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Most interferometers operate with photons or dilute, non-condensed cold atom clouds in which
collisions are strongly suppressed. Spinor Bose-Einstein condensates (BECs) provide an alternative
route toward realizing three-mode interferometers; in this realization, spin-changing collisions pro-
vide a resource that generates mode entanglement. Working in the regime where the pump mode,
i.e., the m = 0 hyperfine state, has a much larger population than the side or probe modes (m = ±1
hyperfine states), f = 1 spinor BECs approximate SU(1,1) interferometers. We derive analytical
expressions within the undepleted pump approximation for the phase sensitivity of such an SU(1,1)
interferometer for two classes of initial states: pure Fock states and coherent spin states. The inter-
ferometer performance is analyzed for initial states without seeding, with single-sided seeding, and
with double-sided seeding. The validity regime of the undepleted pump approximation is assessed
by performing quantum calculations for the full spin Hamiltonian. Our analytical results and the
associated dynamics are expected to guide experiments as well as numerical studies that explore
regimes where the undepleted pump approximation makes quantitatively or qualitatively incorrect
predictions.

I. INTRODUCTION

Quantum enhanced measurement protocols or quan-
tum metrology refer to improving the precision mea-
surement of a physical parameter or physical parame-
ters using quantum protocols [1, 2]. Nowadays, quan-
tum metrology is a powerful workhorse across physics,
including areas as diverse as gravitational wave detec-
tion [3–5]; sensing applications [6] such as magnetome-
try [7, 8], gravitometry [9], and electric field determina-
tions [10]; optical communication [11]; and image recon-
struction [12, 13].
A classical approach for improving the estimation

would repeat the measurement on N identical but inde-
pendent systems or uncorrelated particles. For single pa-
rameter estimations, such an approach leads to a 1/

√
N

scaling, which is typically referred to as standard quan-
tum limit [4] or shot noise limit [14, 15]. Beyond (i.e., bet-
ter than) the standard quantum limit performance can
be achieved by taking advantage of quantum resources.
Caves pointed out in 1981 [4] that squeezed states can
improve the performance to a 1/N scaling. Motivated
by the heuristic phase-particle number Heisenberg un-
certainty relation ∆θ∆N ≥ 1, Holland and Burnett [16]
referred to the 1/N performance as “Heisenberg limit”.
Unfortunately, unique definitions of the standard quan-
tum limit and the Heisenberg limit are not available [2].
Quite generally, to specify these limits, the classical re-
sources need to be defined and the improvement of the
parameter estimation due to the additional quantum re-
sources needs to be quantified.
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Assuming a generic set-up that consists of three
components—(i) input, (ii) “actual device”, and (iii)
measurement and parameter estimation—one can at-
tempt to improve the performance by optimizing either
of the three components listed above. The present work
focuses on quantifying the performance of a paradigmatic
device, namely an interferometer, using established for-
mulations for the parameter estimation: the phase sen-
sitivities ∆θQCR and ∆θep that are, respectively, derived
from the quantum Cramer-Rao bound [17–19] and error
propagation [1].

The interferometer considered is an SU(1,1) interfer-
ometer based on a f = 1 spinor Bose-Einstein conden-
sate (BEC) [20, 21] with three internal hyperfine compo-
nents, namely the hyperfine states with projection quan-
tum numbers m = +1, m = 0, and m = −1 (f de-
notes the total spin angular momentum of the atom). An
SU(1,1) interferometer can be constructed by replacing
the passive beam splitters in a Mach-Zehnder interferom-
eter by active non-linear parametric amplifiers, which can
generate quantum correlations and entanglement [14].

Our study is motivated by the quest to get a handle
on the role played by correlations and entanglement of
the initial state and of the state during the amplification
step. Given a device and parameter estimation scheme,
how does the absolute performance depend on the initial
state? Given a certain class of initial states, what are
the device parameters that yield the best absolute phase
sensitivity? Besides providing general insight and being
important for studies in the regime where the undepleted
pump approximation holds, our results are expected to
provide guidance for spinor BEC based interferometer
studies that operate outside the SU(1,1) regime.

Treating the spinor BEC in the single-mode approxi-
mation [22] and further working in the undepleted pump
approximation [23], we report explicit analytic expres-
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sions for the phase sensitivity and a number of auxiliary
observables for two classes of initial states: pure Fock
states and coherent spin states. We consider the situa-
tions where all atoms are in the m = 0 state and the side
modes are empty (“vacuum state” [24]), the majority of
atoms is in the m = 0 state and either the m = +1 mode
or m = −1 mode has a small population (single-sided
seeding), and the majority of atoms is in the m = 0 state
and the m = +1 and m = −1 modes both have small
populations (double-sided seeding). For selected observ-
ables, we present analytic expressions for an arbitrary
pure initial state. Physical interpretations of the analyt-
ical expressions are presented. The validity regime of the
undepleted pump approximation is assessed by simulat-
ing the entire interferometer sequence for the full spin
Hamiltonian numerically.
The remainder of this paper is organized as follows.

Sections IIA and II B introduce the spin Hamiltonian
that underlies this work and the basic operating principle
of a spinor BEC based interferometer, respectively. The
parameter estimation procedures considered in this work
are introduced in Sec. II C and the undepleted pump ap-
proximation is introduced in Sec. II D. The equations of
motion within this approximation and their solutions are
introduced in Secs. III A and III B and explicit analytical
results for the side mode population and the correspond-
ing fluctuation are presented in Sec. III C. Section IV
analyzes our analytical results. Two classes of initial
states are considered: pure Fock states (see Sec. IVA)
and coherent spin states (see Sec. IVB). Finally, Sec. V
presents a conclusion.

II. PROBLEM DEFINITION AND
THEORETICAL BACKGROUND

A. Full spin Hamiltonian

Our description accounts for the three hyperfine states
of an f = 1 spinor BEC consisting of N atoms within the
single-mode approximation, which assumes that the spa-
tial degrees of freedom are integrated out [22, 25]. As a
result, the dynamics is governed by the spin Hamiltonian
Ĥspin, which treats each atom as a structureless spin-1
“object” that undergoes two-body s-wave collisions [25],

Ĥspin(c, q) =
c

N

(

â†+1â
†
−1â0â0 + h.c.

)

+
c

N

(

N̂0 −
1

2

)(

N̂+1 + N̂−1

)

+q
(

N̂+1 + N̂−1

)

. (1)

The first term on the right hand side of Eq. (1) describes
spin-changing collisions, also referred to as spin-mixing
dynamics; this term is identical to the four-wave mixing
term in nonlinear quantum optics [14]. The second term
on the right hand side of Eq. (1) corresponds to the col-
lisional shift and the third term is a single-particle shift.

For reasons that will become clear in Sec. II B, we refer
to this term of the Hamiltonian as linear phase shifter
(LPS) Hamiltonian ĤLPS,

ĤLPS(q) = q
(

N̂+1 + N̂−1

)

. (2)

The operators â†m and âm satisfy the bosonic commuta-
tion relation

[
âm, â

†
m

]
= 1 (â†m creates and âm destroys

an atom in hyperfine state |f = 1,m〉) and the atom num-

ber operator N̂m is defined through N̂m = â†mâm. The
coefficient q contains a “Zeeman contribution” qB from
an external magnetic field and a contribution qMW from
a microwave field, q = qB + qMW [26, 27]. The strength
c,

c = c n, (3)

of the collision terms is determined by the mean spatial
density n and the coefficient c, which is proportional to
the difference between the scattering lengths aF for two
atoms with total spin angular momentum F = 0 and
F = 2,

c =
2π~2

µ

a2 − a0
3

. (4)

Here, µ is the reduced two-body mass. In typical 23Na
and 87Rb BEC experiments, |c/h| is of the order of 20 Hz
(c and c are both positive for 23Na and both negative for
87Rb) and q/h can be tuned from negative values to zero
to values much larger than |c/h| [26, 27].

B. Spinor BEC interferometer

The three-mode spinor BEC interferometer takes an
initial state |Ψ(0)〉, time evolves it under the spin Hamil-

tonian Ĥspin, and then performs a measurement or mea-
surements that form the basis for determining the phase
sensitivity [see Fig. 1(a)]. In our work, |Ψ(0)〉 is a pure
state; more generally, one could consider a mixed initial
state ρ̂(0). The time evolution is, as shown in Fig. 1(b),
divided into three time intervals of lengths t1, t2, and t3.

1. The first time sequence (t = 0 to t = t1),
which is referred to as “state preparation”, applies
Ĥspin(c1, q1) to the initial state |Ψ(0)〉,

|Ψ(t1)〉 = e−ıĤspin(c1,q1)t1/~|Ψ(0)〉. (5)

2. The second, “phase encoding” time sequence (t =
t1 to t = t1 + t2) imprints the relative phase
θ = 2qpst2/~ by applying the linear phase shifter

Hamiltonian ĤLPS(qps), which is characterized by

the generator (N̂+1 + N̂−1)/2 [19],

|Ψ(t1 + t2)〉 = e−ıĤLPS(qps)t2/~|Ψ(t1)〉. (6)
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FIG. 1. (Color online) Schematic of interferometer. (a) Basic
layout. The initial state |Ψ(0)〉 gets fed into the interferometer
at time t = 0. At time t = t1+t2+t3, measurements are made
on |Ψ(t1 + t2 + t3)〉. The present paper investigates how the
phase sensitivity ∆θep, obtained from |Ψ(t1+t2+t3)〉, depends
on the initial state |Ψ(0)〉 and how the phase sensitivity can
be minimized for a given |Ψ(0)〉 by tweaking the parameters of
the Hamiltonian that governs the time evolution. (b) Break-
down of the three-step interferometer sequence. During step
1., the dynamics is governed by Ĥspin(c1, q1), ĤUPA(c1, q1),

or ĤUPA,r(c1). During step 2., the dynamics is governed by

the linear phase shifter Hamiltonian ĤLPS(qps). During step

3., the dynamics is governed by Ĥspin(c3, q3), ĤUPA(c3, q3),

or ĤUPA,r(c3). (c) The horizontal lines represent, from left
to right, the hyperfine states m = +1, m = 0, and m = −1.
The population of the m = 0 mode is much larger than that
of the m = ±1 side modes. Spin-changing collisions play an
important role during steps 1. and 3. of the interferometer
sequence but are turned off during step 2..

