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We show how to achieve full spectral characterization of general multiaxis additive noise on a single qubit,
including arbitrary cross-axis noise correlations. Our pulsed spectral estimation technique is based on sequence
repetition and frequency-comb sampling and is applicable in principle even to models where a large qubit
energy-splitting is present, as long as the noise is stationary and a second-order (Gaussian) approximation to
the controlled reduced dynamics is viable. A key innovation in our approach is a spherical representation of
the noise in terms of operators that couple directly to raising/lowering qubit operators, which is instrumental to
show that only three suitably defined spectra effectively contribute in the large-splitting regime. Our result is
crucial to extend the applicability of comb-based spectral estimation, which has been so far employed under the
assumption of dephasing-dominated dynamics, to experimental platforms where both T1 and T2 processes may
occur on comparable time scales or be otherwise significant, such as superconducting qubits.

I. INTRODUCTION

Improving the coherence properties of quantum systems in
the presence of unwanted noise is a key step toward realizing
the full potential of quantum technologies [1]. In particular,
obtaining a quantitatively accurate characterization of noise is
instrumental to validate theoretical modeling and prediction
as well as to design physical-layer quantum control strategies
that are optimally tailored to realistic time-dependent noise
environments. Acquiring this knowledge is the overarching
goal of quantum noise spectroscopy (QNS), a body of tech-
niques through which noise spectra or correlation functions
are estimated based on measurements of dynamical observ-
ables of the quantum system of interest (a single qubit sen-
sor in the simplest case) under appropriately chosen external
controls and measurements [2–8]. In conjunction with algo-
rithmic error mitigation that can be achieved through proper
quantum-circuit design and compiling [9, 10], spectral proper-
ties inferred from QNS are expected to play an important role
in enabling near-term intermediate-scale quantum information
processors [11]. Ultimately, directly probing the behavior of
noise correlations through multiqubit QNS may prove crucial
in determining the viability of large-scale fault-tolerant quan-
tum computation [12] and in overcoming the effect of corre-
lated quantum noise in entanglement-assisted metrology [13].

In recent years, a large focus of QNS has been on character-
izing dephasing noise, that is, noise that couples exclusively
along the system’s quantization axis and results in transverse
relaxation (“T2 effects”). Contributions of additional, off-
axis noise sources resulting in longitudinal relaxation (“T1

effects”) have either been assumed to be a priori negligible
or accommodated to a limited extent – within ad hoc, phe-
nomenological models by invoking extra assumptions on the
noise functional form or degree of tunability [14, 15], or ap-
proaches requiring access to full quantum process tomogra-
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phy [16]. Likewise, correlations between noise across differ-
ent axes have been partially characterized in a tunable flux
qubit in parametric form, by assuming a 1/f frequency de-
pendence for all the spectra [17]. As a result, most QNS pro-
tocols to date involve single-axis spectral estimation. These
methods have been developed and implemented following two
main paradigms: multipulse approaches inspired by dynam-
ical decoupling (DD), in which control sequences consist-
ing of nearly-instantaneous pulses are applied [2, 3, 18, 19];
and continuous-wave (CW) approaches inspired by “spin-
locking” relaxometry [14, 20, 21], in which the control is,
typically, a resonant radio-frequency or microwave drive with
constant amplitude and noise is probed during driven evolu-
tion. In both cases, the basic idea is to shape the control modu-
lation so that the frequency response of the driven qubit sensor
is altered in a desired way [22]. To date, experimental appli-
cation of QNS has enabled successful reconstructions of de-
phasing noise spectra in physical settings as diverse as nuclear
magnetic resonance [3, 21], superconducting qubits [2, 23],
spin qubits in semiconductors [24–26], trapped ions [27, 28],
and NV centers in diamond [29, 30]. QNS protocols for high-
order dephasing spectra resulting from non-Gaussian statis-
tics have also been validated experimentally, using engineered
noise on a superconducting qubit sensor operated outside of a
linear-response regime [31].

The assumption of single-axis noise processes is too restric-
tive from both a conceptual and a practical standpoint, how-
ever. Many superconducting qubits, for instance, operate in
a regime far from pure dephasing, in which the T1 and T2

time scales due to natural noise processes may be of the same
order of magnitude [32–34]. In addition, recent advances
with spin qubits in semiconductors [35, 36] have relied on hy-
bridizing spin and charge degrees of freedom by exploiting
exchange-based interactions or the inhomogeneous magnetic
field from a micro-magnet, thereby exposing the logical qubit
to both longitudinal and transverse noise due to electric fluctu-
ations or coupling to phonons [35, 37–39]. Since noise along
distinct qubit axes may a priori arise from the same physi-
cal source (e.g., two-level fluctuators or phonons), the corre-
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sponding noise processes need not be uncorrelated. Therefore,
a complete characterization of noise processes does not only
require the simultaneous reconstruction of the noise spectra
along all relevant qubit axes, but also mandates the estimation
of cross-correlation spectra between different noise axes.

In this work, we tackle the problem of multiaxis spectral
estimation, by allowing a single qubit sensor to be exposed
to general quantum noise with arbitrary correlations along all
three axes of the Bloch sphere. Specifically, in the context
of DD-based QNS, we focus on non-parametric spectral es-
timation by frequency-comb techniques, as introduced by Al-
varez and Suter [3]. The basic idea, in the simplest setting
of a stationary Gaussian dephasing noise process described
by a power spectral density (PSD) S(ω), is that repetition
of a sufficiently large number M � 1 of a “base” pulse se-
quence with duration Tc effectively shapes the filter function
(FF) that describes the control modulation in frequency space
into a frequency comb with narrow teeth. This enables S(ω)
to be sampled over a frequency grid determined by the har-
monics, ωm ≡ m(2π/Tc), with m ∈ Z. Aside from its con-
ceptual appeal, comb-based QNS affords a number of advan-
tages. Unlike CW approaches, no weak-coupling approxima-
tions are needed, for either a single qubit or multiple qubits,
as long as the noise is dephasing and Gaussian, which has
enabled theoretical extensions to multiqubit settings – includ-
ing access to non-classical (asymmetric) spectra and spatio-
temporal harmonic features [40–42]. The fact that sequence
repetition also enforces the emergence of a comb structure in
all FFs relevant to high-order dephasing spectra offers a di-
rect means to probe non-Gaussian classical as well as quantum
bosonic environments [6, 43]. Lastly, compared to other DD-
based techniques, such as N -pulse Carr-Purcell-Meiboom-
Gill spectroscopy [2], the frequency-comb approach is less
susceptible to spectral leakage [5], since it takes higher-order
harmonics into account in principle.

In practice, comb-based QNS approaches also face limita-
tions in the presence of realistic timing constraints and non-
idealities in control and measurements. For instance, devi-
ations from the ideal frequency comb approximation due to
finite number of repetitions may bias or significantly com-
plicate the spectral reconstruction procedure, although some
compensation may be possible at the cost of additional mea-
surements and analysis [44]. Most importantly for the present
discussion, since the resolution to which the PSD may be sam-
pled is determined by the duration Tc of the base sequence,
increasing Tc is the only way to obtain a finer sampling grid,
with no additional “knob” available to independently tune the
maximum range of the reconstruction [5]. This may lead to
a large inversion problem, making the approach vulnerable to
ill-conditioning and to the numerical errors that follow. Even
if numerical stability may be improved by employing suit-
able regularization [31], use of long evolution times for in-
creased sampling resolution may be incompatible with a pure-
dephasing approximation for many systems of interest.

