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Photoemission from solid targets includes the excitation and motion of electrons inside the sub-
strate, followed by their propagation in vacuum and detection. It thus depends on the electronic
band structure of the solid in the two distinct spectral domains of bound initial and continuum
final states. While the imprint of the static (initial-state) valence electronic structure of solids on
photoemission spectra is routinely examined in standard photoemission spectroscopy in the energy
domain, state-of-the-art time-resolved photoelectron spectroscopy allows, in addition, the scrutiny
of photoelectron propagation in the electronic continuum. Within a quantum-mechanical model for
attosecond time-resolved interferometric photoelectron emission from solids, we calculated photoe-
mission spectra as a function of the delay between the exciting primary attosecond (1 as = 10−18

s) pulse train and assisting infrared (IR) laser pulse. Accounting for final-state interactions of the
photoelectron with the IR laser electric field and the periodic substrate, our numerical results for
interferometric photoemission from the 3d-valence band of Cu(111) surfaces show a striking reso-
nantly enhanced sideband yield at photoelectron kinetic energies near 24 eV, in conjunction with a
pronounced increase of the photoelectron wavefunction amplitude inside the solid on a length scale
of a few nanometers. This resonant shift of final-state photoelectron-probability density towards
the bulk can be interpreted as an increase in the photoelectron propagation time in the solid and
is commensurate with the resonantly enhanced spectral sideband-phase shifts observed in recent
two-pathway two-photon interference spectra by Kasmi et al. [Optica 4, 1492 (2017)].

I. INTRODUCTION

Tracking the spatiotemporal evolution of electronic
motion in solids is of fundamental importance for basic
and applied condensed matter physics and electrical en-
gineering. The ability to monitor the dynamics of single
electrons and collective electronic excitations at their nat-
ural time and length scales of a few attoseconds and less
than one nanometer (1 nm = 10−9 m) complements tradi-
tional energy-domain photoelectron spectroscopy carried
out with long, quasi-continuum-wave pulses from syn-
chrotron radiation sources [1].

Such time-domain investigations are enabled by the
generation of higher-order harmonics (HHs) of intense fs
(1 fs = 10−15s) IR pulses in a noble-gas cell [2–4]. The HH
pulse frequencies are equal to an odd multiple (2n + 1)
of the IR-pulse frequency. Coherent superpositions of
HH pulses emerge from the gas cell as a sequence of ul-
trashort pulses in the extreme ultraviolet (XUV) spec-
tral range, referred to as attosecond pulse trains (APTs).
APTs can be delayed relative to their driving IR pulse.
The intensities of the IR-pulse and APT are typically
adjusted such that electrons are emitted by single-XUV-
photon absorption and photoemission in the assisting IR
pulse remains negligible. By focusing co-propagating IR
pulses and APTs on a target, photoemission spectra can
be recorded as a function of the APT - IR-pulse delay
(Fig. 1). These spectra show large photoelectron yields
due to single-XUV-photon emission at photoelectron en-
ergies equal to the corresponding HH-photon energy mi-
nus the binding energy of the photoelectron initial state.
We refer to this spectral feature as "HH yield" or "HH
electrons". Due to the spectral composition of the APT,
the kinetic energies of HH electrons differ by multiples of

twice the IR-photon energy of the driving pulse.
Energetically located in between HH electrons, the

photoemission spectra contain sidebands (SBs). A SB
of order 2n (SB2n) is the result of the interference of
ionization by a HH photon of order 2n − 1 and absorp-
tion of an IR photon with a second pathway, given by the
ionization by a HH photon of order 2n+ 1 and emission
of an IR photon. A given SB2n is energetically centered
a single IR-photon energy below the energy of photoelec-
trons that are emitted after the absorption of a single HH
photon of order 2n+ 1 [HH(2n+ 1)]. It also lies a single
IR-photon energy above photoelectrons that result from
single-photon electron emission by a HH photon of order
2n−1 [HH(2n−1)]. The SB-photoelectron yield oscillates
with twice the frequency of the driving IR pulse as a func-
tion of the APT - IR-pulse delay. These SB oscillations
are due to a two-photon two-pathway interference pro-
cess, where both pathways result in equal photoelectron
energies. Even though only the SBs involve interferomet-
ric photoemission, the delay-dependent spectra, includ-
ing HH yields, are known as RABBITT (reconstruction
of attosecond beats by interference of two-photon transi-
tions) spectra. Temporal information, such as relative
photoemission time delays, is retrieved from SB-yield os-
cillations in RABBITT spectra. The tracking of elec-
tronic dynamics in RABBITT spectra is thus based on
the measurement of delay-dependent yield oscillations.

The RABBITT technique has first been established for
gas-phase targets [4–6]. It provides the same basic infor-
mation on the static electronic structure and dynamic
electronic response of a target as the related streak-
ing technique [7], where an isolated attosecond pulse re-
places the APT. Two advantages of the RABBITT tech-
nique over streaked photoelectron spectroscopy are that
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FIG. 1: (Color online) Interferometric photoemission from a
solid surface consists of single-XUV-photon absorption by two
energetically adjacent high-order harmonics of the driving IR
pulse, followed by either absorption or emission of an infrared
photon. This leads to oscillating sideband yields at specific
photoelectron kinetic energies εf as a function of the delay
τ between the APT and IR pulse. At resonance, the ampli-
tude of the final photoelectron wavefunction (associated with
the right yellow photoelectron) is enhanced inside the solid
in comparison to non-resonant emission (left green photoelec-
tron). The resonant enhancement entails an observable char-
acteristic increase in the interferometric sideband phase and,
thus, in the spectral photoemission time delay.

(i) APTs are more conveniently produced in the labora-
tory than isolated attosecond pulses and (ii) RABBITT
spectra typically require lower IR-pulse intensities (about
1011 W/cm2), thus minimizing the perturbing influence
of the IR pulse. These advantages are in part offset by un-
known HH phases that need to be eliminated by compar-
ison with a RABBITT reference spectrum [8]. This can
be done by either simultaneously measuring SB phases
for two different targets or by recording interferometric
emission yields from energetically distinct initial states
in the same target. An example for the first scheme for
subtracting the unknown HH phases is the comparative
measurement of RABBITT spectra from Ag(111) and
Au(111) surfaces, using RABBITT spectra from gaseous
argon as a reference by Locher et al. [9]. Examples for
eliminating HH phases in RABBITT spectra of a sin-
gle target are given by recording interferometric photo-
emission yields from energetically distinct bands in either
Cu(111) or Ni(111) surfaces [10, 11].

By now being well established for gaseous atomic tar-
gets [12–14], time-resolved photoelectron spectroscopy is
rapidly expanding towards the investigation of the elec-
tronic structure of and dynamics in solids [8–11, 15–
24], adsorbate-covered surfaces [18, 25], and nanoparti-
cles [26, 27]. Two recent interferometric photoemission
experiments reveal strong, energetically localized, phase
shifts in the delay-dependent SB-yield oscillations from
Cu(111) [11, 20] and Ni(111) [10, 11] surfaces. These
phase enhancements were interpreted as final-state res-

onances in the transition-metal periodic potentials and
related to the (non-free-electron) dispersive propagation
of the photoelectron. In the RABBITT experiment of
Kasmi et al. [20] the Cu(111) surface was oriented such
that the photoelectron image of the 3d-valence band
splits into two easily distinguishable subbands. For each
3d subband, a spectral SB phase could be extracted
from the RABBITT spectra that showed a pronounced,
resonance-like increase at SB20, corresponding to final
photoelectron kinetic energies of εf ≈ 24 eV. Simi-
lar final-state resonance effects were observed in time-
resolved interferometric photoemission experiments from
Ni(111) surfaces by Tao et al. [10] and from Cu(111) and
Ni(111) surfaces by Chen et al. [11].

We here extend our previous investigation of interfero-
metric photoemission from transition-metal surfaces [24]
by refining the modeling of the final photoelectron state
in our quantum-mechanical calculation of interfering
photoemission amplitudes. We employ a semiclassical
representation of the final photoelectron state that in-
cludes interactions of the active electron with the IR laser
and periodic substrate. We apply our model to interfero-
metric photoemission from a Cu(111) surface and discuss
numerically calculated RABBITT spectra and SB phases
for the photoelectron-emission geometry and APT- and
IR-pulse parameters of Ref. [20]. By carefully adjust-
ing the initial valance states to experimental APT-only
spectra given in the Supplementary Material of Ref. [20],
our calculation is able to reproduce the experimentally
observed final-state resonance.

