiseless attenuation of an input 
coherent signal state | α 〉 to | / gα 〉  as shown in Ref. [22]. 
The state (0, 1) corresponds to photon addition on | / gα 〉
while (1, 0) corresponds to | / gα 〉 itself.  All six of these 
states can contribute to the fidelity in general since none of 
them are orthogonal to |ψ 〉  for an arbitrary value of the 
gain.  

The states (0, 2) and (1, 2) can also be calculated 
using similar techniques but they have a relatively 
complicated form.  For simplicity, we can calculate a lower 
bound on the fidelity by assuming that the states (0, 2) and 
(1, 2) are approximately orthogonal to the desired state | .ψ 〉   
In that case, the lower bound on the fidelity is  given by 
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2 22

(0,0) (0,1)

2 2

(1,0) (1,1)

(1 )

(1 ) (1 )(1 ) .

F d d d l

d d d d l

φ ψ φ ψ

φ ψ φ ψ

= + − −

+ − + − − −
 (30) 

 
Figure 7 shows the lower bound on the fidelity as a 
function of d for several values of .l  We have also plotted 
the actual fidelity including the contributions from the 
states (0, 2) and (1, 2). It can be seen that limited detection 
efficiency and dark counts can both have an effect on the 
fidelity. 
              The detectors used in pulsed down-conversion 
experiments have dark counts corresponding to d  as low 
as 610 ,− so that dark counts should have a relatively small 
impact on the fidelity. Superconducting detectors can have 
efficiencies of about 95% ( 0.05)l ≤  which would also 
have a minimal effect on the fidelity, whereas the more 
common silicon photo avalanche diodes can have detector 
efficiencies up to ~74% [30].  In both cases, the dominant 
error source is more likely to be actual photon loss due to 
coupling between fibers or absorption in filters.  

VII.  Summary and conclusions 
 
We have shown that post-selection on the idler mode of an 
optical parametric amplifier can generate a continuous 
range of quantum states with different properties.  As 
illustrated in Fig. 1, a coherent state is assumed to be 
incident in the signal mode while a single photon is 
incident in the idler mode.  Post-selection on a single 
photon emerging in the idler mode gives an output state 
whose properties depend on the gain of the amplifier.  The 
states that can be generated in this way include a coherent 
state, a displaced number state, and a photon added state, 
along with a continuous range of states with intermediate 
properties.  
 One of the interesting features of this approach is 
that no photons are absorbed or emitted in the idler mode 
due to the post-selection process, and no photons are 
absorbed or emitted in the signal mode either since the 
photons are only absorbed or emitted in pairs.  As a result, 
one might suspect that the amplifier has done nothing.  
Nevertheless, the post-selection process can change the 
probability amplitudes nc  of the state in a number-state 
basis, since different values of n  will have different 
probability amplitudes for producing the post-selected 
output.  In that respect, these results are somewhat similar 
to an earlier paper [31] in which we considered post-
selecting on an ensemble of absorbing atoms, accepting 
only those events in which the atoms remained in their 
ground states.  Although the atoms may appear to have 

done nothing, the post-selection process can increase the 
amount of absorption or even produce gain, depending on 
the strength of the interaction.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. 7. Fidelity of the output stated plotted as a function of the dark count 
probability d for several values of the loss probability .l   The blue dashed 
curve shows the lower bound on the fidelity obtained by neglecting the 
contributions from the states (0, 2)  and (1, 2)  as described in the text. The 
black solid curve shows the actual fidelity without neglecting those terms. 

2α =  and 0 4( ) 1.15g g α ==  were chosen for the plots.                             

(a) Loss probability 0.0.l =  (b) 0.2l =  (c) 0.5.l =   

 
The state produced by the post-selection process is 

orthogonal to a coherent state whose amplitude depends on 
the value of the gain.  This can be understood as being due 
to cancellation between the two gain-dependent terms in 
Eq. (9), which produces an asymmetric dependence of the 
coefficient nc  as a function of n  as illustrated in Fig. 2.  A 
corresponding zero in the Q-function is apparent in Fig. 5.  
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This orthogonality may be a useful property when using 
these states as continuous variable qubits.   