With the above considerations in mind, our main objec-
tive here is to determine whether and how comb-based QNS
may be extended to the characterization of stationary multi-
axis single-qubit noise and, if so, to further understand ap-

plicability and limitations in realistic scenarios. To answer
these questions, we find it useful to contrast a “driftless” set-
ting – in which the qubit energy splitting Ω = 0 and thus no
internal qubit dynamics is present – to one where the qubit
energy splitting Ω 6= 0 and cannot be neglected. Even if
we assume noise to be Gaussian, both situations require per-
turbative methods, unlike for comb-based QNS in a pure-
dephasing setting. Nonetheless, assuming the time-ordered
(Dyson) cumulant expansion that determines expectation val-
ues of time-evolved qubit observables may indeed be trun-
cated to the second (Gaussian) order, we find that in the drift-
less setting, complete reconstruction of all multiaxis spectra
is possible – including both classical and quantum spectra,
the latter arising from non-commuting noise operators. For
arbitrary non-zero qubit energy splitting, all of the spectra can
still be reconstructed, in principle, by imposing a synchroniza-
tion constraint between the internal and the control dynamics,
namely, ΩTc = 2πk, with k ∈ Z. While such a constraint
can be hard to meet in practice for realistically large values
of Ω, we show that in precisely this case drastic simplifica-
tions occur, provided that ΩT � 1, with T = MTc being
the total evolution time. Indeed, in this regime, the contri-
bution of most of the multiaxis spectra becomes negligible,
and the reduced qubit dynamics is effectively characterized
by only three spectra: one dephasing spectrum, determined
by the two-point autocorrelation of noise operators along the
quantization axis (say, z), and two generally complex spectra,
that result from two-point correlators of off-axis noise (along
x, y). All non-vanishing spectra can be reconstructed using
our multiaxis comb-based approach, in principle.

The content is organized as follows. In Sec. II, we de-
scribe the relevant open-system model Hamiltonian for the
driven single-qubit sensor. In particular, in addition to the
standard representation of multiaxis additive noise in terms of
Cartesian components, we introduce a spherical representa-
tion (Sec. II A), which will be expedient for analyzing QNS in
the distinctive dynamical regimes mentioned above. We also
describe the available pulse control capabilities (Sec. II B),
and give the solution for the reduced qubit dynamics within a
cumulant expansion truncated to the second order (Sec. II C).
In Sec. III, we introduce the noise spectra and the control FFs
that are needed for formulating the multiaxis estimation prob-
lem in the frequency domain (Sec. III A), and specify the main
steps involved in the frequency-comb QNS approach along
with the required control symmetries (Sec. III B). Notably,
by borrowing from control techniques for decoupled sys-
tems [45], we also introduce frame-tilting control sequences
(Sec. III C), which will be instrumental to achieve the level
of flexibility needed for simultaneous multi-spectral recon-
struction. In Sec. IV, we provide expressions for the exper-
imentally accessible physical quantities in terms of noise cu-
mulants (Sec. IV A), and show how the distinction between
two types of FFs, which we term balanced and imbalanced, is
key for devising QNS protocols in the two distinctive energy-
splitting regimes (Sec. IV B). In Sec. V, we further explain
how to combine experimental measurements and build con-
trol sequences to grant access to all the target spectra, and
provide an illustrative example of a numerical reconstruction
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(Sec. V B). Section VI is devoted to a critical assessment of
comb-based QNS methods in the presence of noise supported
over a wide frequency band, pointing to more stringent practi-
cal limitations in multiaxis as opposed to single-axis settings
for many realistic qubit devices.

II. SYSTEM AND CONTROL SETTING

A. Open-system model Hamiltonian

We consider a single qubit interacting with an arbitrary en-
vironment (or “bath”) in the presence of open-loop control. In
the laboratory frame, the evolution in the joint Hilbert space
HS ⊗HB is ruled by a total Hamiltonian of the form

H lab
tot (t) = HS +HB +HSB(t) +H lab

ctrl(t),

where HS (HB) dictates the internal system (bath) free dy-
namics,HSB(t) describes the system-bath interaction, and the
control Hamiltonian H lab

ctrl(t) acts non-trivially only on HS .
We will work in the basis in which the qubit Hamiltonian is
diagonal, and associate the quantization direction with the σz
Pauli matrix. In this way, in units ~ = 1, the internal sys-
tem dynamics and the system-bath interaction are described,
respectively, by Hamiltonians

HS =
Ω

2
σz, HSB(t) =

∑
α=x,y,z

σα ⊗B0
α(t), (1)

where Ω is the (known) qubit energy splitting, and B0
α(t) =

B0 †
α (t), for all t, are time-dependent bath operators. Note that

in writing Eq. (1), we assume that trS [HSB(t)] = 0, that is, a
purely rank-2 coupling [41], [46].

Physically, the bath operators B0
α(t) are responsible for in-

troducing noise effects in the reduced qubit dynamics, in a
way that will be made quantitatively precise in Sec. II C. We
remark that the definition of what constitutes a transverse (de-
phasing) vs. a longitudinal (relaxation) decoherence process
is tied to the choice of the working frame. Relative to the qubit
(z) eigenbasis, environmental modes that couple “on-axis” in
an energy-conserving fashion contribute only to the the trans-
verse relaxation time, T2, whereas “off-axis” couplings along
x, y are responsible for both an energy-non-conserving con-
tribution to T2, and a finite longitudinal relaxation time, T1. If
the quantization axis is changed, however, as in spin-locking
QNS [20], an originally purely transverse contribution may
induce both dephasing and relaxation in the new frame.

In the interaction picture (I) with respect to the total in-
ternal Hamiltonian HS + HB , the qubit-bath dynamics are
generated by

HI(t) =
∑

α=x,y,z

σα(t)⊗Bα(t) +Hctrl(t),

where

σα(t) ≡ eiΩtσz/2σαe−iΩtσz/2,
Bα(t) ≡ eiHBtB0

α(t)e−iHBt

Hctrl(t) ≡ eiΩtσz/2H lab
ctrl(t)e

−iΩtσz/2.

Formally, we allow for the bath operators to have both a quan-
tum (non-commuting) and a classical (c-number) component,
namely, Bα(t) ≡ B̃α(t) + ζα(t)IB , with IB being the bath
identity operator and ζα(t) denoting a classical stochastic pro-
cess. Thus, the limit of purely classical noise corresponds to
Bα(t) = ζα(t)IB . In the “driftless” setting when Ω = 0, the
interaction Hamiltonian reduces to

H
(Ω=0)
I (t) =

∑
α=x,y,z

σα ⊗Bα(t) +Hctrl(t). (2)

When Ω 6= 0, on the other hand, the off-axis couplings induce
transitions between the±Ω qubit eigenstates. In this case, it is
convenient to re-express the interaction Hamiltonian in terms
of ladder operators,

HI(t) =
∑

j=−1,0,+1

σj ⊗ eijΩtB−j(t) +Hctrl(t), (3)

where we use the standard quantum-mechanical definition of
spherical (rank-1) vector-operator components,

v±1(t) ≡ vx(t)± ivy(t)√
2

, v0(t) ≡ vz(t).