Scrutinizing the spatial dependence of resonant and
non-resonant final states predicted by our model offers
an intuitive explanation for the measured resonant SB-
phase change in terms of a resonant shift of final-state
probability density away from the metal-vacuum inter-
face towards the interior of the substrate. For the em-
ployed APT parameters, the photoelectron-escape depth
is limited by the finite photoelectron mean-free path to
a few layer spacings of the crystalline substrate. Never-
theless, the probability-density shift away from the inter-
face strongly affects the photoelectron yield and energy-
dependent SB phases, highlighting the nm-scale sensitiv-
ity of interferometric electron emission from metal sur-
faces.

The work of Kasmi et al. [20] includes a compari-
son their of experimental results with a hybrid model
for ballistic electron transport. This model relates the
electron-transport time to the energy-dependent photo-
electron mean-free-path in the solid and the photoelec-
tron group velocity. In the analysis of their experimen-
tal data, the authors show that assuming free-electron-
like final states (i.e., free-electron dispersion in the solid)
this model fails to match the measured pronounced in-
crease in the photoemission delay near final photoelec-
tron energies of 24 eV. In contrast, employing photoelec-
tron group velocities based on density-functional-theory
(DFT) calculations and a weighted sum of quantum-
mechanically approximated photoemission probabilities,
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the authors’ model predicts a resonance-like delay in-
crease near 18.5 eV. This finding is consistent with a
significant influence of the substrate band structure on
the photoelectron escape velocity and photoemission de-
lay.

The transport model of Kasmi et al. [20] elucidates
the measurable effect of non-free electron dispersion dur-
ing photoemission. However, its hybrid nature and un-
derlying classical assumption of the total photoelectron
transport time as the ratio of the photoelectron mean-
free-path and group velocity warrant additional scrutiny.
The quantum-mechanical model presented here further
examines the influence of the substrate on the propaga-
tion of the released photoelectron inside and outside the
solid. In contrast to the model developed by Kasmi et al. ,
our calculation is based on the direct evaluation of the
quantum-mechanical transition amplitude and a heuris-
tic generalization of well-known Volkov states for the
propagation of electrons in homogeneous electromagnetic
fields. While confirming the main conclusion reached
by Kasmi et al. of relevant final-state electron-substrate
interactions, our analysis permits the interpretation of
the observed photoemission-delay increase as a purely
quantum-mechanical final-state shape resonance in the
semi-periodic substrate potential.

We organized this paper as follows. In Sec. II we
describe our quantum-mechanical model with empha-
sis on our representation of the initial 3d-valence-band
electronic states (Sec. II A) and our semiclassical mod-
eling of the photoelectron final states in terms of gen-
eralized Volkov states for the motion of an electron in
a continuum-wave electric field (Sec. II B). Section III
contains our numerical results for interferometric pho-
toemission from a Cu(111) surface. Section IIIA de-
scribes how we adjust the initial-state parameters to re-
produce the APT-only spectra measured in Ref. [20].
Section III B characterizes and illustrates the spatial dis-
tribution of resonant and non-resonant final photoelec-
tron states. Calculated RABBITT spectra for different
final-state models are discussed in Sec. III C. The corre-
sponding SB-phase shifts are compared in Sec. IIID with
the experimental phases of Ref. [20]. A summary and
outlook are given in Sec. IV, followed by three appen-
dices that include details of an approximate analytical
final-state model. Throughout this work we use atomic
units and set the electronic energy scale to zero at the
ionization threshold, unless otherwise specified.

II. THEORY

We assume photoemission by a single XUV photon
of the APT. This assumption is justified since emission
by two or more XUV photons leads to distinguishable
final photoelectron energies that do not overlap with
the single-XUV-photon-emission spectrum. In addition,
emission by two or more XUV photons is much less likely
to occur than single-photon emission for the considered

XUV intensities. The probability per unit surface area
for photoemission of electrons into the solid angle ∆Ωf
with final, detectable momentum kf as a function of the
time delay τ between the centers of the APT and assist-
ing IR pulse is given by

P (εf , τ) =
√

2εf

ˆ

∆Ωf

dΩf
∑
|ki|<kF

∣∣Tkf ,ki
(τ)
∣∣2 . (1)

This expression includes the incoherent superposition of
all occupied initial conduction-band states of the target
surface with momenta ki of magnitudes ki smaller than
the Fermi momentum kF . We calculate the transition
amplitude between initial states Ψi

ki
and final states Ψf

kf

in the velocity gauge and without resorting to the dipole
approximation in terms of the transition matrix

Tkf ,ki
(τ) ∝ (2)ˆ ∞

−∞
dt
〈

Ψf
kf

(r, t, τ)

∣∣∣∣AXUV (r, t) · ∇
∣∣∣∣Ψi

ki
(r, t)

〉
.

With the bracket
〈
. . .
〉
we refer to the spatial integration

over the Cartesian components x, y, and z of the electron
position vector r. The vector potential of the spatially
inhomogeneous APT,

AXUV (r, t) =
∑
n

A2n+1
XUV (r, t) (3a)

A2n+1
XUV (r, t) = a2n+1

XUV e
−α2n+1t

2+ i(k2n+1·r−ω2n+1t+φ
HH
2n+1),
(3b)

is defined by the superposition of odd HHs of the IR-pulse
frequency ωIR with frequencies ω2n+1 = (2n + 1)ωIR,
Gaussian temporal profiles of full widths at half intensity
maximum (FWHIM)

√
ln 2/(2α2n+1), photon momenta

k2n+1, and phase offsets φHH2n+1. The amplitudes a2n+1
XUV

are deduced from the peak intensities in Fig. S1 (b) in
the Supplemental Material of Ref. [20].

In our numerical applications, we adopt the pulse-
incidence and electron-detection geometry, as well as the
APT- and IR-pulse parameters, of Ref. [20]. Accord-
ingly, we assume an XUV APT consisting of odd high-
harmonics 2n + 1 = 15 through 25 with equal spectral
widths of 0.2 eV (FWHIM) [extracted from Fig. S1 (b)
in the Supplementary Material of Ref. [20]], an IR-pulse
peak intensity of 2.0×1011W/cm2, and an IR-pulse width
of 25 fs (FWHIM). For the considered range of kinetic en-
ergies, the energy-dependent inelastic mean-free-paths lie
between 10 and 25 a.u. [28]. The photoelectron escape
depth is thus limited to a few interlayer spacings, as =
3.94 a.u., of Cu(111) [29]. The XUV skin depth is larger
than 200 a.u. [30], and thus by far exceeds the escape
depth. We therefore disregard diffraction and attenua-
tion of the APT inside the solid. We include the interac-
tion of the photoelectron with the assisting IR pulse in
the final state as detailed in Sec. II B below.
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A. Initial state

By rotating the surface orientation, Kasmi et al. [20]
selected an emission geometry for which interferomet-
ric photoemission spectra map the 3d-valence band of
Cu(111) into two distinguishable narrow sub-bands. Ad-
hering to the designation by the authors, we refer to these
bands with respect to their binding energies as lower (L)
and upper (U) band. We represent both sub-bands by
their narrow-band limits and extracted the central sub-
band energies ε(L)

bnd = −7.94 eV and ε(U)
bnd = −7.17 eV, re-

spectively, from the experimental spectra given in Fig. S8
in the Supplementary Material of Ref. [20]. We adopt the
Fermi energy εF = 4.92 eV [31].

For our numerical evaluation of the photoemission
yield (1), we assume a translationally invariant surface.
We model the initial 3d-valence-band wavefunctions in
single-active-electron approximation as

Ψi
ki

(r, t) = eiki,‖·r‖χki,z (z) e−iεbndt, (4)

with binding energies εbnd = ε
(U,L)
bnd . We expand the

surface-normal component,

χki,z (z) =
∑
j

eikizzjϕ (εH , αH , nH , |z − zj |) , (5)

of the initial wavefunction in a basis of Hulthén General-
ized Sturmian Functions (GSFs) ϕ [32–34], representing
the interaction between the active 3d-band electron with
the screened Coulomb field of atomic cores. The GSFs
are localized at the crystal-lattice-plane positions z = zj
along the surface-normal (z) direction.

We separately calculate photoemission spectra for the
U and L band in the narrow-bandwidth limit by set-
ting the GSF energies εH = ε

(L)
bnd and εH = ε

(U)
bnd, re-

spectively. The GSF parameters nH and αH specify
the number and distribution of the wavefunction nodes
of ϕ, respectively. We determined these parameters to
obtain the best agreement between the XUV-only spec-
trum shown in Fig. S7 in the Supplementary Material
of Ref. [20] and numerical calculations we carried out
for vanishing IR-field strength. The 3d band of Cu(111)
includes states with electron-orbital-angular-momentum
projections |m| ≤ 2 along the surface normal which, in
full-dimensionality, would be accounted for by the phase
factor eimφ, where tanφ = y/x. Since, for a translation-
ally invariant surface, only m = 0 orbitals contribute in
the average over the surface (x, y) plane, we only include
GSFs with positive z → −z parity.