It can be seen from Eq. (10) that the probability of 
success becomes exponentially small for coherent state 
inputs with a large amplitude, since it becomes increasingly 
unlikely that one or more pairs of photons will not be 
emitted due to stimulated emission in the signal mode. This 
is one of the major open problems in quantum state 
engineering using conditional measurements. Nevertheless, 
this approach may have useful applications for moderate 
values of the gain and input coherent state amplitudes.  The 
fidelity of the output state is primarily limited by photon 
loss or detector efficiency, but reasonably high values of 
the fidelity should be achievable. 

Our analysis provides an interesting example of the 
variety of quantum states that can be obtained by varying 
the gain in a post-selected optical parametric amplifier.  In 
addition, this approach may have practical applications for 
moderate values of ,α  since the gain and the output state 
can be continuously varied by adjusting the intensity of the 
pump beam.  Two amplifiers can also be used in a 
somewhat similar technique to create entangled 
macroscopic states, as will be discussed in a separate paper.   
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Appendix 

 
 The mean and variance of the photon number 
were briefly discussed in the main text.  The purpose of this 
appendix is to discuss some of their properties in more 
detail. 
 For convenience, we rewrite the output state from 
Eq. (21) in the form 
 

                          0 1 ,| ,1C C
g g
α αψ 〉 = +                 (A1)  

where  

                         
2

2
0 2

1 1C G
ggN
α⎛ ⎞

⎜ ⎟≡ −
⎜ ⎟
⎝ ⎠

                    

(A2) 

and 

                                2
1 .1 G

gN
C α≡ −   (A3) 

Using these definitions, the average photon number can be 
shown to be 

                

2 2
2 2
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2 2
2

2

| 1

2 .

|ˆ | |
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α α

α α

⎛ ⎞
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⎛ ⎞
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−

              (A4)  

This can be simplified further by using †ˆ ˆ ˆn a a=  to give  
 

         

2 2
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*
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|
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〉
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⎝

=

⎞
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⎠

      (A5)  

 Fig. 8 shows the behavior of the average photon 
number as a function of the amplifier gain. We observe that 
the average photon number initially decreases as we 
increase the gain before increasing to a maximum value at 
a gain of approximately 0 .g  This behavior can also be seen 
in Fig. 5 where the peak value shifts closer to the origin 
between Fig. 3 (a) and (b) whereas the peak shifts away 
from the origin between Fig. 3 (b) and (d). 
 
 

 

 
 

FIG. 8. Average photon number in the output signal mode as a function of 
the amplifier gain ,g  for an incident coherent state amplitude of 2.α =  

The solid red vertical line corresponds to a gain of 0g g=  while the black 

dashed vertical line corresponds to a gain of 1.g g=   

The second moment of photon number in the final 
state can also be calculated using a similar procedure to 
give             
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  (A6) 

 
from which the variance in the photon number can be 
calculated using 
                          2 2Var( ) .ˆ ˆn nn 〉 −= 〈 〈 〉   (A7) 

 A plot of the variance is shown in Fig. 9 for an 
input coherent state amplitude of 2.α =  It can be seen that 
the variance increases rapidly to a maximum value at a gain 
of approximately 0 .g   This feature could be useful in 
experiments for determining if the output state is close to 
the displaced single photon state.  Another interesting 
feature that can be seen in these plots is that the average 
photon number approaches unity in the limit of high gain 
while the variance vanishes, suggesting that a single photon 
state is produced in that limit. 
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 FIG. 9. Variance in the photon number of the output signal mode as a 
function of amplifier gain for the case in which the input coherent state 
has an amplitude of 2α = .  As in Fig. 6, the solid red vertical line 

corresponds to a gain of 0g g=  while the black dashed vertical line 

corresponds to a gain of 1.g g=  