In what follows, as we set up the QNS problem, we will
make reference to both the driftless, Cartesian representation
in Eq. (2) and the spherical representation in Eq. (3). While
doing so may seem excessive at first, we will see later on
that different representations facilitate the analysis in different
regimes of interest. Accordingly, from here on, we shall use
Greek indices (α, β) when specifically working in Cartesian
coordinates, Latin indices (j, l) to specifically denote spheri-
cal coordinates, and (a, b) when equations apply to both cases.

B. Control resources

In order to more easily formulate and analyze the con-
trol problem, as customary we further transform the Hamil-
tonian in Eq. (3) (or the simpler version in Eq. (2)) to
the toggling-frame, that is, the interaction picture defined by
Hctrl(t), which leads to a Hamiltonian of the form

H(t) =


∑

α,α′=x,y,z

yα,α′(t)σα′Bα(t) (Cartesian),∑
j,j′=−1,0,+1

yj,j′(t)e
ijΩtσj′B−j(t) (spherical).

(4)
Here, following [41, 43], the yα,α′(t) (yj,j′(t)) are switching
functions which encapsulate the effect of the applied control
in the Cartesian (respectively, spherical) coordinates. Letting
Uctrl(t) ≡ T e−i

∫ t
0

dsHctrl(s) denote the time-ordered unitary
control propagator, the switching functions are given by

ya,a′(t) =
1

2
tr[U†ctrl(t)σaUctrl(t)σ

†
a′ ].

Note that the yα,α′(t) are real, whereas the yj,j′(t) are gen-
erally complex since σ±1(t) are not Hermitian. It is also in-
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teresting to note that, for j = ±1 in Eq. (4), the correspond-
ing switching functions are effectively multiplied by the time-
dependent factor e±iΩt; as we will see, this will have the effect
of displacing FFs by ±Ω in the frequency domain.

While the formalism we employ to model the qubit dynam-
ics applies to arbitrary open-loop control, the QNS protocol
we will present requires a control Hamiltonian capable of gen-
erating arbitrary instantaneous qubit rotations,R(~θ) ∈ SO(3),
at pulse times of our choice. By using the parametrization
R(~θ) = R(θx, θy, θz) = Rx(θx)Ry(θy)Rz(θz), we denote
the corresponding control pulse by

P~θ ≡ e
−iσxθx/2e−iσyθy/2e−iσzθz/2 ∈ SU(2). (5)

We point out that this parametrization is a matter of general-
ity and should not be taken to require the execution of three
individual pulses; indeed, the sample execution of our proto-
col to be presented in Sec. V will employ only pulses along
a single coordinate axis. The action of pulses P~θ on oper-
ators in our two bases of interest can be obtained by mak-
ing use of standard algebraic Pauli identities – in particular,
σασα′ = δα,α′IS+iεαα′βσβ and σασα′σα = σα′(2δα,α′−1).
Notable cases are π-rotations around one of the coordinate
axes, e.g., P(0,0,π) ≡ [π]z . With this notation, θ-rotations
around the quantization (z) axis induce the transformations

P(0,0,θz) = [θ]z : σ± 7→ e∓iθσ±, σ0 7→ σ0.

Importantly, starting from free evolution (yj,′j(t) = δj,j′ ),
π/2-pulses allow the generation of purely imaginary-valued
switching functions, whilst arbitrary θ values typically gener-
ate complex-valued switching functions.

Under the above rules, the toggling frame transformation
of Eq. (4) induces particular structures in the switching func-
tions. Specifically, one may verify that:

(i) In the Cartesian basis, π-pulses along any coordinate
axis α, corresponding to [π]α, induce digital switching func-
tions yα,α′(t) that take values only in {+1,−1} and are “di-
agonal”, in the sense that yα,α′(t) ∝ δα,α′ . In contrast, non-
π pulses generally induce induce “non-diagonal” switching
functions, which can take a continuum of values in [−1, 1].

(ii) In the spherical basis, both π and non-π pulses induce
non-diagonal switching functions yj,j′(t). For instance, under
a rotation of θ about x, the spherical basis transforms as

[θ]x : σ+ 7→ sin2 θ

2
σ− + i

sin θ√
2
σ0 + cos2 θ

2
σ+,

σ0 7→ −i
sin θ√

2
σ− + cos θ σ0 + i

sin θ√
2
σ+,

σ− 7→ cos2 θ

2
σ− − i

sin θ√
2
σ0 + sin2 θ

2
σ+.

Taking θ = π generates non-zero, non-diagonal switching
functions y±1,∓1(t). Under more general θ, both the diago-
nal and non-diagonal switching functions can take on com-
plex values. This will be very important for our filter design
stage, as we will see later (Sec. IV).

Our protocols use sequences composed of qubit rotations,
which take the general form given in Eq. (5). In particular,

we consider p rotations applied at times {t0, . . . , tp−1} over
a total duration T . The interaction-picture unitary propagator
associated to such a control sequence then takes the form

UI(T ) =
[
P~θp−1

U0(tp−2, tp−1) · · ·P~θ1U0(t0, t1)
]
P~θ0

≡
[ ∏
i=p−1,...,1

P~θiU0(ti−1, ti)
]
P~θ0 (6)

= Uctrl(T )U(T ) =
[
P~θp−1

· · ·P~θ1P~θ0
]
U(T ). (7)

Here, we have taken t0 ≡ 0 and time is understood to in-
crease from right to left. In Eq. (6), the propagator U0(t, t′)
denotes free evolution of the system and bath from t 7→ t′ (i.e.,
Hctrl(t) ≡ 0 in Eq. (3)) and, in Eq. (7), we have expressed
the controlled evolution in terms of the toggling-frame propa-
gator, U(t) ≡ T e−i

∫ t
0

dsH(s), with H(t) given in Eq. (4).

C. Reduced qubit dynamics

Evolution under the natural system Hamiltonian and the
control in the presence of the environment induces non-trivial
dissipative dynamics on the probe qubit, which is captured
by the expectation value of relevant physical observables.
Let O denote an invertible qubit observable. Assuming that
the system and the bath are initially in a factorized state,
ρSB(0) ≡ ρ0 = ρS ⊗ ρB , the time-dependent expectation
value in the toggling frame is determined by

E(O(t))ρ0
= 〈tr[U(t)(ρS ⊗ ρB)U(t)†O]〉c, (8)

where 〈·〉c represents an average over realizations of the clas-
sical stochastic process ζb(t) and, formally, we let ρB = IB
in Eq. (8) if noise is purely classical. By also denoting
〈·〉q ≡ trB [·ρB ] and following [41], one can rewrite the above
expectation value via a cumulant expansion as

E(O(t))ρ0 = 〈trS [〈O−1U(t)†OU(t)〉qρSO]〉c

≡ trS

[
e

∞∑
k=1

(−i)k
C(k)
O
k!
ρS O

]
(9)

= trS

[
〈O−1U(t)†OU(t)〉 ρSO

]
, (10)

where in Eq. (10) we have introduced the compact notation
〈·〉 ≡ 〈〈·〉c〉q to denote taking both averages.