B. Final state

We construct the final continuum state of the photo-
electron as a modified Volkov wave function,

Ψf
kf

(r, t, τ) ∝ fεf ,θf (z)eikf,‖·r‖ (6)

×ψkf,z (z)eiφkf
(z,td)e−iεf t,

where ψkf (z) is the final wavefunction Cartesian com-
ponent along the surface normal. The assumed transla-
tional invariance of the final state in the surface plane
is expressed by the plane-wave factor with momentum
kf,‖. Volkov wave functions, originally introduced as ex-
act quantum-mechanical solutions for the motion of an
electron in an infinitely extended (continuum-wave) ho-
mogeneous external field [35], account for the interaction
with the external field in the Volkov phase φkf

. The
asymptotic photoelectron momentum kf is oriented at
the angle θf relative to the surface normal, and the ob-
servable final photoelectron energy is given by the free-
electron-dispersion relation εf = k2

f/2. The final en-
ergy associated with the photoelectron motion along the
surface-normal direction is thus εf,z = εf cos2 θf . The
damping function

fεf ,θf (z) = Θ (z) + ez/[2λ(εf ) cos(θf )]Θ (−z) (7)

accounts for photoemission-yield losses (electrons not
reaching the detector) due to collisions in the substrate.
It limits relevant contributions to photoemission to a
few energy-dependent mean-free paths λ (εf ). For the
XUV energies considered in this work this escape depth
amounts to a few surface layers. Θ (z) denotes the Hea-
viside unit-step function. For our numerical computa-
tions we adopt the calculated mean-free-path values of
Ref. [28].

1. Semiclassically generalized Volkov phase for spatially
inhomogeneous IR fields

The electric field of the incident assisting IR pulse
is spatially inhomogeneous near the conducting Cu(111)
surface, due the superposition with its Fresnel-reflected
pulse [19] and strong absorption inside the solid over a
length of a few the interlayer spacings [18]. The time-
dependent DFT calculation in Ref. [18] suggests that
screening starts at approximately half an interlayer spac-
ing outside the topmost layer at z = 0. Accordingly, we
assume complete screening of the incident IR pulse at the
image plane z = zim,

EIR (z, t) =

{
EoutIR (t) z > zim
0 z < zim,

(8)

and approximate the superposition of the incident and
reflected IR pulse near the surface by the homogenous
field EoutIR (t) [9, 19]. The assumption of a homogeneous
Fresnel-reflected IR electric field outside the substrate
is justified by noticeable contributions to the transition
amplitude (2) from outside the surface being cutoff by the
rapid exponential decay of the initial-state-wavefunction
amplitude over a range of electron-surface distances z
that is much smaller than the IR wavelength (≈ 800 nm).

According to Eq. (8) the XUV-excited photoelectron
needs to propagate to the optical surface at z = zim
before becoming exposed to the IR field. In modeling
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the photoelectron interaction with the IR-laser field (8),
we generalize the original Volkov phase [35] by accounting
classically for photoelectron transport along trajectories
z̃(z, t′) that start at z at time t,

φkf
(z, td) = kf ·

ˆ ∞
t

dt′AIR [z̃(z, t′), t′d] . (9)

The definitions td = t− τ and t′d = t′ − τ imply that the
delay τ is positive (negative) if the center of the APT
leads (trails) the IR pulse. We evaluate the vector po-
tential from the electric field,

AIR (z̃, td) =

ˆ ∞
t

dt′EIR (z̃, t′d) ≈
ˆ ∞
tsurf (zj)

dt′EoutIR (t′d)

(10)

taking advantage of Eq. (8). Next, we exploit the lo-
calization of the GSFs at z = zj to approximate the
propagation phase for photoelectrons that are released
from atomic layers at z = zj as φkf

(z, td) ≈ φkf
(zj , td).

This approximation amounts to calculating φkf
(z, td) for

piecewise homogeneous electric fields. For the IR in-
tensity considered in our numerical calculation and in
Ref. [20], the ponderomotive phase shift (∝ A2

IR) can be
neglected in Eq. (9). The time integration in Eq. (10) ef-
fectively starts at the instant tsurf = t+ttransp, when the
photoelectron reaches the optical surface at z = zim. The
transport time for the ballistic propagation of the pho-
toelectron between its release at z = zj and its arrival at
z = zim is ttransp = (zim − zj)/kz. The assumption of
a constant momentum kz during the propagation of the
photoelectron in the solid is justified by the analytical
considerations in Appendix A and the numerical results
in Sec. III B 2 below.

2. Substrate electronic structure and photoemission
boundary conditions

We model the influence of the crystalline substrate
on ψkf,z in terms of a z-dependent model potential for
a slab of width 2D, following the parameterization of
DFT-calculated numerical electronic potentials for peri-
odic substrates introduced by Chulkov [29, 36],

VC(z′)=


A0

exp[−λC(z′−zim)]−1

4(z′−zim) zim < z′

A3 exp [−αC (z′ − z1)] z1 < z′ < zim
−A20 +A2 cos [β (z′ −D)] D < z′ < z1

A10 +A1 cos
(

2π
as
z′
)

0 < z′ < D.

(11)

Here, VC(z′) = VC(−z′), z′ = z + D, and D = nD as,
where nD is the number of layers. The topmost atomic
layer is centered at z = 0 (z′ = D) [cf. Fig. 3 (d) be-
low]. The limit of a semi-infinite substrate is reached for
D → ∞. This model potential accounts for two impor-
tant physical attributes of the photoelectron wavepack-
ets: their propagation in the substrate subject to a

lattice-periodically changing effective force and kinetic-
energy loss upon emission from the surface. Potentials of
the form (11) have been extensively used to model elec-
tron – metal-surface interactions [8, 17, 37–41]. These
calculations are performed after adjusting the set of in-
dependent parameters A10, A1, A2, and β to the main
characteristics of the substrate valence electronic struc-
ture (energetic location of the band-gap, surface-state,
and image-states energies) predicted either by calcula-
tions [42, 43] or by photoemission experiments [44, 45].
The dependent parameters, A20, A3, αC , λC , z1, and zim
are determined by imposing the continuity of the poten-
tial and its derivative at the matching points |z′| = D, z1,
and zim.

The independent parameter values A10, A1, A2, and β
for Cu(111) reported in Ref. [29] are −11.895 eV, 5.14 eV,
4.3279 a.u., and 2.9416 a.u., respectively. By setting in
Eq. (11) A0 = 27.211 eV, we obtain VC(z) in units of
eV. In our numerical applications in Sec. III below, the
only model parameters we readjust are the oscillation
amplitude A1 and the bulk-potential depth A10. Details
for this readjustment are given in Sec. III B. It allows
us to imprint the substrate electronic structure on out-
going photoelectron wavepackets so that our calculated
spectra reproduce the measured interferometric photo-
emission spectra and photoemission delays in Ref. [20].

The surface-normal component ψkf,z of the final photo-
electron wavefunction is subject to outgoing-wave bound-
ary conditions at large distances z → ∞ from the sur-
face. Based on the parameterized potential (11), we nu-
merically calculated ψkf,z exactly by Numerov propaga-
tion [46] imposing outgoing-wave boundary conditions.
To assess the effect of wavefunction reflections inherent
in the exact solution on interferometric photoemission
spectra, we also determined ψkf,z based on a Wentzel-
Kramers-Brillouin (WKB) approximation [46, 47], de-
noted as ψWKB,1

kf,z
, that does not include the reflection

of the outgoing photocurrent in the corrugated potential
VC (see Appendix A).

3. Approximated transition amplitude

Under the assumptions made in Sec. II B above, the
transition amplitude (2) can be approximated by the ex-
pression

Tkf ,ki
(τ) ∝

∑
n

∑
j

eikizzj
ˆ ∞
−∞

dt ei(εf−εbnd)t (12)

〈
fεf ,θf (z)eikf,‖·r‖ψkf,z (z)eiφkf

(zj ,td)

∣∣∣∣A2n+1
XUV (r, t) · ∇

∣∣∣∣∣∣∣∣eiki,‖·r‖ϕ (εH , αH , nH , |z − zj |)
〉
,

which we evaluate numerically.
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III. NUMERICAL RESULTS

We arranged this section as follows. In Sec. III A we
discuss our adjustment of the initial-state-wavefunction
parameters αH and nH in Eq. (4) and of the screening
parameter ζ (defined in Sec. IIIA) to best reproduce the
measured XUV-APT-only spectrum in Ref. [20]. Next,
in Sec. III B, we carefully analyze the properties of the
final photoelectron state (6) with particular emphasis on
its distinctive role in accounting for the resonant pho-
toelectron dynamics observed in recent interferometric
photoemission experiments by Kasmi et al. [20]. Finally,
in Secs. III C and IIID, we present simulated interfero-
metric (RABBITT) spectra and corresponding phases,
respectively, and compare our simulation results with
the RABBITT phases deduced from measured spectra
in Ref. [20], again with focus on final-state-resonance ef-
fects.