If an appropriate Fano-Feshbach resonance [28] ex-
ists, the linear phase shifter Hamiltonian can be
realized by tuning c to zero. In the absence of
Fano-Feshbach resonances, the linear phase shifter
Hamiltonian can be realized approximately by op-
erating in the regime where |q| ≫ |c|.

3. The third time sequence (t = t1 + t2 to t = t1 +
t2 + t3), which is referred to as “read out”, applies

the spin-mixing Hamiltonian Ĥspin(c3, q3),

|Ψ(t1 + t2 + t3)〉 = e−ıĤspin(c3,q3)t3/~|Ψ(t1 + t2)〉.(7)

The mean number Ns(t) of atoms in the m = +1 and
−1 side modes and the corresponding quantum fluctu-
ation ∆Ns(t) play an important role in analyzing the
interferometer performance, which is quantified by the
phase sensitivity (see Sec. II C for details). We define

N̂s = N̂+1 + N̂−1, (8)

Ns(t) = 〈N̂s〉 = 〈Ψ(t)|N̂s|Ψ(t)〉, (9)

and

∆Ns(t) =

√

〈(N̂s)2〉 − 〈N̂s〉2. (10)

The quantities Nm(t) and their quantum fluctuations are
defined analogously.

C. Quantifying the interferometer performance

To quantify the interferometer performance, we con-
sider two different quantities, namely ∆θep and ∆θQCR.
We emphasize that the discussion in this section is spe-
cific to the situation where the phase imprinting is based
on the linear phase shifter Hamiltonian. Non-linear phase
imprinting protocols modify how the various limits scale
with the number of (active) atoms [19, 29, 30].
The phase sensitivity ∆θep is obtained through error

propagation,

∆θep =
∆Ns(t1 + t2 + t3)

|∂θNs(t1 + t2 + t3)|
. (11)

Since it is evaluated at t = t1 + t2 + t3, it depends on all
three steps of the interferometer sequence as well as the
initial state. The fact that ∆θep is fully determined by
the characteristics of the side mode population makes it
readily accessible to cold atom experiments.
A stringent limit on the parameter estimation is set by

the phase sensitivity ∆θQCR, which is derived from the
quantum Cramer-Rao bound [1, 17],

∆θQCR[|Ψ(t1)〉, N̂s/2] =
1

√

FQ

[

|Ψ(t1)〉, N̂s/2
] . (12)

Here, FQ denotes the quantum Fischer information. For
the interferometer with linear phase shifter, the quantum
Fischer information depends on |Ψ(t1)〉 and the genera-

tor N̂s/2 that is associated with the linear phase shifter
Hamiltonian. Importantly, the phase sensitivity ∆θQCR

is independent of the readout step. In general, one finds

∆θep ≥ ∆θQCR[|Ψ(t1)〉, N̂s/2], (13)

i.e., the quantum Cramer-Rao bound provides a lower
bound for the error propagation based sensitivity estima-
tor. For pure states |Ψ(t1)〉 and linear phase imprinting

generated by N̂s/2, one finds [1]

∆θQCR

[

|Ψ(t1)〉, N̂s/2
]

=
1

∆Ns(t1)
. (14)

Ideally, one would like to operate in the regime where the
quantity ∆θep/∆θQCR is close to one, i.e., in the regime
where the error propagation based sensitivity ∆θep is as
close as possible to the best achievable phase sensitivity.
For comparison, we also report the Heisenberg limit

∆θHL, which we take to be defined in terms of the number
Ns(t1) of atoms in the side modes at time t1,

∆θHL =
1

Ns(t1)
; (15)
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Ns(t1) can be thought of as the number of “active atoms”
during the phase imprinting stage of the SU(1,1) inter-
ferometer. In this context, it is worthwhile mentioning
that there exist a variety of definitions and interpreta-
tions of the Heisenberg limit [1, 17–19, 24, 29–32]. Sec-
tion IV shows that the SU(1,1) interferometer with linear
phase imprinting allows for situations where the quan-
tum Cramer-Rao bound based phase sensitivity, which
provides a strict lower bound, is larger than the Heisen-
berg limit defined in Eq. (15), thereby underpinning the
notion that the Heisenberg limit, as defined in Eq. (15),
should not be interpreted as defining the ultimate or best
achievable performance.

D. Undepleted pump approximation

The interferometer sequence introduced in Sec. II B
has, in general, to be modeled numerically. Analytical
results can, however, be obtained within the undepleted
pump approximation (UPA) [23, 24, 33, 34], which re-

places the operators â†0 and â0 by the square-root of the
mean number N0 of particles in the m = 0 mode at time
t = 0,

Nm = 〈Ψ(0)|N̂m|Ψ(0)〉. (16)

The approximation is consistent with considering a large
reservoir of atoms in the m = 0 pump mode. Physically,
the undepleted pump approximation assumes that the
majority of atoms occupies the m = 0 pump mode. This
places restrictions on the initial state and on the operat-
ing time t1 + t2 + t3 of the interferometer, since only a
small fraction of the atoms should get pumped (i.e., scat-
tered) into the m = +1 and m = −1 side modes during
the time evolution.
Dropping the constant energy shift −c(N0−1/2)/N−

q, the spin Hamiltonian Ĥspin in the undepleted pump
approximation reads

ĤUPA(c, q) =
2N0c

N
K̂x

+2

[
N0c

N

(

1− 1

2N0

)

+ q

]

K̂z, (17)

where the operators K̂x, K̂y, and K̂z are elements of the
SU(1,1) group [14],

K̂x =
1

2

(

â†+1â
†
−1 + â+1â−1

)

, (18)

K̂y =
1

2ı

(

â†+1â
†
−1 − â+1â−1

)

, (19)

and

K̂z =
1

2

(

N̂s + 1
)

. (20)

Since the Hamiltonian ĤUPA can be written in terms of
the elements of the SU(1,1) group, the resulting interfer-
ometer is an SU(1,1) interferometer. It is important to

realize that ĤUPA does not conserve the particle number.
In the context of photons, this is very natural. In the con-
text of spinor BECs as considered in this paper, this is
not natural since the number of atoms is, neglecting one-
, two-, and higher-body losses, conserved. We elaborate
on this discussion in Sec. IVB and Appendix C.
Looking ahead, we also define the simpler “resonant”

Hamiltonian ĤUPA,r, which assumes that the collisional
and Zeeman shifts cancel each other, as a special case.
Setting q in ĤUPA to qc,

qc = −N0c

N

(

1− 1

2N0

)

, (21)

we obtain

ĤUPA,r(c) =
2N0c

N
K̂x. (22)

Since N0 is assumed to be close to N and N is much
greater than 1, we have qc ≃ −c.
Our analytical results presented in Secs. III and IV

are obtained for the standard three-step sequence of the
SU(1,1) interferometer, which is identical to the sequence

introduced in the previous section with Ĥspin replaced by

ĤUPA.

III. SOLUTIONS FOR SU(1,1)
INTERFEROMETER

A. Equations of motion

To simulate the SU(1,1) interferometer sequence dis-
cussed in the previous section, we work in the Heisenberg
picture. The equations of motion for the time-dependent
operators â+1 and â−1 then read [14, 34]

ı~∂tâ±1(t) = [â±1(t), ĤUPA(t)]. (23)

Solving the coupled linear equations implied by Eq. (23),
one obtains [14]

(
â+1(t1 + t2 + t3)

â†−1(t1 + t2 + t3)

)

=

(
Ã B̃

B̃∗ Ã∗

)(
â+1(0)

â†−1(0)

)

, (24)

where the “transfer matrix” is constructed by applying
three consecutive operations (one for each of the three
interferometer steps),

(
Ã B̃

B̃∗ Ã∗

)

=

(
A3 B3

B∗
3 A∗

3

)(
e−ıθ/2 0

0 eıθ/2

)(
A1 B1

B∗
1 A∗

1

)

. (25)

Performing the matrix multiplication, one finds

Ã = A1A3e
−ıθ/2 +B∗

1B3e
ıθ/2 (26)

and

B̃ = B1A3e
−ıθ/2 +A∗

1B3e
ıθ/2. (27)
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Note that Ã and B̃ depend on t1, θ, and t3 (recall that
θ depends on t2); for notational simplicity, these depen-
dencies are not explicitly indicated. The quantities Aj

and Bj depend on tj . The next section reports explicit

expressions for Aj , Bj , |Ã|2, and |B̃|2 that are applicable
to arbitrary parameter combinations.