The k-th generalized cumulant C(k) entering Eq. (9) is a
qubit operator and may be obtained as follows. Realizing that
one can rewrite O−1U(t)†OU(t) = T e−i

∫ T
−T H̃O(s)ds with

the operator-dependent effective Hamiltonian

H̃O(t) =

{
−O−1H(T − t)O t ∈ [0, T ],

H(T + t) t ∈ [−T, 0],
(11)

the cumulant expressions can be obtained from the moment-
cumulant generating equation

〈T e−i
∫ T
−T H̃O(s)ds〉 = e

∞∑
k=1

(−i)k
C(k)
O
k!

=

∞∑
k=1

D(k)
O

k!
, (12)
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where the terms in the Dyson-like expansion in the right hand-
side are given by

D(k)
O = k! (−i)k

∫ T

−T
d>~t[k]〈H̃O(t1) · · · H̃O(tk)〉, (13)

with
∫ s′
s

d>~t[k] ≡
∫ s′
s

dt1 · · ·
∫ tk−1

s
dtk, and the inclusion of

factorial term being dictated by convenience. In general, the
expansion in Eq. (9) involves an infinite number of terms, and
can be exactly truncated only in special scenarios. For exam-
ple, exact truncation to the second order is possible when the
noise model is dephasing-only and Gaussian [41]. Through-
out this work, we will not invoke Gaussian noise statistics, but
we shall demand that suitable conditions are obeyed to justify
truncating the expansion at order two [47].

Under the above assumption, we thus focus only on the first
two cumulants. After an appropriate change of variables, al-
lowing us to change the integration domain from [−T, T ] to
[0, T ], and recalling the definition of H̃O(t) in Eq. (11), the
first two cumulants can be written as follows:

C(1)
O =

∫ T

0

dt1

[
C(1)(H(t1))− C(1)(HO(t1))

]
, (14)

C(2)
O

2!
=

∫ T

0

d>~t[2]

[
C(2)(H(t1), H(t2))

+C(2)(HO(t2), HO(t1)) (15)

−C(2)(HO(t1), H(t2))− C(2)(HO(t2), H(t1))
]
,

in terms of the toggling frame Hamiltonian H(t) and its
observable-conjugated version HO(t) ≡ O−1H(t)O, via the
cumulant expressions

C(1)(A) = 〈A〉,

C(2)(A,B) = 〈AB〉 − 1

2

(
〈A〉〈B〉+ 〈B〉〈A〉

)
.

Notice that the average 〈·〉 is non-commuting, in the sense that
when A and B are operators on HS ⊗HB , one generally has
[〈A〉, 〈B〉] 6= 0 and care must be taken during calculations.

We remark that, while evaluating qubit time-evolved ob-
servables in the toggling frame is mathematically convenient,
in experiments these expectations cannot be measured di-
rectly. Nevertheless, they can be related to measurable quan-
tities in either the lab frame or the interaction frame (or, under
resonance conditions, a frame which is also co-rotating with
the carrier frequency of the control) by additionally imple-
menting an appropriate compensating transformation, lever-
aging the fact that both the internal qubit Hamiltonian and the
applied control propagator in Eq. (7) are known. In practice,
if sufficiently fast control is available, this amounts to imple-
menting an additional rotation immediately before measure-
ment, which effectively un-does the rotation generated by the
ideal control Uctrl(T ) [48].

III. TOOLS FOR SPECTRAL ESTIMATION

A. Frequency domain representation

Given the way in which the Hamiltonian enters the reduced
dynamics (see Eqs. (10) and (15)), one needs to evaluate ex-
pressions with the following general structure:∫

d>~t[2]〈H(t1)HO(t2)〉 =
∑

a,a′,b′,b′

(σa′O
−1σb′O)[I2]a,a′,b,b′ ,

where the integral

[I2]a,a′,b,b′ ≡
∫

d>~t[2] ya,a′(t1)yb,b′(t2)〈Ba(t1)Bb(t2)〉

is common to all the terms in the aforementioned reduced dy-
namics equations. By moving to the frequency domain, both
the bath correlators 〈Bb1(t1) · · ·Bbk(tk)〉 and products of the
switching functions {ya,a′(t)} will then enter the dynamics
via their corresponding Fourier transform.

Specifically, the influence of bath correlations on the qubit
dynamics is captured by the multi-time Fourier transform

〈Bb1(ω1) · · ·Bbk(ωk)〉 =

∫ ∞
−∞

d~t ei~ω·
~t〈Bb1(t1) · · ·Bbk(tk)〉.

We will assume that the noise has zero-mean and is stationary
which, since we are truncating the cumulant expansion at k =
2, is captured by the relations

〈Bb(ω)〉 = 0,

〈Bb1(ω)Bb2(ω′)〉 = δ(ω + ω′)Sb1,b2(ω),

where as usual the relevant PSD is defined as

Sb1,b2(ω) =

∫ ∞
−∞

dτ e−iωτ 〈Bb1(τ)Bb2(0)〉.

The PSD can be naturally separated into two components,
Sb1,b2(ω) = [S−b1,b2(ω)+S+

b1,b2
(ω)]/2, depending on the com-

mutator and anticommutator of the noise operators,

S−b1,b2(ω) ≡
∫ ∞
−∞

dτ e−iωτ 〈[Bb1(τ), Bb2(0)]〉,

S+
b1,b2

(ω) ≡
∫ ∞
−∞

dτ e−iωτ 〈{Bb1(τ), Bb2(0)}〉.

The “classical” spectrum S+
b1,b2

(ω) is present for both quan-
tum and classical noise, while the “quantum” spectrum
S−b1,b2(ω) vanishes when the noise is purely classical and,
hence, commuting. We draw a further distinction between
spectra whose indices refer to the same noise operator, the
“self”- spectra S±b1,b2(ω)|b2=b1 , or different noise operators,
the “cross”- spectra S±b1,b2(ω)|b2 6=b1 [13, 41]. The relations
between the various spectra depend on the coordinate system:

(i) Since Bα(t)† = Bα(t) in Cartesian coordinates,
i[Bα1(t), Bα2(t′)] and {Bα1(t), Bα2(t′)} are self-adjoint,
which in turn implies that

[S±α1,α2
(ω)]∗ = S±α2,α1

(ω) = ±S±α1,α2
(−ω). (16)
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(ii) In spherical coordinates, as noted, bath operators cor-
responding to j = ±1 are not self-adjoint. In this case,
Bj(t)

† = B−j(t) and it follows that

[S±j,l(ω)]∗ = S±−l,−j(ω) = ±S±−j,−l(−ω). (17)

For a more physical interpretation of the quantum and clas-
sical spectra, note that under free evolution for α ∈ {x, y},
the rates of bath-induced absorption and emission are deter-
mined by the self-spectra Sα,α(Ω) and Sα,α(−Ω), respec-
tively [49]. If the noise is classical and S−α,α(ω) ≡ 0, then
Sα,α(ω) = S+

α,α(ω)/2, which is an even function of ω. Con-
sequently, Sα,α(Ω) = Sα,α(−Ω) and the rates of absorption
and emission are always equal. In contrast, for quantum noise
with S−α,α(ω) 6= 0, the rates are not equal in general. In the
spherical basis, as we shall soon see, the rates of absorption
and emission are determined by the cross-spectra S+1,−1(Ω)
and S−1,+1(−Ω), respectively. Thus, nonzero S−+1,−1(ω) and
S−−1,+1(ω) indicate potentially unequal absorption and emis-
sion rates, a signature of quantum noise.