The general idea behind our determination of initial
and final state parameters is to tune nH , αH , and ζ
to match the XUV-APT-only spectrum in Ref. [20] and
to adjust the parameters A1 and A10 in the substrate
potential VC in Eq. (11) to the RABBITT spectra in
Ref. [20]. We note, however, that the fitting of initial-
and final-state parameters to measured photoelectron
spectra cannot be performed completely separately, since
the calculated photoemission probability depends on all
parameters. To adjust the wavefunction parameters in
our numerical RABBITT spectra compared in Secs. III C
and IIID below with the measured spectra of Ref. [20]
we proceeded as follows:

(i) We first performed trial calculations with the pa-
rameter values nH = 3, αH = 0.2as. We selected these
values close to the parameter values in our previous simu-
lations of RABBITT spectra from Ag(111) and Au(111)
surfaces [24]. For these start values, we adjusted the
parameters A1 and A10 to best reproduce the experi-
mental RABBITT spectra and phases in Ref. [20]. In
this first round of parameter adjustments we obtained
A1 = 13.0 eV and A10 = −16.58 eV.

(ii) Next, we kept these values for A1 and A10 fixed
and adjusted αH , nH , and ζ to match the XUV-APT-
only spectrum in Ref. [20], as described in Sec. III A.
This results in αH = 0.25as and nH = 5.

(iii) In the final round of parameter adjustments, we
kept the values for αH , nH , and ζ from (ii) and read-
justed the parameter A1 to best reproduce the experi-
mental RABBITT spectra and phases in Ref. [20]. The
final value we obtained is A1 = 13.52 eV.

A. Initial-state optimization

We adjusted the nodal-structure parameters nH and
αH of the GSFs (5) in the initial state (4) by least-
squares optimizing the agreement between our calculated
and the measured XUV-APT-only spectrum published
in the Supplementary Material to Ref. [20]. For this

purpose, we numerically evaluated Eqs. (1) and (12) af-
ter (i) setting the IR electric field EoutIR in Eq. (8) equal
to zero and (ii) adding a background of secondary elec-
trons to our calculated spectrum. We approximated the
secondary-electron-background contribution in the mea-
sured spectrum by accounting for photoelectron-energy
loss due to elastic collisions with other electrons, rep-
resenting electron-electron interactions in terms of a
screened Coulomb-interaction potential (∝ e−r/ζ/r). De-
tails of this background-subtraction model can be found
in Ref. [24].

In order to find the best fit of our background-corrected
simulation to the measured APT-XUV-only spectrum,
we performed calculations for different parameters nH ∈
[1, 6] and αH ∈ [0.1, 0.4]×as. Subsequently, for each pair
of parameters nH and αH , we least-squares fitted a lin-
ear combination of our simulated background-corrected
APT-XUV-only photoelectron yield, allowing for screen-
ing lengths ζ between 0.5 and 2.0 a.u.. This fitting
protocol leads to the best agreement with the measured
APT-XUV-only spectrum for nH = 5, αH = 0.25as, and
the screening parameter ζ = 1.7 a.u. (Fig. 2). Among
the adjustable parameters of the substrate model po-
tential (11), the oscillation amplitude A1 most strongly
affects the RABBITT phases at the resonant energy.
We obtained the quoted values for nH , αH , and ζ in
conjunction with the bulk-potential-oscillation amplitude
A1 = 13.0 eV and potential-depth A10 = −16.58 eV.
This value for A1 produced the best agreement of the
measured and calculated RABBITT phases in a series of
preliminary calculations we carried out before the initial-
state optimization.

FIG. 2: (Color online) Background-corrected calculated
(green solid curve) in comparison with the measured APT-
XUV-only spectrum of Ref. [20] (blue dotted curve). The
calculated results were obtained for the parameter values
nH = 5, αH = 0.25as, and ζ = 1.7. The light green shaded
area indicates the variation of our calculated photoelectron
yield for αH ∈ [0.1, 0.4]× as and ζ ∈ [0.5, 2.0].
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B. Final-state wavefunction

In this subsection we analyze the properties of the final
state ψkf,z in both, its coordinate-space representation
in Eq. (6) and in momentum space. In order to examine
the resonant behavior of the interferometric photoemis-
sion process, we compare the exact numerical solution
for ψkf,z (z) with the approximate first-order WKB solu-
tion ψWKB,1

kf,z
(z). Details of the derivation of ψWKB,1

kf,z
(z)

are given in Appendix A. While both, the exact and ap-
proximated final states satisfy outgoing-wave boundary
conditions, the approximate WKB-type solution lacks re-
flections of the quantum-mechanical current inside the
substrate near the lattice planes of the oscillating model
potential VC (11). Superpositions of contributions to the
final state that are incident and reflected in the periodic
force field of the substrate are prerequisite for the forma-
tion of final-state resonances. The comparison of spectra
calculated with ψkf,z (z) (including final-state resonance
effects) and ψWKB,1

kf,z
(z) therefore allows us to interpret

the resonance behavior observed in the interferometric
spectra in Ref. [20] as a resonance phenomenon imposed
by the dispersive photoelectron propagation in the solid.
To analytically reveal distinct properties of the final pho-
toelectron state imposed by the periodic substrate poten-
tial, we further approximate ψkf,z (z) by a zeroth-order
WKB-type wavefunction ψWKB,0

kf,z
(z), the mathematical

derivation of which is contained in Appendices A and C.

1. Coordinate-space analysis

We model the final-state wavefunction ψkf,z (z) as a
continuum state in the substrate potential VC in Eq. (11)
that satisfies outgoing-wave boundary conditions at large
z. With the specific parameterization of VC given in
Ref. 11 for Cu(111) surfaces, we calculated both, ex-
act continuum eigenstates ψkf,z (z) and approximate so-
lutions ψWKB,1

kf,z
(z) as a function of their corresponding

energy eigenvalues εf,z by numerical Numerov propaga-
tion of the time-independent Schrödinger-equation [46]
for the potential-depth parameter A10 = −11.895 eV
of Ref. [29]. Our numerical results in Fig. 4 show a
strong enhancement of the maximal wavefunction am-
plitude |ψkf,z (z)| for z ∈ [−100, 0] a.u. at the energy
εresf,z = 23.94 eV (We add the superscript "res" to reflect
the resonant behavior of the energy-dependent final-state
wavefunction). This amplitude enhancement depends on
the wavefunction-oscillation amplitude A1 in Eq. (11)
and is less pronounced for the value A1 = 5.14 eV given
in Ref. [29] than for A1 = 7.71 eV.

Figure 3 shows the real parts of the exact final-state
wavefunction ψkf,z (z) and of the approximate solution
ψWKB,1
kf,z

(z) at the resonance energy εresf,z = 23.94 eV (solid
green lines) and for the non-resonant final-state energy
εf,z = 28.22 eV (blue dotted lines). The position depen-

FIG. 3: (Color online) (a-c) Real part of the final photoelec-
tron wavefunction for a Cu (111) slab of thickness 2D = 120
a.u. at the resonance energy εresf,z = 23.94 eV (solid green
line) and at εf,z = 28.22 eV (dotted blue line). The values of
the bulk-potential-oscillation amplitude are (a) A1 = 5.14 eV
and (b,c) 7.71 eV. (c) Amplitude of the approximate WKB-
type wavefunction ψWKB,1

kf,z
(z) that excludes reflections of the

outgoing electron in the periodic substrate potential. The
orange/gray shade illustrates the decreasing photoelectron-
escape probability due to the finite photoelectron mean-free
path. (d) Chulkov potential VC(z) according to Eq. (11) of a
120 a.u. thick slab for the values of A1 in (a-c).

dence of ψkf,z (z) for the value A1 = 5.14 eV given in
Ref. [29] in Fig. 3 (a) and for A1 = 7.71 eV in Fig. 3 (b)
differs dramatically. As shown in Fig. 3 (b), at the res-
onance energy εresf,z this 1.5-fold increase of A1 entails a
strong increase of the wavefunction amplitude inside the
substrate (towards negative z values), starting at the sur-
face layer (z=0). As illustrated in Fig. 3 (b), this net dis-
placement of electronic probability density away from the
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surface towards the bulk occurs only at the resonance en-
ergy εresf,z and is absent off resonance, at εf,z = 28.22 eV.
We will thus refer to this significant increase of the final-
state-wavefunction amplitude in the substrate as "reso-
nance".

FIG. 4: Maximal final-state wavefunction amplitude
max(|ψkf,z (z)|) for z ∈ [−100, 0] a.u. as a function of the en-
ergy εf,z, for the two values of the bulk-potential-oscillation
amplitudes A1 in Fig. 3.