B. General solution

Even though steps 1. and 3. of the interferometer se-
quence depend on six independent, experimentally con-
trollable parameters (namely c1, c3, q1, q3, t1, and t3),
the solutions for Aj and Bj (j = 1 and 3) within the un-
depleted pump approximation can be expressed in terms
of four dimensionless parameters ξ1, ξ3, χ1, and χ3, which
are defined through

ξj =
N0cjtj
N~

(28)

and

χj =

√

1−
(

1− qj
qc,j

)2(

1− 1

2N0

)2

. (29)

Here, qc,j is given by Eq. (21) with c replaced by cj . In
what follows, we refer to ξ1, ξ3, χ1, and χ3 as interfer-
ometer parameters. As an example, Figs. 2(a) and 2(b)
show the dependence of ξj on the time tj and the de-
pendence of the real and imaginary parts of χj on the
dimensionless parameter qj/qc,j for a 23Na condensate

with N0 = N = 10000 (see Appendix A for details).
Using the parameters defined in Eqs. (28) and (29), Aj

and Bj can be written as

Aj = cosh (ξjχj)−
ı
√

1− χ2
j

χj
sinh (ξjχj) (30)

and

Bj = − ı

χj
sinh (ξjχj) . (31)

Note that the interferometer performance may depend on
additional parameters that characterize the initial state
such as the initial seeding fraction; Aj and Bj are, how-
ever, independent of these additional parameters. One
finds

|Ã|2 = (|A1A3| − |B1B3|)2 + 2|A1A3B1B3| ×
[1 + cos(θ − γA1

− γA3
− γB1

+ γB3
)] (32)

and

|B̃|2 = (|A1B3| − |A3B1|)2 + 2|A1A3B1B3| ×
[1 + cos(θ − γA1

− γA3
− γB1

+ γB3
)] , (33)

where the phases γAj
and γBj

are given by γAj
= arg(Aj)

and γBj
= arg(Bj), respectively. It can be checked

that both |Aj |2 − |Bj |2 and |Ãj |2 − |B̃j |2 are equal to
1. Appendix B summarizes selected properties implied
by Eqs. (28)-(31).

0 10 20 30
t
j
 (ms)

0

1

2

3

0 10 20 30
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q

j
/q

c,j

-1 0 1 2 3

0

0.5

1

1.5

2

(a)

(b)

R
e(

χ j);
Im

(χ
j)

ξ j

FIG. 2. (Color online) Dimensionless parameters ξj and χj

that govern steps 1. and 3. of the interferometer sequence.
(a) The solid line shows ξj as a function of tj . (b) The solid
and dashed lines show the real and imaginary parts of χj

as a function of the dimensionless parameter qj/qc,j . The
plots are made assuming a 23Na condensate with N = N0 =
10000, cj/h = 15.9956 Hz, and qc,j/h = −15.9948 Hz (see
Appendix A for details).

C. Side mode population and associated quantum
fluctuation

Armed with explicit expressions for â+1(t), â
†
+1(t),

â−1(t), and â†−1(t) for all t between 0 and t1 + t2 + t3,

the expectation value of the operator N̂s and the cor-
responding quantum fluctuation at any time t can be
calculated for any initial state |Ψ(0)〉, assuming the un-
depleted pump approximation is valid. We find
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Ns(t1 + t2 + t3) = |Ã|2 + |B̃|2 − 1 +
(

|Ã|2 + |B̃|2
)

Ns + 2
(

ÃB̃∗P + c.c.
)

(34)

and

∆Ns(t1 + t2 + t3) = 2|ÃB̃| ×
√

1 +Ns + 2Cov(P̂ †, P̂ ) +
[

e2ı(γÃ−γB̃)
(
∆P

)2
+ c.c.

]

+ 2
[

eı(γÃ−γB̃)
(

P +Cov(N̂s, P̂ )
)

+ c.c.
]

I +
(
∆Ns

)2 I2,(35)

where γÃ = arg(Ã) and γB̃ = arg(B̃). The quantity I is
independent of the properties of the initial state,

I =
|Ã|2 + |B̃|2

2|ÃB̃|
. (36)

In Eqs. (34) and (35), Ns is the number of atoms in the
side modes at time zero and P ,

P = 〈Ψ(0)|P̂ |Ψ(0)〉, (37)

is defined in terms of the “pair annihilation operator”,

P̂ = â+1â−1. (38)

The quantities ∆Ns and ∆P denote the quantum fluc-
tuations associated with Ns and P , respectively,

∆O = ∆O(0) (39)

(here, O denotes an arbitrary observable). Last, the

quantity Cov(Ô1, Ô2) denotes the covariance of the op-

erators Ô1 and Ô2 at time zero,

Cov(Ô1, Ô2) = 〈Ψ(0)|Ô1Ô2|Ψ(0)〉 −
〈Ψ(0)|Ô1|Ψ(0)〉〈Ψ(0)|Ô2|Ψ(0)〉. (40)

As written, Eqs. (34) and (35) apply to an arbitrary
pure initial state |Ψ(0)〉. These equations also apply
to an initial mixed state ρ̂(0), provided O, ∆O, and

Cov(Ô1, Ô2) are generalized. For example, O would be

defined as Tr[ρ̂(0)Ô] and analogous generalizations would
apply for the other expectation values.
As already discussed earlier, |∂θNs(t1 + t2 + t3)| and

∆Ns(t1 + t2 + t3) govern the phase sensitivity ∆θep.
It follows from Eqs. (34) and (35) that the interfer-
ometer performance depends on two aspects: (i) the
initial state through the quantities Ns, ∆Ns, P , ∆P ,

Cov(N̂s, P̂ ), and Cov(P̂ †, P̂ ); and (ii) the interferometer

device through Ã and B̃. Recall, Ã and B̃ are, within
the undepleted pump approximation, fully determined
by the five dimensionless parameters ξ1, ξ3, χ1, χ3, and
θ. Importantly, the first term on the right hand side of
Eq. (34) and the first term inside the square root sign of

Eq. (35) depend only on the interferometer device while
all other terms “mix” the interferometer device and the
initial state.
We can also look at the quantum Cramer-Rao bound

1/∆Ns(t1). Equations (34) and (35) yield Ns(t1) and
∆Ns(t1) if Ã, B̃, γÃ, and γB̃ are replaced by A1, B1,
γA1

, and γB1
, respectively. It follows that Ns(t1) de-

pends, within the undepleted pump approximation, on
the initial state only through Ns and P , i.e., the ini-
tial seeding and the initial “pair correlation”. If Ns

and P are zero, Ns(t1) grows exponentially with increas-
ing |ξ1χ1| if χ1 is real. Maximal growth is obtained for
q1 = qc,1 (corresponding to χ1 = 1), with a growth rate

of N0c1/(N~). The regime where Ns(t1) grows exponen-
tially is referred to as dynamical instability [35]. Since
the fluctuation ∆Ns(t1) depends on the initial state, the
quantum Cramer-Rao bound as well as ∆θep can be con-
trolled, at least partially, by adjusting the initial state.

D. Special cases

The solutions presented in Secs. III B and III C simplify
significantly for the resonant case, i.e., when qj is set to

qc,j and ĤUPA reduces to ĤUPA,r. Columns 1 and 2 of
Table I summarize selected expressions for two resonant
cases (χ1 = χ3 = 1), namely the resonant symmetric
interferometer for which ξ = ξ1 = ξ3 and the resonant
asymmetric interferometer for which ξ1 6= ξ3. In the
former case, the interferometer is fully characterized by
the dimensionless parameter ξ and the phase θ; this case
has been considered in Ref. [24] for the vacuum state. In
the latter case, the interferometer is fully characterized
by the two dimensionless parameters ξ1 and ξ3 and the
phase θ; this case has been considered in Ref. [23] for a
class of density matrices.
The solutions also simplify notably for the non-

resonant symmetric interferometer for which ξ = ξ1 =
ξ3 6= 1 and χ = χ1 = χ3. In this case, the interferometer
is fully characterized by the two dimensionless parame-
ters ξ and χ as well as the phase θ. This case has been
considered in Ref. [36] and selected expressions are sum-
marized in column 3 of Table I.

The SU(1,1) interferometer has a “time reversal sym- metry” when Ns(t) and ∆Ns(t) return at t = t1 + t2+ t3
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TABLE I. Summary of the solutions within the undepleted pump approximation to the equations of motion for three special
cases: resonant symmetric interferometer, resonant asymmetric interferometer, and non-resonant symmetric interferometer.

resonant symmetric resonant asymmetric non-resonant symmetric
ξ1 = ξ3 = ξ; χ1 = χ3 = 1 any ξj ; χ1 = χ3 = 1 ξ1 = ξ3 = ξ; χ1 = χ3 = χ

Aj = A = cosh ξ Aj = cosh ξj Aj = A = cosh (ξχ) − ı
√

1−χ2

χ
sinh (ξχ)

Bj = B = −ı sinh ξ Bj = −ı sinh ξj Bj = B = −ı sinh(ξχ)
γAj = γA = 0 γAj = γA = 0 γAj = γA

γBj = γB = −sign(ξ)π/2 γBj = −sign(ξj)π/2 γBj = γB
|B̃|2 = sinh2(2ξ) cos2(θ/2) |B̃|2 = cosh2 ξ1 sinh2 ξ3 + cosh2 ξ3 sinh2 ξ1+ |B̃|2 = 2|AB|2 [1 + cos(θ − 2γA)]

2| cosh ξ1 cosh ξ3 sinh ξ1 sinh ξ3| cos(θ − γB1 + γB3)

to their initial valuesNs and ∆Ns. For the symmetric in-
terferometer (i.e., γA1

= γA3
= γA and γB1

= γB3
= γB),

B̃ goes to zero at t = t1 + t2 + t3 for θ = π + 2γA. For
this phase, we have (the time dependence of Ã is indi-
cated explicitly for clarity)

Ns(t1 + t2 + t3)|θ=π+2γA
= |Ã(t1 + t2 + t3)|2Ns (41)

and

∆Ns(t1 + t2 + t3)|θ=π+2γA
= |Ã(t1 + t2 + t3)|2∆Ns.(42)

Thus, the symmetric SU(1,1) interferometer with θ =
π + 2γA has a time reversal symmetry if the initial state
has no seeding, i.e., if Ns and ∆Ns are equal to 0. If the
interferometer is not only symmetric but also resonant
(in this case, γA = 0) and if we consider θ = π, then

Ã(t1 + t2 + t3) goes to 1. Thus, the interferometer has
time reversal symmetry even when the initial state has

non-zero seeding. An SU(1,1) interferometer that utilizes
time reversal symmetry was realized experimentally in a
spinor 87Rb BEC [24].