Similar to the description of bath-induced noise in terms of
spectra, the effect of the control may be compactly described
in the frequency domain by first and second order fundamental
FFs [43], namely,

F
(1)
a,a′(ω, T ) =

∫ T

0

dt ya,a′(t)e
iωt,

F
(2)
a,a′;b,b′(ω, ω

′, T ) =

∫ T

0

dt

∫ t

0

dt′ ya,a′(t)yb,b′(t
′)ei(ωt+ω

′t′).

(18)

The above fundamental FFs enter the reduced dynamics of the
qubit in the combinations [41, 50]:

G−a,a′;b,b′(ω, ω
′, T ) = F

(2)
a,a′;b,b′(ω, ω

′, T )

− F (2)
b,b′;a,a′(ω

′, ω, T ), (19)

G+
a,a′;b,b′(ω, ω

′, T ) = F
(2)
a,a′;b,b′(ω, ω

′, T )

+ F
(2)
b,b′;a,a′(ω

′, ω, T )

= F
(1)
a,a′(ω, T )F

(1)
b,b′(ω

′, T ). (20)

Combining our observations in the frequency domain repre-
sentation, we can determine explicit expressions for the cumu-
lants in Eqs. (14)-(15). First, recalling that the noise is zero
mean, one has that C(1)

O = 0 in both coordinate representa-
tions, for arbitrary O. While general closed-form expressions
may be obtained for the second cumulant, we specialize to the
simpler and practically relevant case of Pauli observables. In
the spherical representation, direct calculation yields

C(2)
σγ

2
=
∑
l,l′,j,j′

∫ ∞
−∞

dω

2π
F

(2)
j,j′;l,l′(ω + jΩ,−ω + lΩ, T )×

[
(σj′σl′ − σγσj′σγσl′)S−j,−l(−ω)

+ (σγσl′σj′σγ − σγσl′σγσj′)S−l,−j(ω)
]
, (21)

where the Ω-displacement in the frequency arguments of the
fundamental FFs arises due to the eiΩt factors in the spher-
ical Hamiltonian [Eq. (4)]. This expression, combined with
Eq. (9) for O = σz , enables us to shed more light on the
role of the spherical spectra in the qubit dynamics. Neglect-
ing correlations between the transverse and longitudinal noise
operators, to first order in T under free evolution,

E[σz(T )]|+z〉〈+z|⊗ρB ≈ 1− 2TS−1,+1(−Ω),

E[σz(T )]|−z〉〈−z|⊗ρB ≈ −1 + 2TS+1,−1(Ω),

where σz|± z〉 = ±|± z〉. Thus, S−1,+1(−Ω) sets the rate of
bath-induced emission from |+ z〉 to | − z〉, while S+1,−1(Ω)
sets the rate of bath-induced absorption from | − z〉 to |+ z〉.

In Cartesian coordinates, the second cumulant is given by

C(2)
σγ

2
=

∑
α,β,α′,β′

σασβ

∫ ∞
−∞

dω

4π
S
fγαf

γ
β f

α
β

α′,β′ (ω)× (22)

[
G
fγαf

γ
β

α,α′;β,β′(ω,−ω, T ) + fγαG
+
α,α′;β,β′(ω,−ω, T )

]
,

with fγα = tr[σασγσασγ ]/2, which is hauntingly similar
to the expression derived in [41] for a multiqubit dephasing
model, i.e., when all operators are mutually commuting (see
in particular Eq. (27) therein). The only seemingly minor dif-

ference is the fαβ superscript in S
fγαf

γ
β f

α
β

α′,β′ (ω) which, however,
will have significant consequences in terms of the symmetries
needed to extract all the noise spectra (see Sec. IV).

Again, we stress that here we are truncating the expansion
to the second order based on a suitable convergence argument
(for instance, weak coupling) and not because we are —em
a priori invoking a Gaussian property of the noise. In fact,
notice that even when the Gaussian assumption is in place,
the non-commuting, multiaxis nature of the noise prevents the
cumulant series from truncating exactly, unlike for single-axis
noise [6, 41].

B. QNS via frequency comb

The interplay between FFs and power spectra is the key el-
ement in the QNS protocols we consider. The aim of these
protocols is to estimate the full set of dynamically relevant
spectra {S±b1,b2(ω)} by studying the response of the probe sys-
tem to the control while in the presence of the target noise.
Mathematically, this entails two key steps: first, isolating the
integrals that involve a spectrum of interest by choosing an
appropriate set of observables and initial states; next, decon-
volving each such integral to obtain an appropriate estimate.

The first problem can be addressed by preparing eigen-
states of the Pauli basis σα, for α = x, y, z, measuring
in the Pauli basis, and combining the resulting expectation
values into experimentally accessible quantities. The prepa-
ration and measurement procedure simplifies if the system
has known symmetries, as one may appreciate by consider-
ing a purely dephasing classical noise model, i.e., one for
which Ba(t) ∝ ζa(t)δa,zIB . Using control that preserves
the dephasing character of the Hamiltonian, e.g., [π]x pulses,



7

the expectation value of σx when the qubit is initialized in
(IS + σx)/2 = |+ x〉〈+x| is given by

log[E(σx(t))|+x〉〈+x|⊗ρB ] = log[tr(e−C
(2)/2!|+ x〉〈+x|σx)]

= − 1

π

∫ ∞
−∞

dωG+
z,z;z,z(ω,−ω, T )S+

z,z(ω).

A single preparation and measurement setting is enough to
isolate the integral containing the relevant noise information.

The second issue, namely, extracting the noise information
once the integral has been isolated, has been the object of
many recent studies [2, 3, 5, 6, 40, 41, 48]; in particular, DD
QNS based on a frequency-comb approach has been widely
employed [19]. The basic idea behind such an approach is
to ensure that each of the integrals that can be isolated can
be further discretized and truncated in a systematic way, by
use of control. The objective is to guarantee that any of the
aforementioned integrals takes the form

I =

∫ ∞
−∞

dωG(ω)S(ω) ' A
K∑
k=0

G(kω0)S(kω0), (23)

where both the fundamental frequency ω0 and the proportion-
ality constant A are determined by the choice of control, and
the highest harmonic K is adjusted so that S(ω) is reason-
ably small for ω ≥ Kω0 (see, however, further discussion
in Sec. VI). If this can be achieved, then each integral is
basically a linear equation involving the unknown quantities,
S(kω0), along with known, tunable, control-dependent coeffi-
cients AG(kω0). Since a given experiment provides access to
the value of I , it is then possible to generate a system of linear
equations by changing the control being used, from which an
estimate of the target power spectra can ultimately be inferred.