The resonance enhancement observed in the exact
final-state wavefunction at εresf,z = 23.94 eV and A1 =

7.71 eV in Fig. 3 (b) is absent in the approximate wave-
function ψWKB,1

kf,z
(z), due to suppressed wavefunction re-

flections within the substrate [Fig. 3 (c)]. The absence
of resonant amplitude enhancement at εresf,z in Fig. 3 (c)
lends additional support to the interpretation of the nu-
merically observed shift in the probability density to-
wards the bulk side of the surface as a resonance effect.
Off resonance, at the higher energy εf,z = 28.22 eV,
neither the wavefunction ψkf,z (z), nor the approxima-
tion ψWKB,1

kf,z
(z), show a noticeable amplitude increase

inside the solid [Figs. 3 (a-c)]. We will demonstrate
in Secs. III C and IIID below, that the resonant final-
state-probability-density enhancement in the solid puts
increased weight on electron emission from deeper lay-
ers. This results (in the quantum-mechanical average)
in increased photoelectron-transport times and, thus, in
larger RABBITT phase shifts.

For the two values of A1 applied in Figs. 3 and 4 , the
change in resonance energy is small and irrelevant for the
discussion of these figures. We continue to examine the
weak dependence of εresf,z on A1 in Sec. III B 3 below, after
studying the final-state momentum distribution. Elimi-
nation of the final-state interaction with the substrate
(by setting VC ≡ 0), reduces the model wavefunction
ψkf,z (z) in (6) to the plane-wave final-state wavefunction
applied in Refs. [8] and [48].

2. Momentum-space analysis

To further characterize the conditions for the occur-
rence of a substrate resonance in the final photoelec-
tron state Ψf

kf
(6), we examine its Cartesian compo-

nent along the surface normal in momentum represen-
tation, ψ̃kf,z (k). In Appendix A we show that the mo-
mentum distribution ψ̃WBK,0

kf,z
(k) of a zero-order WKB-

type analytical approximation [not to be confused with
the numerical first-order WKB solution ψWBK,1

kf,z
(z) in

Fig. 3 (c)] for the wavefunction of an electron in an
infinitely extended bulk potential V bulkC (z′) = A10 +
A1 cos [2πz′/as], that oscillates along the entire z axis in
the same way as the Chulkov potential VC (11) alternates
inside the bulk, has dominant momentum contributions
at the momenta k(j,±)

C = ±kC + jklatt, where

kC =
√

2 (εf,z −A10/A0). (13)

These momenta are replicas of ±kC , shifted into differ-
ent Brillouin zones by integer multiples j of the recip-
rocal momentum klatt = 2π/as = 1.595 a.u.. This char-
acteristic transcends to the momentum-space-probability
distribution along the surface normal of the exact photo-
electron final state. Its square root, |ψ̃kf,z (k)|, is shown
off resonance (εf,z = 13.65 eV) in Figs. 5 (a) and 5
(b), and at resonance (εresf,z = 23.94 eV) in Fig. 5 (c).
The distributions in Fig. 5 are the Fourier transforms of
the wavefunctions calculated numerically by propagating
ψkf,z (z) backwards (toward decreasing values of z), start-
ing at z = 60 a.u. and imposing outgoing-wave bound-
ary conditions ψkf,z (z) → exp[ikout,zz] with asymptotic
momentum kout,z =

√
2εf,z. These calculations were

performed for the parameter values A1 = 5.14 eV and
A10 = −11.895 eV of Ref. [29]. In addition to the
concentration of the bulk-wavefunction-momentum dis-
tribution |ψ̃WBK,0

kf,z
(k)| at each k

(j,±)
C (see Appendix A),

|ψ̃WBK,1
kf,z

(k)| and |ψ̃kf,z (k)| peak, as expected, at the
asymptotic momentum kout,z =

√
2εf,z of the ejected

photoelectron.
The outgoing-wave boundary condition imposed on the

exact solution in Fig. 5 (a) results in comparatively small
probability densities at the incoming momenta k

(j,−)
C

with respect to the outgoing momenta k
(j′,+)
C . This

is even more prominent for the momentum distribution
of the first-order WKB wavefunction ψWBK,1

kf,z
(z) calcu-

lated under the same condition as the distribution in
Fig. 5 (a). The distributions |ψ̃kf,z (k)| and |ψ̃WBK,1

kf,z
(k)|

in Figs. 5 (a) and 5 (b) present similar profiles for pos-
itive momenta, but differ at negative k. Because of the
enforced outgoing-wave boundary condition and the con-
struction of ψWBK,1

kf,z
(z) (see Appendix A), no significant

contributions at k(j,−)
C are present in ψ̃WBK,1

kf,z
(k). This

means that our WKB model excludes wavefunction re-
flections, which in turn prevents the final-state resonance
from being built up and leads to non-resonant RABBITT
spectra and phases.

The resonance phenomenon discussed in the previ-
ous section, we here observe to occur when the condi-
tion kC ≈ klatt is met, i.e., when the final-state bulk-



9

FIG. 5: (Color online) Momentum-space final-state wavefunc-
tion amplitudes |ψ̃kf,z (k)| in Eq. (6) along the surface normal.
(a) Off resonance for εf,z = 13.65 eV. (b) Off resonance for the
approximate wavefunction |ψ̃WKB,1

kf,z
(k)| for εf,z =13.65 eV.

(c) |ψ̃kf,z (k)| (dashed orange line) and |ψ̃WKB,1
kf,z

(k)| (solid
green line) at the resonance energy εresf,z = 23.94 eV. Ad-
jacent Brillouin zones are distinguished by the alternating
shaded and unshaded background. Dash-dotted blue verti-
cal lines mark the asymptotic momentum kout,z =

√
2εf,z.

Dashed black lines and dotted red lines indicate the momenta
k
(j,+)
C = kC + jklatt and k(j,−)

C = −kC + jklatt, respectively,
that are derived analytically from ψ̃WKB,1

kf,z
(k) in Appendix A.

momentum distribution peaks very close to or at the
reciprocal momenta j klatt. Figure 5 (c) shows both
|ψ̃WBK,1
kf,z

(k)| and |ψ̃kf,z (k)|. The exact solution possesses
a significantly more prominent peak at k = −klatt than
the WKB-model-wavefunction. This is due to the sup-
pression of wavefunction reflections throughout the sub-
strate in ψWKB,1

kf,z
. It supports that the resonant phe-

nomenon observed in the RABBITT phases in Ref. [20]
is due to the final-state interaction with the corrugated
substrate.

The absence of peaks at momenta k(j,−)
C in the first-

order WKB amplitude |ψ̃WBK,1
kf,z

(k)| in Fig. 5 (b) is con-
sistent with the lack of reflected wavefunction contri-
butions. In contrast, the occurrence of peaks at mo-
menta k(j,−)

C and k(j,+)
C in the numerical solution shown

in |ψ̃kf,z (k)| in Fig. 5 (a) demonstrates that the reso-
nant amplitude increase in the full solution is due the
superposition of wavefunction components that propa-
gate in opposite directions with comparable amplitudes.

This results in a final-state momentum distribution that
largely resembles a stationary state. This stationary-
state character, rather than a purely-outgoing-wave be-
havior, of the full numerical solution is also expressed
as oscillations of the absolute value of the wavefunction
amplitude inside the substrate in Fig. 6. The numer-
ical observation that at resonance kC ≈ klatt further
demonstrates that the periodic oscillations of the bulk
potential can strongly influence photoelectrons that are
released by XUV-photon absorption into superpositions
of continuum states of the substrate. The resonance con-
dition kC ≈ klatt and Eq. (13) allow the adjustment of
the potential-depth parameter A10 in Eq. (11) to the res-
onance energy εresf ≈ 24 eV that can be estimated from
the experimental RABBITT phases in Ref. [20]. For the
photoelectron-emission direction θf = 30◦ and εf,z ≈
18 eV, we obtain A10 ≈ (εf,z − 0.5k2

latt)A0 = −16.58 eV.
The relaxation of A10 from its original value in Ref. [29]
is justified in the following Sec. III B 3.

At resonance, back-and-forth wavefunction reflections
in the bulk potential lead to an amplitude enhancement
of the photoelectron wavefunction inside the solid that
becomes observable in photoemission spectra. This en-
hancement is a purely quantum-mechanical effect and
occurs only when the de Broglie wavelength of the pho-
toelectron matches the substrate’s interlayer distance, in
agreement with the numerical results shown in Figs. 3 (a-
c) and Fig. 5.