IV. EXPLICIT RESULTS FOR VARIOUS
INITIAL STATES

This section considers two typical classes of initial
states |Ψ(0)〉: pure Fock states are discussed in Sec. IVA
and coherent spin states in Sec. IVB. Selected proper-
ties of these two initial states are summarized in Table II.
Even though our analytical results within the undepleted
pump approximation are derived in the Heisenberg pic-
ture, this section takes the view point that the initial
state is propagated in time and that the operators are
time independent.

TABLE II. Properties of the initial states |Ψ(0)〉 considered in Sec. IV: vacuum state (VS), pure Fock state with single- and
double-sided seeding (PFS,S and PFS,D), and coherent spin state with single- and double-sided seeding (CSS,S and CSS,D).
The results are obtained within the undepleted pump approximation.

|Ψ(0)〉 Ns ∆Ns P ∆P Cov(N̂s, P̂ ) Cov(P̂ †, P̂ )
VS 0 0 0 0 0 0

PFS,S Ns 0 0 0 0 0
PFS,D Ns 0 0 0 0 N+N−

CSS,S Ns

√

Ns 0 0 0 0

CSS,D Ns

√

Ns (N+1N−1)1/2 exp(−ıθ) 0 0 0

A. Pure Fock state

Let the initial state be a pure Fock state (PFS) with
Nm atoms in mode m,

|Ψ(0)〉 = |N+1, N0, N−1〉.
This initial state describes a system with N atoms, where
N = N−1+N0+N+1. We refer to |0, N0, 0〉 as “vacuum
state” (VS) [24]. The naming originates from the fact
that the side modes, sometimes also referred to as probe
modes, are initially empty. The vacuum state can be
interpreted as a special case of a pure Fock state or a

special case of a coherent spin state (see Sec. IVB). The
spin mixing dynamics during step 1. of the interferometer
sequence can evolve the vacuum state to a state with
significant entanglement [24]. If one or both of the side
modes contain non-zero occupation at time t = 0, we
refer to the initial state as seeded Fock state. Single-sided
seeding is realized if N+1 or N−1 is non-zero and double-
sided seeding if N+1 and N−1 are non-zero. We refer to
the resulting states as pure Fock state with single-sided
seeding (“PFS,S”) and double-sided seeding (“PFS,D”),
respectively.

To calculate the phase sensitivity ∆θep, we need to
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determine the expectation value of N̂s and its quantum
fluctuation at time t1 + t2 + t3. Using the results for the
pure Fock state with double-sided seeding from Table II,
we find

Ns(t1 + t2 + t3) =

|Ã|2 + |B̃|2 − 1 +
(

|Ã|2 + |B̃|2
)

Ns (43)

and

∆Ns(t1 + t2 + t3) = 2|ÃB̃|
√

1 +Ns + 2N+1N−1. (44)

Equations (43) and (44) show that initial seeding leads
to an enhancement of the number of atoms in the side
modes at the end of the interferometer sequence (i.e.,
speeds up the dynamics) and also enhances the quantum
fluctuations. Physically, this can be interpreted as be-
ing due to Bose enhancement as a consequence of the
non-zero initial seeding Ns. The quantum fluctuation
∆Ns(t1 + t2 + t3) does not only depend on Ns but, for
double-sided seeding, also on the actual distribution of
the atoms among the two side modes, i.e., the value of
N+1N−1. As shown in Eq. (47), a non-zero N+N− leads
to a degradation of the phase sensitivity of the SU(1,1)
interferometer.

As an example, Fig. 3 compares our analytical re-
sults obtained within the undepleted pump approxima-
tion (solid lines) with the results obtained by evolving

the initial state under the full spin Hamiltonian Ĥspin,
Eq. (1), through exact diagonalization (dashed lines) for
a 23Na condensate with N0 = 10000. It can be seen that
the undepleted pump approximation captures the time
dependence of Ns [see Fig. 3(a)] and ∆Ns [see Fig. 3(b)]
well for ξ1 . 4 (for the parameters employed, this cor-
responds to t1 . 40 ms). For ξ1 & 4, the undepleted
pump approximation results deviate not only quantita-
tively but, rather quickly, also qualitatively from the ex-
act numerical results. From a practical point of view,
40 ms are sufficient for an interferometer experiment. For
an initial state with Ns 6= 0, the validity regime of the
undepleted pump approximation tends to be somewhat
more restricted.

From Eq. (43) one obtains

∂θNs(t1 + t2 + t3) = −4|A1A3B1B3|(1 +Ns)

× sin(θ − γA1
− γA3

− γB1
+ γB3

). (45)

Combining Eqs. (44) and (45), the phase sensitivity [see
Eq. (11)] for the pure Fock state takes the form

∆θep,PFS = ∆θep,VSfPFS, (46)

where fPFS and ∆θep,VS are defined through

fPFS =

√

1 +Ns + 2N+1N−1

1 +Ns

(47)

and

∆θep,VS =

|ÃB̃|
2|A1A3B1B3 sin(θ − γA1

− γA3
− γB1

+ γB3
)| ,(48)
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FIG. 3. (Color online) Benchmarking the undepleted pump
approximation for the initial vacuum state |0, N0, 0〉. The
solid lines show the undepleted pump approximation results
for (a) Ns [Eq. (43)] and (b) ∆Ns [Eq. (44)] as a func-
tion of ξ1 for χ1 = 1. For comparison, the dashed lines
show our exact numerical results for the full spin Hamilto-
nian Ĥspin(c1, q1) with N = N0 = 10000, c1/h = 15.9956 Hz
and q1/h = −15.9948 Hz (these are the same parameters as
used in Fig. 2). The agreement is good for ξ1 . 4.

respectively. The quantity ∆θep,VS depends on θ through
the sin term in the denominator and through the cos
terms in |ÃB̃|,

|ÃB̃| =
√

s+ t [1 + cos(θ − γA1
− γA3

− γB1
+ γB3

)] +
u

2
[1 + cos(θ − γA1

− γA3
− γB1

+ γB3
)]
2
, (49)
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where

s = (|A1A3| − |B1B3|)2 (|B1A3| − |A1B3|)2 , (50)

t = 2|A1A3B1B3|
×
[

(|A1A3| − |B1B3|)2 + (|B1A3| − |A1B3|)2
]

, (51)

and

u = 8|A1A3B1B3|2. (52)

Since fPFS reduces to 1 for the vacuum state |0, N0, 0〉,
the phase sensitivity for the vacuum state is given by
∆θep,VS. In this case, ∆θep,VS can be interpreted as a
phase sensitivity; for other initial pure Fock states, in
contrast, ∆θep,VS is not by itself a phase sensitivity but
a function that, together with fPFS, determines the phase
sensitivity ∆θep,PFS. Since ∆θep,VS is determined by the
“actual device” or interferometer parameters (i.e., it is in-
dependent of the initial state) and fPFS is determined by
the initial state (i.e., it is independent of the interferome-
ter parameters), the minimum of ∆θep,PFS is determined
by independently minimizing ∆θep,VS and fPFS. In what
follows, we first analyze fPFS and then ∆θep,VS.

Since fPFS reduces to 1 in the absence of initial seeding,
i.e., for Ns = 0, we refer to it as “seeding factor”. We
find

√

1

Ns + 1
≤ fPFS ≤

√

1

2

[

1 +
1

(Ns + 1)2

]

≤ 1. (53)

For non-zero Ns, fPFS is always smaller than one. Equa-
tions (47) and (53), which apply to arbitrary initial pure
Fock states (assuming the undepleted pump approxima-
tion is applicable), show:

• Initial seeding decreases the absolute phase sensi-
tivity and hence improves the absolute interfero-
meter performance.

• For a fixed finite Ns and fixed interferometer pa-
rameters, initial single-sided seeding leads to the
best interferometer performance (smallest fPFS)
and initial balanced double-sided seeding to the
worst interferometer performance (largest fPFS)
due to the presence of the “pair term” N+1N−1

in Eq. (47). Importantly though, even initial bal-
anced double-sided seeding improves the interfer-
ometer performance compared to that for the vac-
uum state.