The discretization described above may be achieved by a
suitable choice of control. To make contact with existing
tools, it is useful to note that, given the form of the dynamical
equations, there are two kinds of FFs we have to be concerned
with, namely, G+

a,a′;b,b′(ω, ω
′, T ) and G−a,a′;b,b′(ω, ω

′, T ) –
formally very similar to the setting of multiqubit pure dephas-
ing we analyzed in [41, 50]. As shown there, the key to gen-
erating a frequency comb is the ability to design switching
functions exhibiting one or more of the following symmetries:

(i) Tc periodicity, i.e., ya,a′(t) = ya,a′(t+Tc), for Tc > 0.

(ii) Displacement (anti-)symmetry at time scale [0, τ ], i.e.,
for t ∈ [0, τ/2], ya,a′(t) = ± ya,a′(t+ τ/2).

(iii) Mirror (anti-)symmetry at time scale [0, τ ], i.e., for t ∈
[0, τ/2], ya,a′(τ/2− t) = ± ya,a′(t+ τ/2).

Most relevant to this paper, one can show [3, 50] that if a
control sequence of duration Tc is repeated M � 1 times
over a total duration T = MTc, a frequency comb is created
in which an arbitrary first-order FF is directly expressible in
terms of its single-cycle counterpart. For FFs of the G+-type,

the frequency comb takes the form

G+
a,a′;b,b′(ω,−ω,MTc) =

sin2(M ωTc
2 )

sin2(ωTc2 )
G+
a,a′;b,b′(ω,−ω, Tc)

' 2πM

Tc

∑
k

δ(ω − kω0)G+
a,a′;b,b′(ω,−ω, Tc), (24)

where ω0 = 2π/Tc. For the G−-type FFs, in addition to con-
trol repetition (Tc-periodicity), one of the switching functions
entering the FF in Eqs. (18) and (20) must be displacement
anti-symmetric and the other symmetric. This symmetry con-
dition combined with repetition generates another comb,

G−a,a′;b,b′(ω,−ω,MTc)

' 2π

Tc

∑
k

(−1)kδ(ω − kω0)G+
a,a′;b,b′(ω,−ω, Tc/2).

Additionally, mirror symmetry in the interval [0, Tc]
(or, [0, Tc/2]) can be leveraged to control the real or
imaginary character of the filters G+

a,a′;b,b′(ω,−ω, Tc) (or,
G+
a,a′;b,b′(ω,−ω, Tc/2), respectively).
By combining the tools described above, we showed how

all the spectra relevant to a multiqubit dephasing Gaussian
noise model could be reconstructed [41]. A caveat of hav-
ing to deal with both types of filters is their different scaling
with the number of repetitions, M . While one can, in prin-
ciple, work around this by a careful choice of controls [41],
this imposes constraints on the types of sequences that can be
used, which in turn leads to complications in reconstructing
spectra that are filtered by the G−-type FFs. In contrast to
single-qubit dephasing, the complexity of the multiqubit de-
phasing protocol arises from the fact that the system operators
in H(t) are spanned by a richer, albeit still commuting, alge-
bra. In the single-qubit multiaxis setting, the situation is seem-
ingly more complex, as the system part of the Hamiltonian is
additionally spanned by an algebra which is non-commuting.
Following this reasoning, one would expect that, at the very
least, all of the same symmetries should be necessary in our
current scenario. Surprisingly, as we will see in Sec. IV B, the
structure of Eq. (22) implies that only G+ filters are relevant
for our purposes. This, in turn, affords the use of a smaller
set of symmetries (just repetition and mirror) and, as an added
benefit, the M -scaling complication we highlighted is absent.

C. Frame-tilting control sequences

While repetition of base sequences exhibiting the afore-
mentioned symmetries is essential to generate the comb, the
choice of pulse types in the base sequences is crucial to access
all of the spectra, whenever multiple kinds of spectra simulta-
neously influence the dynamics. In [41], an important design
principle was the use of “non-diagonal” control sequences, ca-
pable of generating non-trivial switching functions ya,b(t) not
proportional to δa,b.

Here, we further introduce more general “frame-tilting”
control sequences, which contain the aforementioned ap-
proach as a special case and are closely related to “twisted
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decouplers” [45]. Just before the application of pulse i + 1
at time ti, recall from Eq. (7) that the control propagator is
given by Uctrl(ti) = P~θi−1

· · ·P~θ0 . In a tilted DD sequence,
the trick is to choose the pulses P~θi−1

, . . . , P~θ0 , so that at each
ti, the control propagator can be written in terms of a fixed (i-
independent) “tilting pulse” Ptilt and a desired “target pulse”
P~θ′i

, namely,

Uctrl(ti) = P~θi−1
...P~θ0 = PtiltP~θ′i

. (25)

At each time ti, the control propagator then induces the tog-
gling frame transformation

σa 7→ U†ctrl(ti)σaUctrl(ti) = P †~θ′i

[
P †tiltσaPtilt

]
P~θ′i

, ∀a.

In this way, we can “tilt” the operator basis {σa} at every in-
terval, and still have enough freedom in P~θ′i to generate a non
trivial switching function after the frame transformation. Sim-
ilar to non-diagonal base sequences in [41], this effectively
grants us the ability to control which bath operator couples to
which system operator.

Of particular relevance in the subsequent discussion will be
the tilting transformation defined by Ptilt = [π4 ]x. Under this
transformation one finds that[π

4

]
x

: σ+ 7→ sin2 π

8
σ− + i

σ0

2
+ cos2 π

8
σ+,

σ0 7→
1

2

(
−i σ− +

√
2σ0 + i σ+

)
,

σ− 7→ cos2 π

8
σ− − i

σ0

2
+ sin2 π

8
σ+, (26)

which in turn implies that in a given time interval where
the transformation has been executed, all the switching func-
tions yj,j′(t) are in general non-vanishing, i.e., they are non-
diagonal as desired. While other tilting transformations are of
course possible, the above is particularly convenient when the
qubit quantization axis is along σz , as we will see in Sec. V.

IV. PROTOCOLS FOR COMB-BASED MULTIAXIS QNS

A. Accessible quantities

The first step towards constructing an explicit QNS protocol
is understanding what information is accessible to the exper-
imentalist when the ability to prepare different initial states
and measure in different bases is exploited and, in particular,
which of the various integrals appearing in C(2)

O can be iso-
lated. For concreteness, we shall assume the ability to prepare
any eigenstate of the Pauli basis, and measure in any direc-
tion. In other words, with ρS ∈ {η±,α = (IS ± σα)/2}, we
assume we have access to all the expectation values

E(σγ(T ))η±,α⊗ρB = tr
[
eCγ

σγ ± σασγ
2

]
,

where we have introduced the observable-dependent qubit op-
erator Cγ ≡

∑
k(−i)kC(k)

σγ /k! and α, γ ∈ {x, y, z}. We de-

note the decomposition of Cγ in the Pauli basis by

Cγ ≡
∑

β=0,x,y,z

Cγ,β σβ . (27)

By combining expectation values of σγ for different initial
states of the qubit, it is then possible to isolate each of theCγ,β
terms individually. Consider the the experimentally accessible
quantities defined by the linear combinations

M(x)
r,α ≡ E(σx(T ))η+1,x⊗ρB + rE(σx(T ))η−1,x⊗ρB .