We note that the present analysis only addresses the
crystal periodicity along the surface normal, while in a
full three-dimensional model the final-state wavefunction
is characterized by additional momentum components.
These added momentum components emerge due to the
A-B-C stacking of layers in Cu(111) and depend on the
crystal orientation and emission direction. However, with
regard to the A-B-C stacking, a characteristic length of
3as entails 9 times lower energies that are outside the
range of photoelectron energies of relevance in the present
study.

3. Closer examination of the dependence on the
substrate-potential-oscillation amplitude

As noted in Sec. III B 1 above, the corrugation para-
meter A1 in the model-substrate potential VC given by
Eq. (11) affects the photoelectron final state. For increas-
ing values of A1 the final-state wavefunction ψkf,z (z) be-
comes increasingly localized near the atomic cores of the
substrate. At resonance a larger potential-oscillation am-
plitude was seen in Fig. 3 to promote the increase of the
final-state amplitude inside the solid significantly. Even
though the resonance energy εresf,z can be assumed as in-
dependent of A1 within the range of parameter values,
A1 = 5.14 and 7.71 eV, this assumption breaks down if a
larger parameter range is considered.

To quantify the interdependence of εresf,z and A1, we
show in Fig. 7 the maximum of the wavefunction ampli-
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tude, max(|ψkf,z (z)|), within the top 100 a.u. from the
emission surface (for z ∈ [−100, 0] a.u.) as a function of
the photoelectron kinetic energy εf,z and of A1 for the
potential-depth parameter value A10 = −16.58 eV. For
this value of A10 the resonance energy εresf and its compo-
nent along the z axis εresf,z match the experimental values
of approximately 24 and 18 eV in Ref. [20]. We note that
the resonance energy εresf,z is seen to depend weakly on
A1, the main effect being that the resonant wavefunction
amplitude inside the substrate significantly increases as
A1 grows. The resonance energy, indicated by the dash-
dotted thick white line, shows a moderate upward shift
of εresf,z as A1 increases from 7 eV to ≈ 15 eV. The or-
ange dashed lines indicates energies εf,z on either side of
the central resonance energy εresf,z where max(|ψkf,z (z)|)
dropped to one half of its values at resonance. The light-
blue solid line shows the variation of εresf,z withA1 deduced
from the momentum matching condition kC = klatt for
|ψWKB,0
kf,z

(z)| in Appendices A and B. Even though the
WKB solution does not contain the resonant amplitude
growth of the exact solution [cf. Fig. 3 (c)], the vari-
ation of εresf,z with A1 agrees well with the numerically-
determined resonance energy from the exact ψkf,z (z).

FIG. 6: (Color online) (Color online) Amplitude of the
final-state-wavefunction component along the surface normal,
ψkf,z (z), at resonance for Cu(111) slab thicknesses 2D = 150,
180, and 200 a.u.. Within the top 100 a.u. from the exit sur-
face at z = 0. For z ∈ [-200, -140]. The intensity of the
orange/gray background color illustrates the decreasing pho-
toelectron escape probability due to the finite photoelectron
mean-free path. The slabs are indicated by the hatched bars
at the bottom of each panel.

By employing the parameters published in Ref. [29]
for the potential depth A10 = −11.895 eV and oscilla-
tion amplitude A1 = 5.14 eV in the parametrization (11)
of the substrate potential VC , we cannot reproduce the
resonance energy εresf ≈ 24 eV, deduced from the pho-
toemission spectra in Ref. [20]. This discrepancy might
be expected, since the potential parameters in Ref. [29]
are specifically adjusted to provide surface-state, band-
gap, and image-states energies in agreement with time-

independent photoemission measurements and previous
calculations (see [29] and references therein). In contrast
to our fitting procedure, the parameters given in Ref. [29]
are not optimized to yield adequate photoelectron con-
tinuum states, capable of reproducing details of interfer-
ometric photoemission spectra. e thus do not expect the
particular parameter values for VC in Ref. [29] to be suit-
able for the present study and allow for a readjustment
of the parameters A10 and A1 in Secs. III C and IIID
below.

4. Slab-thickness independence

To ensure that the slab used in our numerical calcu-
lation is sufficiently thick to prevent the resonant final-
state-amplitude increase inside the substrate to depend
on the slab widths 2D, we examined the dependence
of the final-state-wavefunction component along the sur-
face normal, ψkf,z (z), and interferometric photoemission
spectra on D.

Figure 6 shows the amplitude of ψkf,z (z) calculated
at the resonant energy εresf = 24 eV (i.e. εresf,z = 18 eV)
for three values of D. The numerical results in this figure
were obtained for the parameter A1 = 5.14 eV of Ref. [29]
and for the value A10 = −16.58 eV that matches the cal-
culated to the measured resonance energy. Note the value
for A1 will be readjusted below. As Fig. 6 (a) demon-
strates, the amplitude increase is equally reproduced for
2D = 150, 180, and 200 a.u. inside the slabs. Inter-
ferometric spectra based on Eq. (12) are not sensitive
to inaccuracies in the final-state modeling at distances
larger than a few photoelectron-escape depths. A slab
thickness of 150 a.u is therefore sufficient for modeling
the final-state wave function.

FIG. 7: (Color online) Maximum of the final-state wavefunc-
tion amplitude max(|ψkf,z (z)|) within the top 100 a.u. from
the emission surface as a function of the photoelectron ki-
netic energy εf,z and the Cu(111) bulk-potential-oscillation
amplitude A1. The dash-dotted white line indicates the res-
onant energy εresf,z and yellow dashed lines the half widths of
max(|ψkf,z (z)|). The solid light blue line shows the resonance
energy deduced analytically from the momentum-matching
condition kC = klatt.
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5. Comparison of the substrate potential VC(z) with a
three-dimensional DFT potential

To provide an illustration for the three-dimensional
electronic structure, we applied the GPAW software
package [49, 50] to calculate the three-dimensional po-
tential shown in Fig. 8 (a). In this DFT calculation we
used 24x24x24 spatial grid points per unit cell of the face-
centered cubic periodic lattice of Cu and a Perdew-Burke-
Ernzerhof exchange-correlation functional [51]. Fig-
ure 8 (b) compares the Cu(111) model potential VC based
on the parameters determined by Chulkov [29] (dashed
black line) with lineouts along the [111] direction of the
DFT potential in Fig. 8 (a), where the [111] direction
is oriented perpendicular to the page. The lineouts are
taken at the points O, M, and E in the Cu(111) unit cell
indicated as white dots in Fig. 8 (a).

The lineouts at different points in the Cu(111) unit
cell and the planar potential average strongly deviate
from each other and from the Chulkov parameterization
in Ref. [29] [Fig. 8 (b)]. In particular, the simple sinu-
soidal oscillation inside the substrate with period as of
the Chulkov model potential (11) is replaced by a super-
position of spatial oscillations with more than one wave-
length. The photoelectron is therefore exposed to an ef-
fective interaction with the substrate with a spatial vari-
ation that might not be adequately represented by a sin-
gle length as. An example of an analytical potential with
more than one wavelength component is found in the one-
dimensional time-dependent-Schrödinger-equation study
of Borisov et al. [52], where a combination of a Chulkov
potential VC and a periodic assembly of Gaussian po-
tentials is applied to describe time-resolved (streaked)
photoemission from a Mg(0001) surface.

In the interest of elucidating the basic physical process
behind the expression of substrate-dependent final-state
resonance effects in RABBITT spectra and phases, we
do not attempt to represent the spatial variation of the
photoelectron - substrate interaction in terms of a more
elaborate (multi-wavelength) effective potential. Instead,
we adhere to the functional form of VC given in Eq. (11),
but allow for deviations from the potential parameters
A1 and A10 for Cu(111) in Ref. [29].

C. RABBITT spectra

Figures 9 (a) and 9 (b) show interferometric photo-
emission spectra calculated according to Eqs. (1) and
(12), based on either the approximate first-order WKB-
final-state wavefunction component ψWKB,1

kf,z
(z) or on

the exact numerical final-state wavefunction component
ψkf,z (z), respectively. Both spectra are derived for the
corrugation parameter A1 = 13.52 eV, potential-depth
parameter A10 = −16.58 eV, and the photoemission an-
gle θf =30◦ of Ref. [20].