TABLE III. Explicit expressions for min(∆θep,VS) [Eq. (54)] and the associated (θmin)VS [Eq. (55)] for the resonant symmetric
interferometer, resonant asymmetric interferometer, and non-resonant symmetric interferometer. The results are obtained
within the undepleted pump approximation.

resonant symmetric resonant asymmetric non-resonant symmetric
(θmin)VS π arccos [− tanh (2 min(ξ1, ξ3)) coth (2 max(ξ1, ξ3))] + γB1 − γB3 π + 2γA

min(∆θep,VS) csch(2ξ) csch [2 min(ξ1, ξ3)]
∣

∣

∣

|A|2−|B|2

2AB

∣

∣

∣

We now analyze ∆θep,VS. Due to the sin and cos de-
pendence of ∆θep,VS, this quantity has a reflection sym-
metry around θ = π+γA1

+γA3
+γB1

−γB3
. Minimizing

∆θep,VS with respect to θ yields the best possible interfer-
ometer performance for the SU(1,1) interferometer with
pure Fock state input. We find

min(∆θep,VS) =

√

s+ t+
√

s(s+ 2t+ 2u)

u
(54)

for

(θmin)VS = arccos

(

−s+ t+ u−
√

s(s+ 2t+ 2u)

t+ u

)

+γA1
+ γA3

+ γB1
− γB3

. (55)

Table III summarizes explicit expressions for
min(∆θep,VS) and (θmin)VS for the resonant symmetric,
resonant asymmetric, and non-resonant symmetric
SU(1,1) interferometers. For symmetric interferometers,

the best performance (minimum of ∆θep,VS) is reached
for θ = π + 2γA, i.e., the angle about which ∆θep,VS has
a reflection symmetry. The solid line in Fig. 4 illustrates
this for the resonant symmetric interferometer with
ξ1 = χ1 = ξ3 = χ3 = 1 (γA = 0 and γB1

= γB3
= −π/2),

implying that the best performance is reached for θ = π.
In this case, the minimum of the error propagation
based phase sensitivity coincides with the quantum
Cramer-Rao bound (horizontal green solid line in
Fig. 4), which lies below the standard quantum limit and
below the Heisenberg limit (horizontal green dashed and
dotted lines in Fig. 4). This implies that the Heisenberg
limit does, in this case, not provide a stringent lower
bound. The quantum Cramer-Rao bound is also reached
for the non-resonant asymmetric interferometer with
ξ1 = χ1 = 1, ξ3 = 3/2, and χ3 = 0 (blue dash-dotted
line); in this case, however, the minimum of the error
propagation based sensitivity is reached at a different
angle, namely at θ = 0.624π and 0.75π. Returning
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FIG. 4. (Color online) ∆θep,VS as a function of θ for three
interferometers that are characterized by the same ξ1 and
χ1 (namely, ξ1 = χ1 = 1) but different ξ3 and χ3 for the
case where the initial state is the vacuum state |0, N0, 0〉.
The black solid curve is for a resonant symmetric interfer-
ometer with ξ3 = χ3 = 1, the blue dash-dotted line is for a
non-resonant asymmetric interferometer with ξ3 = 3/2 and
χ3 = 0, and the red dashed line is for a resonant asymmetric
interferometer with ξ3 = 7/10 and χ3 = 1. The minimum
of the phase sensitivity of the two former interferometers is
the same but the minimal value is reached at different angles.
The quantum Cramer-Rao bound ∆θQCR (horizontal green

solid line), the standard quantum limit [Ns(t1)]−1/2 (horizon-
tal green dashed line), and the Heisenberg limit [Ns(t1)]−1

(horizontal green dotted line) are the same for all three inter-
ferometers.

to the asymmetric interferometer but considering the
resonant case with ξ1 = χ1 = χ3 = 1 and ξ3 = 7/10
(red dashed line), we see that the minimum of the error
propagation based phase sensitivity lies above that of
the resonant symmetric interferometer with ξ3 = 1. In
fact, for pure Fock states the minimum of the error
propagation based phase sensitivity for the resonant

interferometer decreases monotonically with increasing
ξ3 for ξ3 < ξ1 and then takes a constant value for ξ3 > ξ1
[see the black solid and blue dashed lines in Fig. 6(a)].
With the properties of the quantities fPFS and ∆θep,VS

mapped out, we compare the minimum of the phase sensi-
tivity ∆θep,PFS and the corresponding quantum Cramer-
Rao bound, i.e., we calculate the ratio

min(∆θep,PFS)

∆θQCR,PFS
=

min(∆θep,VS)

∆θQCR,VS

(

1 +
2N+1N−1

1 +Ns

)

.(56)

We do not have a general result for when this equation
is equal to one and when it is greater than one. In the
parameter range 0 < qj/qc,j < 2, however, a sufficient
condition for the prefactor min(∆θep,VS)/∆θQCR,VS be-
ing equal to one is ξ3 ≥ ξ1 and χ3 ≥ χ1. Thus, in
this parameter regime (which includes a variety of non-
resonant asymmetric interferometers), a pure Fock state
without seeding or with single-sided seeding does reach
the quantum Cramer-Rao bound while a pure Fock state
with double-sided seeding does not reach the quantum
Cramer-Rao bound.

B. Coherent spin state

Let the initial state be a coherent spin state (CSS) [20].
Generally speaking, coherent spin states with single- and
double-sided seeding are much easier to prepare experi-
mentally than pure Fock states with seeding. Coherent
spin states may be characterized as the most classical of
all quantum states [37]. Thus, intuitively one might ex-
pect that coherent spin states perform less well than pure
Fock states for the same interferometer parameters dur-
ing steps 1. and 3. of the interferometer sequence. This
section shows that coherent spin states with double-sided
seeding yield, in some cases, a smaller error propagation
based phase sensitivity than pure Fock states.
Our analytical results within the undepleted pump ap-

proximation are derived for the coherent spin state

|β+1, β−1〉 =
∞∑

n+1=0

∞∑

n
−1=0

exp

(

−|β+1|2 + |β−1|2
2

)
(β+1)

n+1(β−1)
n
−1

√
n+1!n−1!

|n+1, n−1〉, (57)

where the complex numbers βm are written in terms of
the initial atoms Nm in the side modes and the initial
phases θm of the m = +1 and m = −1 modes, βm =
(Nm)1/2 exp(ıθm). A derivation of this state is given in

Appendix C. Consistent with the fact that ĤUPA does
not conserve the number of particles, this “two-mode”
state (|n+1, n−1〉 denotes a Fock state) is characterized
by a distribution of number of atoms. The relative phase
θ,

θ = −(θ+1 + θ−1), (58)

of the state given in Eq. (57) is well-defined in the case of
double-sided seeding but not in the case of single-sided
seeding or without seeding; the latter is equal to the vac-
uum state. In the case of initial double-sided seeding,
the interferometer performance depends on the relative
phase, thereby providing another tuning knob.
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For the initial coherent spin state given in Eq. (57), Eqs. (34) and (35) reduce to

Ns(t1 + t2 + t3) = |Ã|2 + |B̃|2 − 1 + 2|ÃB̃|
[

INs + 2 g(θ, γÃ,−γB̃)
√

N+1N−1

]

(59)

and

∆Ns(t1 + t2 + t3) = 2|ÃB̃|
√

1 + (1 + I2)Ns + 4 I g(θ, γÃ,−γB̃)
√

N+1N−1, (60)

respectively, where the function g(θ, γÃ,−γB̃) is equal

to zero when θ is not well defined (coherent spin
state without seeding or with single-sided seeding) and
g(θ, γÃ,−γB̃) = cos(θ − γÃ + γB̃) when θ is well defined
(coherent spin state with double-sided seeding). In the
case of an initial state with double-sided seeding, the
function g(θ, γÃ,−γB̃) “mixes” the properties of the ini-

tial state (through θ) and the atual device (through γÃ
and γB̃).
The next two sections separately discuss the interfer-

ometer performance within the undepleted pump approx-
imation for coherent spin states with single- and double-
sided seeding. We have checked that our analytical re-
sults presented in the next two sections agree, up to terms
of order 1/N , with the numerical results for the full spin

Hamiltonian Ĥspin. To make the comparisons, we used
an initial coherent spin state with fixed particle number
[Eq. (C1)] in our exact diagonalization.

1. Coherent spin state with single-sided seeding

For an initial coherent spin state with single-sided seed-
ing, Ns(t) is, for the same interferometer parameters,
identical to that for a pure Fock state with single-sided
seeding [compare Eq. (59) with Eq. (43)]. The quan-
tum fluctuation ∆Ns(t) for the coherent spin state with
single-sided seeding, in contrast, differs from that for a
pure Fock state with single-sided seeding since I is, in
general, non-zero [compare Eq. (60) with Eq. (44)]. Cor-
respondingly, the phase sensitivity for the coherent spin
state with single-sided seeding also differs from that for
the pure Fock state with single-sided seeding. We find

∆θep,CSS,S = ∆θep,VSfCSS,S, (61)

where

fCSS,S =

√

1 + (1 + I2)Ns

1 +Ns

. (62)

For Ns = 0, Eq. (61) reduces to ∆θep,VS; this is in agree-
ment with the fact that the coherent spin state without
seeding reduces to the vacuum state. The factor fCSS,S

depends on the initial state through Ns and the actual
device through I. The I2 term in round brackets under
the square root in Eq. (62) leads, for the same interfer-
ometer parameters, to a degradation of the best inter-
ferometer performance for an initial coherent spin state

with single-sided seeding compared to that of a pure Fock
state with single-sided seeding [compare Eq. (62) with
Eq. (47)]. Importantly, the factor fCSS,S can take values
smaller than 1. This implies that a coherent spin state
with single-sided seeding can—for the same interferom-
eter parameters—perform better than an initial vacuum
state.
Since ∆θep,VS and fCSS,S both depend explicitly on θ,

determining the best interferometer performance requires
that one minimizes the product ∆θep,VSfCSS,S, i.e., the
two terms cannot be treated separately. This differs from
the pure Fock state case considered in Sec. IVA, where
∆θep,VS and fPFS could be minimized separately. While
the minimization of ∆θep,VSfCSS,S can, in principle, be
done analytically, the resulting expression for the min-
imum of the error propagation based phase sensitivity
is rather lengthy and not overly illuminating. The fol-
lowing examples illustrate selected characteristics of the
interferometer performance for coherent spin states with
single-sided seeding.
The minimum and maximum of I are reached at θ =