If σγ = σx and r = ±1, for example, these can be written as
functions of the Cx,β as follows:

M(x)
+,x =

2eCx,0Cx,x sinh |Cx|
|Cx|

, (28)

M(x)
−,x = 2eCx,0 cosh |Cx|, (29)

M(x)
−,y =

2ieCx,0Cx,z sinh |Cx|
|Cx|

, (30)

M(x)
−,z = −2ieCx,0Cx,y sinh |Cx|

|Cx|
, (31)

where |Cx| ≡
√
C2
x,x + C2

x,y + C2
x,z . From these expres-

sions, the quantities Cx,β can be obtained by judiciously ap-
plying trigonometric identities. Similar methods allow us to
obtain the coefficients Cγ,β for other observables. Recalling
that we are truncating the cumulant expansion to second or-
der, it follows from Eq. (27) that we then have access to all
the quantities Cγ,β ' tr[C(2)

σγ σβ ]/2.

B. Balanced and imbalanced filters

Given the access to the projections of C(2)
σγ on each axis and

Eqs. (21)-(22), one recognizes that the filters present in the
problem can be separated into two classes according the to
frequency displacement induced by HS . The filters

G±a,a′;b,b′(ω + sΩ,−ω + s′Ω, T ), s, s′ ∈ {−1, 0,+1},

are said to be balanced when (s + s′)Ω = 0 and imbal-
anced when (s + s′)Ω 6= 0. This distinction proves cru-
cial. Because ω + sΩ = −(−ω + s′Ω) for a balanced
displacement, taking ω′ ≡ ω + sΩ produces filters of the
form G±a,a′;b,b′(ω

′,−ω′, T ). For such filters, the discussion
in Sec. III B suggests that one just needs to generate the nec-
essary symmetries to produce a comb. In other words, if these
were the only FFs entering the problem, then the results ob-
tained for dephasing models in [41] would, in principle, seam-
lessly extend to the general decoherence scenario. However,
for imbalanced filters, which do not have the simple form
G±a,a′;b,b′(ω

′,−ω′, T ), a comb cannot be generated by sim-
ply applying the aforementioned symmetries and a different
treatment is needed.
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1. QNS and balanced filters

As highlighted earlier, reconstructing the power spectra via
a balanced filter requires the use of the aforementioned set of
well-established symmetries and indeed, at a first glance, it
would seem that it is necessary to be able to impose any of
them. However, as it turns out, the fact that we are working
with a single-qubit probe reduces the need for some of them.

The simplest scenario arises when Ω = 0, as in this case
only G±a,a′;b,b′(ω,−ω, T ) filters appear in the dynamics. Fur-
thermore, a close analysis of Eq. (22), shows that it is possible
to combine observables in such way that all spectra are filtered
byG+

a,a′;b,b′(ω,−ω, T ) filters. This is a striking difference be-
tween the two-qubit single-axis and the single-qubit multiaxis
scenarios, which can be traced back to the the seemingly in-
nocuous fαα′ superscript in Eq. (22). For example, one can
reconstruct Re[S±x,z(ω)] and Im[S±x,z(ω)] from the relations

Cx,y − Cz,y = 4i

∫ ∞
0

dω

2π

(
Im[S+

x,z(ω)]Im[G+
x,x,z,z(ω, T )]

− Re[S+
x,z(ω)]Re[G+

x,x,z,z(ω, T )]
)
,

Cy,y = 4

∫ ∞
0

dω

2π

(
Re[S−x,z(ω)]Im[G+

x,x,z,z(ω, T )]

+ Im[S−x,z(ω)]Re[G+
x,x,z,z(ω, T )]

)
,

simply by using repetition symmetry. The remaining spec-
tra can be obtained in a similar fashion by combining Cα,β’s
and using frame-tilting base sequences, i.e., both diagonal and
non-diagonal control. We stress that this does not mean that
G− filters do not enter the dynamics of the qubit (see Ap-
pendix A); they just are not necessary for QNS purposes.

The general Ω 6= 0 scenario shares some similar fea-
tures. In particular, a detailed analysis of Eq. (21) shows that,
while both balanced and imbalanced filters are now present,
one may still combine Cα,β quantities in a way that only
G+
a,a′;b,b′(ω+sΩ,−ω+s′Ω, T ) filters are relevant to the QNS

problem (we show this explicitly in the next section). In turn,
this implies that, similar to the single-qubit single-axis prob-
lem [3, 6], sequence repetition suffices for QNS – provided
one can find a compatible mechanism to deal with the imbal-
anced G+ filters, to which we turn now.

2. QNS and imbalanced filters

Imbalanced filters pose a different challenge. To see this,
consider first the effect of repeating a given base sequence M
times. Then, the filters relevant to spectroscopy take the form

G+
a,a′;b,b′(ω + sΩ,−ω + s′Ω,MTc) =

ei(s+s
′) ΩTc

2
sin2(M ωTc

2 )

sin2(ωTc2 )
G+
a,a′;b,b′(ω + sΩ,−ω + s′Ω, Tc).

The displacement in the frequency argument leads to an ex-
tra exponential factor that does not appear in the expression
leading to the comb, Eq. (24). Formally, when Ω 6= 0, we

may envision imposing a synchronization condition between
the qubit energy scale and the periodicity of the applied con-
trol to recover the desired comb-generating expression. That
is, we may demand that ΩTc/2 = mπ, for some integer m,
such that the ei(s+s

′) ΩTc
2 = ±1. In other words, control repe-

tition along with the synchronization condition are enough to
generate a comb in all relevant filters for arbitrary values of Ω.

3. Imbalanced filters in the large qubit-splitting regime

While, mathematically, synchronization solves the prob-
lem, one needs to consider whether it can be realistically
achieved. Even with perfect knowledge of Ω, let us assume
that the precision in timing is δt, that is, we can apply pulses
at a times ti ± δt. In this situation, guaranteeing the synchro-
nization condition implies then that Ωδt/2 � π. In turn, this
imposes the constraint δt� 2π/Ω, which may be unrealistic
when Ω is sufficiently large – as is the case in many realistic
devices (see also Sec. V).

Fortunately, this potentially problematic regime has a re-
deeming property: when ΩT is sufficiently large, imbalanced
filters become negligible. Thus, spectra that enter the dynam-
ics only via convolutions with such filters are effectively ir-
relevant. In essence, this result follows from separating the
two important timescales in the problem, namely, the evolu-
tion time T and 1/Ω, similar in spirit to the secular approxi-
mation often used in open quantum systems [51]. A detailed
derivation of this argument is provided in Appendix B.

The above implies that, crucially, when ΩT � 1 and the
imbalanced filters are negligible, the only spectra contribut-
ing to the qubit dynamics are S±±1,∓1(ω) and S±0,0(ω). Thus,
these spectra are the only ones that need to be reconstructed
in order to model the qubit dynamics. Interestingly, extend-
ing the argument presented here to higher order filters would
imply that, in the ΩT � 1 regime, the non-unitary effective
propagator 〈T e−i

∫ T
−T H̃O(s)ds〉 (see Eqs. (10) and (13)) acting

on the qubit can always be written as eAIS+Bσz . We highlight
that despite this simple single-axis form, Eq. (10) allows for
both dephasing and relaxation in the dynamics.