The spectra are characterized by delay-dependent HH
emission and SB yields. The spectral yields in Fig. 9 are

FIG. 8: (Color online) (a) DFT-calculated effective potential
for Cu displayed over a single unit cell, obtained using the
GPAW package [49, 50]. Lattice points are indicated by black
dots. The [111] crystallographic direction is oriented perpen-
dicular to the page. (b) Lineouts of the three-dimensional
DFT potential in (a) along the [111] direction, traversing two
unit cells at the points O, M, and E indicated as small white
squares in (a). Also shown is the parameterization of the
substrate potential VC according to Ref. [29] (dashed black
line). The potential zero for the DFT calculation is adjusted
by setting the Fermi energy equal to the experimental value
for Cu(111) of 4.94 eV [31].

normalized to the maximal yield in Fig. 9 (b). The SB-
yield oscillations display energy-dependent phase shifts
that are more pronounced in the calculations with the
exact numerical solution ψkf,z (z) in Fig. 9 (b) than for
the approximated WKB final states in Fig. 9 (a). The
photoemission yields for the exact final state in Fig. 9 (b)
tend to be higher than the yields we obtain for WKB-
approximated final states in Fig. 9 (a) and have stronger
energy-dependent SB- and HH-yield enhancements for
photoelectron kinetic energies between approximately
22 eV and 25 eV. The final-state resonance at SB20 cre-
ates a very visible yield increase that extends over several
eV. It qualitatively agrees with the observations made in
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Ref. [10] for measured RABBITT spectra from Ni(111)
surfaces.

FIG. 9: (Color online) Calculated RABBITT spectrum as a
function of the photoelectron kinetic energy εf for emission
from the lower ("L") and upper ("U") 3d-valence band of
Cu(111), based on the (a) approximate first-order WKB-final-
state wavefunction ψWKB,1

kf,z
(z) and (b) exact numerical final-

state wavefunction ψkf,z (z). The spectra in (a) and (b) are
normalized to the highest yield in (b). Panels to the right of
the color-coded spectra show the corresponding τ -integrated
yields. Labels "SB 2n" and "HH 2n+1" indicate sideband
and harmonic emission orders.

D. RABBITT phases

We determine the RABBITT phases in our calculated
spectra by integrating the photoemission yield P (εf , τ)
over εf . We choose 0.5 eV-wide integration intervals cen-
tered at the central SB energies. This results in energy-
integrated SB yields P (2n)(τ), which, for any given SB

order 2n, we fit to the expression

P (2n)(τ) =
[
a1 cos

(
2ωIRτ − φRAB2n

)
+ a2

]
(14)

× exp

[
− (τ − a3)

a4

]2

+ a5

by adjusting φRAB2n and the parameters a1,...,5.

1. Comparison with measured spectral phases and
photoemission-time delays

The energy-dependent RABBITT phases

φRAB2n = 2φFres + φRAB0,2n (15)

contain the contribution φFres = arg
[
kf ·EoutIR (td = 0)

]
.

It arises from the Fresnel reflection of the assisting IR
pulse at the surface, which is included in our model [19,
22, 24, 53]. The experimental RABBITT phases in
Ref. [20] are given after subtraction of the theoretically
calculated values of 2φFres. Accordingly, we show in
Fig. 10 RABBITT phases φRAB0,2n after subtracting our
calculated Fresnel term (2φFres = 1.524 rad), in order to
facilitate a direct comparison with the experimental data.
The right vertical axis translates the Fresnel-corrected
phases φRAB0,2n to the spectral photoemission-time delays
τRAB0,2n = φRAB0,2n /(2ωIR).

The RABBITT phases φRAB0,2n and corresponding spec-
tral photoemission-time delays τRAB0,2n in Fig. 10 (a) are
derived from the spectrum in Fig. 9 (a) and thus based on
the approximate first-order WKB final-state wavefunc-
tion ψWKB,1

kf,z
(z). They resolve photoemission from the

lower and upper 3d-valence band of Cu(111) and tend to
follow the experimental data for the HH orders 2n = 16,
18, and 22. However, they clearly fail in matching the
experimentally observed large phase increase of φRAB0,20 at
HH order 2n = 20. This lack in reproducing the ex-
perimental phase increase near the resonance energy is
due to the absence of the amplitude enhancement inside
the substrate of the approximate final-state wavefunction
ψWKB,1
kf,z

(z) [see Figs. 3 (a), 3 (b) and 3 (c)], as we will
further examined next.

In contrast, the RABBITT phases and corresponding
spectral photoemission-time delays in Fig. 10 (b), cal-
culated based on the exact numerical final-state wave-
function ψkf,z (z), are in better agreement with the ex-
perimental prediction and, in particular, match the mea-
sured resonant enhancement near SB order 2n = 20. This
provides strong evidence for the resonant local phase in-
crease at SB20 being due to the resonant interaction be-
tween the excited photoelectron and the substrate. In
view of the shift in final-state-wavefunction-probability
density away from the exit surface towards the bulk seen
in Fig. 3 (b), the resonantly increased photoemission-
time delay can thus be interpreted as an increased prop-
agation time of the excited photoelectron in the solid
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FIG. 10: (Color online) RABBITT phases φRAB
0,2n and corre-

sponding spectral photoemission-time delays τRAB
0,2n , excluding

the Fresnel-reflection contribution 2φFres, as a function of the
photoelectron kinetic energy εf . (a) Phases for emission from
the lower and upper 3d-valence band of Cu(111), denoted
as "WKB-L" and "WKB-U", respectively, deduced from the
spectrum in Fig. 9 (a) [i.e., calculated based on the approx-
imate first-order WKB-final-state wavefunction ψWKB,1

kf,z
(z)].

(b) As (a) but deduced from the spectrum in Fig. 9 (b) [i.e.,
calculated based on the exact numerical final-state wavefunc-
tion ψkf,z (z)]. The corresponding phases derived in Ref. [20]
from measured RABBITT spectra are labeled as "Expt-L"
and "Expt-U". Solid red and black lines are added to guide
the eye only.

that is due to an augmented photoemission from deeper
inside the substrate. Off resonance, the final-state am-
plitude enhancement inside the solid vanishes, consistent
with (i) the agreement between calculated phases and
time delays in Figs. 10 (a) and 10 (b) and (ii) a nec-
essary condition for the measured resonance effect being
that the photoelectron de Broglie wavelength matches
the periodicity of the substrate potential.

With regard to both, the resonant increase of RAB-
BITT phases measured in Ref. [20] and no significant

energy dependence of Cu(111) RABBITT phases ob-
served experimentally for a slightly different IR fre-
quency, ωIR = 1.577 eV, at two pulse-incidence and
electron-emission geometries in Ref. [19], we conclude
that the resonant phase increase in interferometric pho-
toemission from solids depends on:

(i) the material, lattice type, and crystal orientation of
the substrate,

(ii) the IR-photon energy used to drive the HH-
generation process and related XUV photon energies al-
lowing photoemission near resonance, and

(iii) the IR-pulse and XUV-APT-incidence angle and
the photoelectron detection solid angle, which determine
the photoelectron kinetic energy εf,z.

2. Dependence on the bulk-potential-oscillation amplitude

Figure 11 shows the dependence of our calculated
RABBITT phases φRAB0,2n and corresponding spectral
photoemission-time delays τRAB0,2n on the corrugation am-
plitude A1 ∈ [7.52, 15.52] eV of the model substrate po-
tential VC given by Eq. (11). Numerical results for pho-
toemission from the lower and upper 3d-valence band
of Cu(111) are displayed separately in Figs. 11 (a) and
11 (b). With the exception of A1, all other substrate, IR-
pulse, and XUV-APT parameters are identical with the
parameters used for the simulations in Fig. 10 (b). The
numerical results in Fig. 11 demonstrate an increasingly
strong augmentation of the phases and time delays for
increasing A1 near the resonance energy, while off reso-
nance the influence of A1 is comparatively very small. As
discussed in Secs. III B 1 and III B 3 above, the final-state
resonance becoming more pronounced as A1 increases is
due to the resonant increase of the final-state probabil-
ity density getting more significant for larger values of
A1. This is consistent with a (on average) larger pho-
toelectron transport time [cf. Figs. 3 (b), 3 (d), and 7].

On resonance, A1 ∈ [10.52, 15.52] eV and the assumed
transport velocity klatt = 1.59 a.u. lead to photoelectron-
transport times in the substrate between 320 and 420 as
(corresponding to effective escape depths between 21.0
and 27.6 a.u.) for emission from the L-band [Fig. 11 (a)]
and to transport times between 300 and 450 as (corre-
sponding to effective escape depths between 19.7 and
29.6 a.u.) for emission from the U-band [Fig. 11 (b)].
The variation of A1 within [7.52, 16.57] eV widens the
transport-time intervals to [260, 450] as (corresponding
to effective escape depths between 17.1 and 29.6 a.u.)
and to [240, 500] as (corresponding to effective escape
depths between 15.8 and 32.9 a.u.), respectively for L-
and U-band emission.