γA1
+γA3

+γB1
−γB3

and θ = π+γA1
+γA3

+γB1
−γB3

,
respectively,

min I|θ=γA1
+γA3

+γB1
−γB3

=
t+ 2u

√

2u(s+ 2t+ 2u)
(63)

and

maxI|θ=π+γA1
+γA3

+γB1
−γB3

=
t√
2us

. (64)

Correspondingly, for fixed Ns, fCSS,S takes its mini-
mum and maximum at these angles. It is easy to check
that the θ dependence in fCSS,S and ∆θep,VS enters only
through cos(θ − γA1

− γA3
− γB1

+ γB3
). Correspond-

ingly, fCSS,S and ∆θep,VS have a reflection symmetry
around θ = π + γA1

+ γA3
+ γB1

− γB3
. For this angle,

the seeding factor fCSS,S diverges for symmetric interfer-
ometers and the phase sensitivity ∆θep,VS diverges for
asymmetric interferometers. Thus, ∆θep,CSS,S diverges
at this angle for all interferometers. This is consistent
with the fact that ∆Ns is finite and ∂θNs is zero for
θ = π + γA1

+ γA3
+ γB1

− γB3
.

As an example, the black solid lines in Figs. 5(a)
and 5(b) show ∆θep,CSS,S for, respectively, a resonant
symmetric and a resonant asymmetric interferometer for
an initial coherent spin state with single-sided seeding
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FIG. 5. (Color online) Analysis of the phase sensitivity for a
coherent spin state with single-sided seeding (Ns = 2) as a
function of θ for a resonant interferometer with χ1 = χ3 = 1
(γA1 = γA3 = 0 and γB1 = γB3 = −π/2). (a) Results for
the resonant symmetric interferometer with ξ1 = ξ3 = 1. (b)
Results for the resonant asymmetric interferometer with ξ1 =
1 and ξ3 = 3/2. The red dashed lines show ∆θep,VS while the
blue dash-dotted lines show fCSS,S. The product of these two
quantities yields the phase sensitivity ∆θep,CSS,S (black solid
lines). The horizontal green solid lines show the quantum
Cramer-Rao bound.

(Ns = 2). Since γA1
and γA3

are equal to zero for reso-
nant interferometers, the reflection symmetry and diver-
gence points of ∆θep,CSS,S are located at θ = π. For the
resonant symmetric interferometer in Fig. 5(a), the fact
that I is minimized at the angle at which ∆θep,VS is max-
imized and that I diverges at the angle at which ∆θep,VS

is minimized highlights that the quantities ∆θep,VS and
fCSS,S “compete” when minimizing ∆θep,CSS,S. As a con-
sequence, the smallest phase sensitivity is reached when
neither fCSS,S nor ∆θep,VS are minimized, namely at
(θmin)CSS,S = 0.904π and 1.096π for the example shown
in Fig. 5(a). For the resonant asymmetric interferometer
in Fig. 5(b), ∆θep,VS and fCSS,S take their maximum at
θ = π. The minimum of ∆θep,CSS,S is lower than that of
∆θep,VS but located, roughly, at the same angle.
The examples in Fig. 5 show that an initial coherent

spin state with single-sided seeding can improve the in-
terferometer performance compared to an initial vacuum
state. While the minimum of the error propagation based
phase sensitivity for the coherent spin state with single-
sided seeding is, for the examples shown in Fig. 5, larger
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FIG. 6. (Color online) (a) Minimum of the phase sensitivity
∆θep for three different initial states with Ns = 2 for the reso-
nant interferometer with ξ1 = χ1 = χ3 = 1 as a function of ξ3.
Results are shown for the pure Fock state with single-sided
seeding (black solid line), pure Fock state with double-sided
seeding (blue dashed line), and coherent spin state with single-
sided seeding (red dash-dotted line). The three cases share the
same standard quantum limit (horizontal green dashed line)
and the same Heisenberg limit ∆θHL (horizontal green dotted
line). The quantum Cramer-Rao bound ∆θQCR for the pure
Fock state with single-sided seeding (horizontal black solid
line), the pure Fock state with double-sided seeding (hori-
zontal blue dashed line), and the coherent spin state with
single-sided seeding (horizontal red dash-dotted line) all lie
above the Heisenberg limit ∆θHL (note that the horizontal
blue dashed and red dash-dotted lines nearly coincide). (b)
The symbols show the minimum min(∆θep,CSS,S) of the phase
sensitivity, obtained by numerically determining the time evo-
lution for the full spin Hamiltonian for a 23Na condensate
with N = 10000, for the coherent spin state with single-sided
seeding (Ns = 2). The red dash-dotted line from panel (a)
is reproduced for comparison. The deviations between the
symbols and the dash-dotted line for ξ3 & 3 reflect the break-
down of the undepleted pump approximation in the long-time
regime.

than the quantum Cramer-Rao bound (horizontal green
solid line), it is smaller than the quantum Cramer-Rao
bound for the vacuum state (not shown in Fig. 5).
To highlight the dependence of the minimum of the

phase sensitivity ∆θep on the initial state, Fig. 6(a) con-
siders the resonant interferometer with χ1 = χ3 = ξ1 = 1



13

as a function of ξ3 for three different initial states:
pure Fock state with single-sided seeding (black solid
line), pure Fock state with double-sided seeding (blue
dashed line), and coherent spin state with single-sided
seeding (red dash-dotted line). For ξ3 < ξ1, all three
curves decrease monotonically with increasing ξ3, with
∆θep,CSS,S > ∆θep,PFS,D > ∆θep,PFS,S at each fixed ξ3.
The phase sensitivities for the two pure Fock states are
constant for ξ3 > ξ1. For the coherent spin state, in con-
trast, the minimum of the phase sensitivity for ξ3 > ξ1
continues to decrease and approaches a constant in the
ξ3 → ∞ limit. We emphasize that the decrease of ∆θep
for ξ3 & ξ1 is reproduced by our numerical calcula-
tions for the full spin Hamiltonian for a 23Na BEC with
N = 10000 [symbols in Fig. 6(b)]. However, for ξ3 ≫ ξ1
the phase sensitivity obtained for the full spin Hamilto-
nian deviates from the results obtained within the unde-
pleted pump approximation, underscoring the fact that
the long-time dynamics is not described faithfully by the
undepleted pump approximation.
Interestingly, the quantum Cramer-Rao bound for the

three states considered in Fig. 6(a) all lie above the

Heisenberg limit (horizontal green dotted line). This im-
plies that the Heisenberg limit lies, in this case, below the
fundamental bound, i.e., the Heisenberg limit can never
be reached.

2. Coherent spin state with double-sided seeding

This section considers the interferometer performance
for an initial coherent spin state with double-sided seed-
ing. Compared to the coherent spin state with single-
sided seeding, the relative phase θ and the distribution
of the atoms among the two probe modes (i.e., the prod-
uct N+N−) provide additional tuning knobs.

For an initial coherent spin state with double-sided
seeding, the error propagation based phase sensitivity can
be written as

∆θep,CSS,D = ∆θep,VSfCSS,D, (65)

where

fCSS,D =

√

1 + (1 + I2)Ns + 4 I cos(θ − γÃ + γB̃)
√

N+1N−1

∣
∣
∣
∣
1 +Ns +

[
2 I cos(θ − γÃ + γB̃) + 2∆θep,VS sin

(
θ̄ − γÃ + γB̃

)
∂θ (γB̃ − γÃ)

]
√

N+1N−1

∣
∣
∣
∣

. (66)

It can be readily checked that fCSS,D reduces to fCSS,S if

N+N− is equal to zero. For non-zero N+N− and fixed
interferometer parameters, the terms in the numerator
and denominator of Eq. (66) that contain N+N− take,
depending on the value of θ−γÃ+γB̃, positive or negative
values: The quantities I and ∆θep,VS are positive for
all interferometer parameters; ∂θ(γB̃ − γÃ) and the sin-
and cos-terms, in contrast, can take positive or negative
values.

To illustrate the interplay of the different terms that
enter into ∆θep,CSS,D, we consider the resonant asymmet-
ric interferometer with χ1 = χ3 = ξ1 = 1 and ξ3 = 3/2.
The dashed, dash-dotted, and solid lines in Fig. 7(a) show
the quantities ∆θep,VS, I, and ∂θ(γB̃ − γÃ) as a func-
tion of θ. These quantities are fully determined by the
interferometer parameters, i.e., they are independent of
the initial state. As already discussed in the context of
Fig. 5, ∆θep,VS exhibits minima for θ just a bit larger
and just a bit smaller than π. For these angles, I and
∂θ(γB̃−γÃ) take “intermediate” values (not maxima and
not minima). Since ∆θep,CSS,D is directly proportional
to ∆θep,VS and since ∆θep,VS also enters through the de-
nominator of fCSS,D, ∆θep,CSS,D possesses a non-trivial
dependence on θ.

Choosing the balanced case withN+/N− = 1 as an ex-
ample, Fig. 7(b) shows fCSS,D as a function of the phase

shifter angle θ for various initial phases θ of the coherent
spin state. It can be seen that fCSS,D depends strongly

on θ and θ: fCSS,D changes by roughly four orders of

magnitude for θ = 0.36π and θ = 0 and by less than an
order of magnitude for θ = π/2. For the example shown,
fCSS,D takes a minimum at θ = π (for all θ considered)

and a local minimum at θ = 0 and 2π (for all θ consid-
ered except for θ = π/2). These are exactly the angles
at which ∆θep,VS diverges. Figure 7(c) shows the error
propagation based phase sensitivity ∆θep,CSS,D for the

same initial phases θ as considered in Fig. 7(b). It can
be seen that the minimum of ∆θep,CSS,D is obtained for
θ close to but not equal to π.
Repeating the analysis for other N+/N−, Fig. 8 shows

the minimum min(∆θep,CSS,D) of the phase sensitivity as

functions of θ and N+/N− for the same interferometer
parameters as considered in Fig. 7. For N+/N− = 0,
min(∆θep,CSS,D) is independent of θ and equal to 0.2120;
this value agrees, as it should, with the minimum of the
error propagation based phase sensitivity for the coherent
spin state with single-sided seeding (see the dash-dotted
line in Fig. 6 for ξ3 = 3/2). Figure 8 shows that the
minimummin(∆θep,CSS,D) of the error propagation based

phase sensitivity can, depending on the values ofN+/N−

and θ, be larger or smaller than min(∆θep,CSS,S).
It is interesting to compare the performance of the ini-
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tial coherent spin state with double-sided seeding with
that for the initial pure Fock state with single-sided seed-
ing (and the same Ns); recall, among the pure Fock
states, the pure Fock state with single-sided seeding
yields the smallest phase sensitivity ∆θep for fixed in-
terferometer parameters. For the interferometer param-
eters considered in Fig. 8, the smallest phase sensitivity
for the pure Fock state is equal to 0.1592. Thus, the min-
imum of the phase sensitivity for the initial coherent spin
state with double-sided seeding is, for a range of θ and
N+/N−, smaller than that for the pure Fock state with
single-sided seeding. This result is very encouraging as it
points toward the possibility of achieving comparable or
even better phase or parameter estimates for initial co-
herent spin states with double-sided seeding, which are
experimentally fairly straightforward to prepare, than for
initial pure Fock states with single-sided seeding, which
are experimentally rather challenging to prepare.
The solid line in Fig. 9 shows the minimum of the error

propagation based phase sensitivity for an initial coher-
ent spin state with Ns = 2 for the resonant interferom-
eter with χ1 = χ3 = ξ1 = 1 as a function of ξ3. In this
analysis, the minimum of the phase sensitivity is obtained
by minimizing ∆θep,CSS,D with respect to θ and N+N−

as well as the angle θ. For comparison, the dashed line
shows the quantum Cramer-Rao bound, calculated for
each ξ3 using the θ and N+N− values that yield the
smallest ∆θep,CSS,D. It can be seen that the error propa-
gation based phase sensitivity is closest to the quantum
Cramer-Rao bound for the largest ξ3 considered, i.e., for
ξ3 = 2. By analyzing the dynamics for the full spin
Hamiltonian for a 23Na BEC withN = 10000, we checked
that the undepleted pump approximation provides an ac-
curate description for all ξ3 values considered in Fig. 9. It
is also instructive to compare with the quantum Cramer-
Rao bounds for the double-sided and single-sided pure
Fock states, which are equal to 0.1233 and 0.1592, re-
spectively, for ξ3 ≥ 1. We find that the error propaga-
tion based phase sensitivity for the coherent spin state
is lower than the quantum Cramer-Rao bound for the
pure Fock state for the same interferometer parameters
for ξ3 > 1.280 and ξ3 > 1.054, respectively. This is in-
teresting, since it indicates that the performance of the
SU(1,1) interferometer, as quantified by the error propa-
gation based phase sensitivity, can “beat” the quantum
Cramer-Rao bound for the pure Fock state, assuming the
same initial seeding Ns and the same interferometer pa-
rameters.

V. CONCLUSIONS

This work analyzed the performance of a spin-1 Bose-
Einstein condensate based interferometer for parame-
ter combinations that can be realized experimentally.
Within the undepleted pump approximation, which is
employed throughout this paper, the spinor BEC realizes
an SU(1,1) interferometer, in which the m = 0 state of

the f = 1 hyperfine manifold serves as the pump and the
m = +1 and m = −1 hyperfine states serve as the probe.
Although the interferometer itself, which consists of the
state preparation, phase imprinting, and read-out steps,
has eight experimentally tunable parameters (t1, q1, c1,
t2, qps, t3, q3, c3), it is characterized by five parameters
within the undepleted pump approximation: two that de-
scribe the state preparation step, one that describes the
phase imprinting step, and two that describe the read-
out step. The initial state adds additional degrees of
freedom: For pure Fock states the fraction of atoms in
the three different hyperfine states can be varied. For co-
herent spin states with double-sided seeding, the initial
relative phase provides an additional tuning knob. The
validity regime of the undepleted pump approximation
limited our analysis to cases where the side mode popu-
lation of the initial state and the time propagated state
are much smaller than the population of the pump mode.

The dependence of the performance of the spinor-BEC
based SU(1,1) interferometer on the seeding fraction and
initial phase of coherent spin states was already investi-
gated in Ref. [36] within the truncated Wigner approx-
imation. As in our work, both phase insensitive ampli-
fiers (single-sided seeding) and phase sensitive amplifiers
(double-sided seeding) were considered. Our analytical
results, obtained within the undepleted pump approxi-
mation, confirm the results of Ref. [36] with regards to
the role played by the initial state: (ai) Even a tiny
seeding fraction has a non-negligible effect on the in-
terferometer performance; correspondingly, an analysis
of experimental interferometer results needs to account
for possible imperfections of the initial state. (aii) The
best interferometer performance min(∆θep) of a coher-
ent spin state with single-sided seeding is obtained for
a phase shifter angle that differs (typically just slightly)
from that of the vacuum state; in fact, the angle at which
the vacuum state performs best yields the worst per-
formance for the coherent spin state with single-sided
seeding. For the same interferometer parameters, an ini-
tial coherent spin state with single-sided seeding yields a
lower min(∆θep) than an initial vacuum state. (aiii) The
coherent spin state with double-sided seeding can per-
form better than the vacuum state and pure Fock states
with single- and double-sided seeding for appropriately
chosen initial phases. This is a very encouraging result
from the experimental point of view since coherent spin
states with double-sided seeding can be realized fairly
straightforwardly by first preparing a condensate in the
|f = 1,m = 0〉 state and by then applying a short radio-
frequency pulse that transfers a fraction of the atoms into
the m = ±1 states. The initial phases of the three hyper-
fine components can be controlled by introducing a finite
variable detuning. Alternatively, microwave transitions
that couple to the f = 2 manifold can be used [24, 26, 27].

Additional findings of our work are: (bi) Within the
undepleted pump approximation, analytical expressions
that account for all three steps of the SU(1,1) interferom-
eter sequence were presented for an arbitrary pure initial
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state and analyzed for a subset of Fock and coherent spin
states. We expect that these expressions, which can be
straightforwardly implemented in Mathematica or other
software packages, will aid the analysis of experimen-
tal results and serve as a benchmark for solutions that
go beyond the undepleted pump approximation. (bii)
Pure Fock states with single-sided seeding perform, as-
suming the same interferometer parameters, better than
pure Fock states with double-sided seeding. Pure Fock
states with double-sided seeding, in turn, perform better
than the vacuum state. From a practical point of view,
pure Fock states with non-zero seeding are rather fragile
and hence challenging to work with experimentally. (biii)
Parameter regimes where coherent spin states perform
better than pure Fock states with single-sided seeding,
in addition to performing better than the vacuum state
[see point (aiii) above], were identified (again, assuming
the same interferometer parameters). This is encourag-
ing since this finding underscores that the spin mixing
dynamics can generate, starting from an initial coher-
ent state that may be viewed as the most classical of all
quantum states, useful “quantum-ness” or entanglement
during the first stage of the interferometer sequence.
Last, we highlight a number of key findings that relate

to the interferometer steps themselves. (ci) For a coher-
ent spin state with single- or double-sided seeding, the
error propagation based sensitivity continues, for a wide
range of parameters, to decrease for ξ3 > ξ1, i.e., when
t3 > t1. This asymmetric behavior might be enhanced if
one goes beyond the undepleted pump approximation.
(cii) The quantum Cramer-Rao bound, which is fully
determined by the state |Ψ(t1)〉 that enters the linear
phase imprinting step of the interferometer, provides the
ultimate lower bound for the phase sensitivity; unfortu-
nately, however, no general protocols for its direct experi-
mental determination exist. The error propagation based
phase sensitivity ∆θep, in contrast, depends on all three
stages of the interferometer. Our calculations suggest
that it is, in general, not possible to predict min(∆θep) by
simply maximizing Ns(t1) or ∆Ns(t1). While this is not
unexpected, it highlights the interconnectedness of the
various parameters. (ciii) The Heisenberg limit [taken to
be given by 1/Ns(t1)] lies, for certain parameter combi-
nations, below the quantum Cramer-Rao bound, indicat-
ing that one should, in general, work with the quantum
Cramer-Rao bound and not with the Heisenberg limit.
Since the observed behavior was verified by performing
calculations for the full spin Hamiltonian, this conclusion
is not an artifact of the undepleted pump approximation
but valid more generally.
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Appendix A: GP equation