As indicated in Fig. 8, the potential oscillation along
different electron trajectories in the solid can differ signif-
icantly from the sinusoidal variation assumed in the one-
dimensional model potential VC of Ref. [29]. However, if
a final-state resonance can be identified in experimental
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FIG. 11: (Color online) RABBITT phases φRAB
0,2n and cor-

responding spectral photoemission-time delays τRAB
0,2n , exclud-

ing the Fresnel-reflection contribution 2φFres, as a function of
the photoelectron kinetic energy εf . Results calculated with
the exact numerical final-state wavefunction ψkf,z (z). Depen-
dence on the oscillation amplitude A1 of the model-substrate
potential VC for emission from the (a) lower and (b) upper
3d-valence band of Cu(111). Solid red dots and lines show the
best overall agreement with the experimental data in Ref. [20]
obtained for A1 = 13.52 eV. The lines are added to guide the
eye only. Variations of the RABBITT-phase and photoemis-
sion delay for A1 ∈ [10.52, 15.52] eV and A1 ∈ [7.52, 16.57] eV
are shown as the darker and lighter green shaded area, re-
spectively. The lower and upper A1 values for each interval
correspond to the respective lower and upper phase-interval
limits. With the exception ofA1, all other substrate, IR-pulse,
and XUV-APT parameters are identical with the parameters
used the simulations in Fig. 10 (b).

RABBITT phases, the effective oscillation amplitude felt
by the photoelectron in the solid can be estimated within
our model. This estimate consists in first performing a
simulation for a uniform bulk potential by setting A1 = 0
in order to establish a baseline for nonresonant emission.
Next, A1 is adjusted to the best overall fit of all avail-
able experimental RABBITT phases, including resonant

and nonresonant energies. Applied to different emission
geometries and surface orientations, this scheme will re-
turn different values for A1. We speculate that probing
sufficiently many emission directions might allow the re-
construction of the effective substrate potential in full
dimensionality.

IV. SUMMARY AND OUTLOOK

We calculated interferometric electron spectra and
phases for photoemission from the 3d-valence band of
Cu(111) surfaces. Our numerical results are based on
a quantum-mechanical model developed with particular
emphasis on the interaction of the excited photoelectron
with the substrate. We numerically evaluated the transi-
tion amplitude in the non-dipole velocity gauge between
translationally invariant initial valence-band states and
final states that include the influence of the periodic sub-
strate potential and the inhomogeneous electric field of
the Fresnel-reflected IR pulse on the photoelectron. Our
numerical results demonstrate the sensitive response of
interferometric photoelectron spectra to photoelectron
propagation in the substrate and reproduce the measured
resonantly-enhanced increase of RABBITT phases and
associated spectral photoemission-time delays published
in Ref. [20].

Within our model, the experimentally observed final-
state resonance is traced to the resonant enhancement of
the final-state-wavefunction amplitude in the substrate
and can be interpreted as an increased photoelectron-
propagation time. The increased propagation time is
commensurate with an effective shift of the final-state-
probability density away from the exit surface into the
bulk, i.e., with an effective increase of the photoelectron-
escape depth at resonance. Based on the identification of
final-state resonances in measured RABBITT-phase dif-
ferences, we suggest a method for determining the effec-
tive bulk-potential-oscillation amplitude felt by the pho-
toelectron in the solid.

Appendix A: WKB expansion and momentum
composition of cosine-potential positive-energy

states

The Wentzel-Kramers-Brillouin (WKB) approxima-
tion provides semiclassical solutions

ψWKB
kf,z

(z) = ei~S(z) (A1)

of the Schrödinger equation with S (z) = S0 (z) −
i~S1 (z) +O(~2) [47]. For the following analysis we first
examine the zero’th order WKB function ψWKB,0

f (z) =

ei~S0(z) for the infinitely extended potential V bulkC =
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A10 + A1 cos
(

2π
as
z′
)

that equals the bulk part of the
Chulkov potential in Eq. (11),

ψWKB,0
kf,z

(z) ∼ e±i
´ z
z0
k(z′)dz′ , (A2)

where

k (z) =
√

2 [εf,z −A10/A0 +A1/A0 cos klattz] (A3)

and kf,z =
√

2εf,z. We assume small oscillation ampli-
tudes A1 and expand√

1 + η = 1 +
1

2
η − 1

8
η2 +

1

16
η3 +O(η4), (A4)

with η = η0 cos klattz and η0 = A1/A0

εf,z−A10/A0
. For all nu-

merical applications in this work |η| / 1/3. For suf-
ficiently fast electrons the local momentum can be ap-
proximated as

k (z) = kC

(
1 +

1

2
η

)
+O(η2), (A5)

with the dominant momentum component kC

kC ≡
√

2 (εf,z −A10/A0). (A6)

To identify secondary momentum components, we ex-
pand the exponent in (A2) to order O(η2),

ˆ z

z0

k (z′) dz′ = kC (z − z0)

+
1

2
kCη0 (sin klattz − sin klattz0) +O(η2). (A7)

Using sinu = cos (u− π/2) and the Jacobi-Anger expan-
sion in Bessel functions Jj ,

eiu cos θ =
∞∑

j=−∞
ijJj (u) eijθ, (A8)

we find

ψWKB,0
kf,z

(z) ∼ e±ikC(z−z0)±i 12kCη0 sin klattz (A9)

∼ e±ikC(z−z0)
∞∑

j=−∞
Jj

(
1

2
kCη0

)
eijklattz,

where we recognize the principal-momentum component
kC with replicas shifted by multiples of the reciprocal
momentum klatt into different Brillouin zones as seen in
Fig. 5.

For the momentum-space wavefunctions in Fig. 5 (c)
and the photoemission spectra and RABBITT phases in
Figs. 9 (a) and 10 (a), we approximate the final photo-
electron state by numerically calculating the first-order
WKB wavefunction ψWKB,1

f (z) as a solution for the

Chulkov potential (11) for the semi-infinite Cu(111) sub-
strate,

ψWKB,1
kf,z

(z) =
1√
|k(z)|

e
+i
´ z
z0
k(z′)dz′ . (A10)

With the "+" sign in the exponent we emphasize that
ψWKB,1
kf,z

is restricted to positive local momenta, thus pre-
venting wavefunction reflections inside the substrate in
direction opposite to the emission direction.

Appendix B: A1-dependence of the dominant
momentum and higher order replicas

Even when the oscillation amplitude A1 is not
very small (as assumed in Appendix A), and thus√

1 + η ≈ 1 + η/2 is a poor approximation, the final-
state momentum-space-probability density is still peaked
at replicas of kC that are shifted by integer multiples of
klatt. To show this, we include the second-order term of
the square-root expansion (A4) in (A3) and note that the
squared cosine in η2 can be rewritten as

cos2 klattz =
1

2
[1 + cos (2klattz)] . (B1)

Second-order contributions (∼ η2) introduce not only an
oscillatory term, cos (2klattz), but also shift the dominant
momentum component kC by

∆kC = − 1

16
kCη

2
0 . (B2)

This shift is observable as a weak dependence of the res-
onance energy εresf,z on A1, which can be shown by nu-
merically solving kC + ∆kC = klatt for εf,z → εresf,z . This
εresf,z dependence on A1, found here in the context of an
analytical and simplified treatment, is in agreement with
the fully numerical results in the main text (cf. Fig. 7).

In analogy to Eq. (B1), the cubic (η3) term in Eq. (A3)
is

cos3 klattz =
1

2
cos (klattz) +

1

4
cos (2klattz) +

1

4
cos (3klattz) . (B3)

It includes a term that oscillates with wave number 3klatt.
Therefore, we find that, even when A1 is comparable
in magnitude with |A10|, the wavefunction is expected
to contain the dominant momentum kC and replicas in
all Brillouin zones. This can be seen after Jacobi-Anger
series expansions of all the trigonometric functions ob-
tained in the exponent of Eq. (A2) by using Eqs. (A3)
and (A4).

Appendix C: High-corrugation, low-energy limit

We show that in this regime ψWKB,0
kf,z

(z) exhibits repli-
cas of kC ≈ 0 in every Brillouin zone, i.e., at k = ±mklatt.
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For εf,z ≈ 0 and A1 = −A10, the local momentum (A3)
is

k (z) =

√
2
A1

A0
[1 + cos klattz] =

√
4
A1

A0
| cos (klattz/2) |.

(C1)

Expressing the absolute value of the cosine as a Fourier
series,

| cos (klattz/2) | = 8

∞∑
m=0

1

πklatt

(−1)
m

1− 4m2
cos (mklattz) ,

(C2)
and integrating the local momentum (C1),

ˆ z

z0

cos (mklattz
′) dz′ = (C3)

1

mklatt
(sinmklattz − sinmklattz0)

leads to

ψWKB,0
kf,z

(z) =
∏
m

C(0)
m

∞∑
j=−∞

(−1)jJj (Km) eijmklattz,

(C4)

with

Km =

√
A1

A0

16

πmk2
latt

(−1)
m

1− 4m2
(C5)

and z-independent coefficients C(0)
m . This shows that

dominant momentum components appear at integer mul-
tiples of klatt in the low-energy and high-corrugation
regime.
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