According to Eq. (3), the strength c of the colli-
sion term in the spin Hamiltonian is determined by c
and n. For 23Na, e.g., a0 and a2 are 48.91 abohr and
54.54 abohr [38] (abohr denotes the Bohr radius), respec-
tively, leading to c/h = 1.54×10−17 Hzm3. To determine
the mean spatial density n, we treat a single-component
23Na BEC within the mean-field Gross-Pitaevskii frame-
work. To this end, we solve the Gross-Pitaevskii equation

[

− ~
2

4µ
∇2

~r + µ(ω2
xx

2 + ω2
yy

2 + ω2
zz

2) +

2π~2(N − 1)(a0 + 2a2)

3µ
|ψGP(~r)|2

]

ψGP(~r) =

ǫψGP(~r), (A1)

where ǫ denotes the chemical potential and ψGP(~r) the
mean-field orbital, which we take to be normalized to 1.
Given ψGP(~r), the mean density n is given by

n = N

ˆ

|ψGP(~r)|4d~r. (A2)

For an external harmonic trap with angular frequencies
ωx = ωy = 2π × 166.277 Hz and ωz = 2π × 216.498 Hz,
we find n = 1.04 × 1018 m−3, cj/h = 15.9956 Hz
and qc,j/h = −15.9948 Hz for a 23Na condensate with

N = N0 = 10000. These are the values that are used
to obtain the results for Ĥspin shown in Figs. 2, 3, and
6(b). We emphasize that the results obtained within the
undepleted pump approximation employ dimensionless
parameters. This implies that the undepleted pump ap-
proximation results shown in Figs. 3-9 are applicable to a
wide range of atomic species. The main limitation is that
the sign of ξj is linked to the sign of cj , which can—in
many cases—not be tuned. For example, cj is positive
for 23Na and negative for 87Rb.

Appendix B: Properties of Eqs. (28)-(31)

Equations (28)-(31) imply the following:

1. The parameter ξ1 and ξ3 are real and their sign is
determined by the sign of the coupling strengths c1
and c3, respectively.

2. The parameters χ1 and χ3 are either purely real or
purely imaginary.

• For−(2N0−1)−1 < qj/qc,j < (4N0−1)(2N0−
1)−1 (this corresponds to 0 . qj/qc,j . 2), χj

is purely real.
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• For qj/qc,j ≤ −(2N0 − 1)−1 and qj/qc,j ≥
(4N0 − 1)(2N0 − 1)−1 (this corresponds to
qj/qc,j . 0 and qj/qc,j & 2), χj is purely imag-
inary, with the imaginary part being greater
than zero. In this case, it is convenient to re-
place χj by ı|χj|. Correspondingly, it is conve-
nient to replace cosh(ξjχj) in the expressions
for Aj and Bj by cos(ξj |χj |) and to replace
ısinh(ξjχj)/χj by ısin(ξj |χj |)/|χj|.

3. It follows that A1 and A3 are, in general, complex.

4. From points 1. and 2., it also follows that B1 and
B3 are purely imaginary, implying that the phases
γBj

are equal to π/2 when the imaginary part of
Bj is positive and −π/2 when the imaginary part
is negative.

Appendix C: Coherent spin state

This appendix derives the expression for the coherent
spin state, Eq. (57), used in Sec. IVB within the unde-
pleted pump approximation. The derivation starts with
the coherent three-mode spin state |α+1, α0, α−1〉,

|α+1, α0, α−1〉 =
N∑

n+1=0

N∑

n0=0

N∑

n
−1=0

︸ ︷︷ ︸

n+1+n0+n
−1=N

√

N !

n+1!n0!n−1!
(α+1)

n+1(α0)
n0(α−1)

n
−1 |n+1, n0, n−1〉, (C1)

where the sums over the occupation numbers n+1, n0 and n−1 are restricted such that the number N of particles is
fixed. In Eq. (C1), we have αm = (Nm/N)1/2 exp(ıϑm) and

∑

m=+1,0,−1 |αm|2 = 1. This coherent three-mode spin

state yields, when employed as an initial state for the time propogation under the full spin Hamiltonian Ĥspin, results
that agree up to order 1/N with the UPA results presented in Secs. IVB1 and IVB2. For example, this state is used
to obtain the circles in Fig. 6(b). When using Eq. (C1), we define θ = −(ϑ+1 + ϑ−1), i.e., we set ϑ0 to zero. This
does not pose any restrictions on our formulation since the results are independent of the overall phase factor of the
initial state.
The coherent three-mode spin state can alternatively be written as

|α+1, α0, α−1〉 =
1√
N !

(

α+1â
†
+1 + α0â

†
0 + α−1â

†
−1

)N

|vac〉, (C2)

where |vac〉 denotes the vacuum state. This is the “true” vacuum state that contains no particles. It is distinct from
the unseeded Fock state |0, N, 0〉, which is referred to as vacuum state throughout this paper in analogy with the
photonic system. Adding (N −N+1 −N0 −N−1) exp(ıϑ0), which is equal to zero, to the terms in the round brackets
in Eq. (C2), we find

|α+1, α0, α−1〉 =
NN/2 exp(ıNϑ0)√

N !
×




1 +

√

N+1 exp(ıθ+1)â
†
+1 +

√

N−1 exp(ıθ−1)â
†
−1 −N+1 −N−1 +

(√

N0â
†
0 −N0

)

N






N

|vac〉, (C3)

where we defined θ+1 = ϑ+1 − ϑ0 and θ−1 = ϑ−1 − ϑ0. Considering the large N limit and using the identity

lim
N→∞

(

1 +
A

N

)N

= exp(A), (C4)

we find

|α+1, α0, α−1〉 N→∞→ NN/2 exp(ıNϑ0)√
N !

×

exp
(
−N+1 −N−1

)
exp

(√

N+1 exp(ıθ+1)â
†
+1 +

√

N−1 exp(ıθ−1)â
†
−1

)

exp

(√

N0â
†
0 −N0

)

|vac〉. (C5)

Importantly, the right hand side of Eq. (C1) is, in the large N limit, identical to Eq. (C5), i.e., Eq. (C5) is the coherent
three-mode spin state for large N .
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FIG. 7. (Color online) Analysis of error propagation based
phase sensitivity for the resonant asymmetric interferometer
with χ1 = χ3 = ξ1 = 1 and ξ3 = 3/2 for an initial coherent
spin state with Ns = 2. (a) The dashed, dash-dotted, and
solid lines show ∆θep,VS, I, and ∂θ(γB̃ − γÃ), respectively,
as a function of θ. (b) The solid, dashed, and dash-dotted
lines show the quantity fCSS,D for θ = π/2, θ = 0.36π, and
θ = 0, respectively, as a function of θ for a balanced initial
state with N+ = N− = 1. Note the logarithmic scale of the
vertical axis. (c) The solid, dashed, and dash-dotted lines
show the phase sensitivity ∆θep,CSS,D for θ = π/2, θ = 0.36π,
and θ = 0, respectively, as a function of θ for a balanced initial
state with N+ = N− = 1.
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FIG. 8. (Color online) Minimum min(∆θep,CSS,D) of the error
propagation based phase sensitivity for the resonant asym-
metric interferometer with χ1 = χ3 = ξ1 = 1 and ξ3 = 3/2
for an initial coherent spin state with Ns = 2 as functions
of N+/N− and θ. The legend on the right defines the color
scheme of the contours. The contours shown in blue and red
have the values 0.1592 and 0.2120, respectively. The former is
equal to min(∆θep,PFS,S) and the latter to min(∆θep,PFS,D).
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FIG. 9. Interferometer performance for the resonant interfer-
ometer with χ1 = χ3 = ξ1 = 1 for a coherent spin state with
double-sided seeding (Ns = 2). The solid line shows the min-
imum min(∆θep,CSS,D) of the error propagation based phase
sensitivity as a function of ξ3; note, the minimization is done
by varying θ, θ, and N+/N−. For comparison, the dashed
line shows the quantum Cramer-Rao bound ∆θQCR for the
initial states at which ∆θep,CSS,D takes its minimum.

In the spirit of the undepleted pump approximation, we now replace the operator â†0 in Eq. (C5) by (N0)
1/2. This

replacement has the following consequences: (i) The term exp
(√

N0â
†
0 −N0

)

goes to 1. (ii) No atoms are created in

the m = 0 hyperfine state, i.e., the m = 0 mode of the three-mode state is effectively being eliminated. (iii) Expanding

out the exponential that contains the operators â†+1 and â†−1, it can be seen that the state is a superposition of Fock
states containing varying number of atoms; this observation is closely related to point (ii) and also implies that
N should now be interpreted as a parameter as opposed to the actual atom number. (iv) The state is no longer
normalized to 1. Restoring the normalization and using βm = (Nm)1/2 exp(ıθm) (see Sec. IVB), the right hand side
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of Eq. (C5) becomes

exp
(
ıNϑ0

)
exp

(

−|β+1|2 + |β−1|2
2

)

exp
(

β+1â
†
+1 + β−1â

†
−1

)

|vac〉. (C6)

Except for the overall phase exp(ıNϑ0), which does not
have an effect on any of the observables, this is the co-
herent spin state, Eq. (57), used in our undepleted pump
approximation calculations in Sec. IVB. We emphasize
that even though the m = 0 mode has been effectively
eliminated from the formulation, this mode still serves as
a phase reference. This can be seen from the fact that θ+1

and θ−1 are defined in terms of ϑ+1 and ϑ−1, measured
relative to ϑ0.
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