V. ILLUSTRATIVE RESULTS

We are now ready to showcase the key steps allowing us to
perform QNS of a multiaxis noise model in a concrete exam-
ple. We will focus on the physically relevant regime of large
qubit splitting – more specifically, ΩT � 1. Our aim is three-
fold: (i) to show in detail the validity of our previous claims
regarding the role of G+-filters in multiaxis QNS; (ii) to ver-
ify that only a small set of spectra contribute to the dynamics
in this parameter regime; and (iii) to provide quantitative nu-
merical results that will also allow us to discuss some of the
potential limitations of the comb approach.
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Observable Expectation values Accessible coefficients
σx E(σx(T ))η±,α⊗ρB Cx,x(T ), Cx,0(T )
σy E(σy(T ))η±,α⊗ρB Cy,y(T ), Cy,0(T )
σz E(σz(T ))η±,α⊗ρB Cz,z(T ), Cz,0(T )

TABLE I. Summary of expectation values necessary for determin-
ing the experimentally accessible quantitites {Qp(T )} used in our
protocol. For each observable, qubit initialization in a complete set
of initial states is assumed, η±,α = (IS + σα)/2 = |± α〉〈±α|,
with α ∈ {x, y, z}. The relation between the Cα,β and the Qp(T )
is given in Eq. (32). While in the explicit protocol we present only
Cz,β and Cx,β , Cy,β could be similarly used in place of Cx,β .

A. Protocol implementation

1. Physical observables

To start, we explore the structure of the accessible quantities
Cα,β , that determine the decomposition in Eq. (27). A direct
calculation shows that the following four combinations,

Q1(T ) =
1

2
(Cz,0 + Cz,z), Q2(T ) =

1

2
(Cz,0 − Cz,z),

Q3(T ) = Cx,0, Q4(T ) = Cx,x, (32)

are both sufficient and practically convenient to reconstruct
all the necessary spectra. That the quantities {Qp(T )} are
experimentally accessible follows by noting that they can be
obtained by combining an appropriate set of Pauli expectation
values and leveraging Eqs. (28) -(31). While a summary is
given in Table I, we further illustrate the procedure by show-
ing the explicit process for obtaining Cx,0 and Cx,x. First,
note that from our expressions for {M(x)

±,α}, one finds that

Cx,0 =
1

2
log
{1

4

[(
E(σx(T ))η+,x⊗ρB − E(σx(T ))η−,x⊗ρB

)2
−
(
E(σx(T ))η+,x⊗ρB + E(σx(T ))η−,x⊗ρB

)2
+
(
E(σx(T ))η+,y⊗ρB − E(σx(T ))η−,y⊗ρB

)2
+
(
E(σx(T ))η+,z⊗ρB − E(σx(T ))η−,z⊗ρB

)2]}
.

With this one proceeds to extract |Cx| by inverting Eq. (29).
This information is then sufficient to obtain Cx,x from
Eq. (28). Indeed, algebraic manipulations yield

Cx,x = |Cx|e−Cx,0
E(σx(T ))η+,x⊗ρB + E(σx(T ))η−,x⊗ρB

2 sinh |Cx|
,

in terms of parameters that depend solely on the expectations
{E(σx(T ))η±,α⊗ρB}. A similar procedure works for {Cz,β}.

In principle, the method described above enables us to ob-
tain each Cα,β exactly, using 6 total expectation values. It is
worth noting that, for times sufficiently small to permit a lin-
earization of Eq. (12), producing eCγ ≈ IS +

∑
β Cγ,βσβ , the

quantities Qp(T ) can be expressed as linear combinations of

qubit expectation values,

Q1(T ) ≈
E(σz(T ))η+,z⊗ρB − 1

2
(33)

Q2(T ) ≈ −
E(σz(T ))η−,z⊗ρB + 1

2
(34)

Q3(T ) ≈
E(σx(T ))η+,x⊗ρB − E(σx(T ))η−,x⊗ρB

2
− 1

(35)

Q4(T ) ≈
E(σx(T ))η+,x⊗ρB + E(σx(T ))η−,x⊗ρB

2
. (36)

Although these expression are not exact, they allow each
Qp(T ) to be obtained using at most two expectation values,
which may be advantageous in practice.

When the cumulant expansion is truncated at second order
and Cγ,β ' tr[C(2)

σγ σβ ]/2, the statement regarding sufficiency
of the four quantitiesQp(T ) follows from the observation that
each can be expressed as

Qp(T ) =
∑

j,l=−1,0,1

∫ ∞
−∞

dω

2π
G(p)
j,l (ω, T )Sj,l(ω), (37)

where the generalized FFs G(α,β)
j,l (ω, T ) are functions of the

G+ and G− filters,

G(1)
−j,−l(ω, T ) = G+

j,1;l,−1(ω + jΩ,−ω + lΩ, T ),

G(2)
−j,−l(ω, T ) = G+

j,−1;l,1(ω + jΩ,−ω + lΩ, T ),

G(3)
−j,−l(ω, T ) = 2G+

−j,0;−l,0(ω + jΩ,−ω + lΩ, T )

−
∑

j′,l′=−1,1

j′l′

2
G+
j,j′;l,l′(ω + jΩ,−ω + lΩ, T ),

G(4)
−j,−l(ω, T ) =

∑
j′,l′=−1,0,1
|j′+l′|=1

(l′ − j′)G+
j,j′;l,l′(ω + jΩ,−ω + lΩ, T ).

The form of these generalized FFs supports our previous
claim: since all spectra are represented, only G+- type filters
are necessary for QNS, and thus sequence repetition suffices
to ensure the appearance of the frequency comb. Moreover,
since we are concerned with the ΩT � 1 regime, terms in-
volving imbalanced filters can be neglected and the sum in
Eq. (37) is effectively restricted by the condition j + l = 0.

2. Filter design principles

Having established that all of the integrals can be decon-
volved via a frequency comb by using control repetition, the
remaining key aspect of the protocol is that of filter design,
i.e., we need to find control sequences whose FFs are capa-
ble of sampling the full spectra. This is critically important
in the case of quantum noise. Recall from Eqs. (16)-(17)
that the quantum components of the spectra, S−j,l(ω), and the
classical components, S+

j,l(ω), are odd and even functions of
ω, respectively. It then follows from Eq. (37) that S−j,l(ω)
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can only be reconstructed if we design sequences such that
the corresponding FF G(p)

j,l (ω, T ) has an odd component in the
frequency domain.

In order to achieve this, it is necessary to better understand
the structure of the balanced G+ filters. Observe that any
function f(ω) can be written as f(ω) ≡ E [f(ω)] +O[f(ω)],

where its even and odd components are given, respectively, by

E [f(ω)] =
f(ω) + f(−ω)

2
, O[f(ω)] =

f(ω)− f(−ω)

2
.

By manipulating the integral expressions of the G+ filters
given in Eq. (20), we find

E
[
G+
a,a′;b,b′(ω,−ω, T )

]
=

∫ T/2

−T/2
ds

∫ T/2

−T/2
ds′
{
E
[
ya,a′(s+ T/2)

]
E
[
yb,b′(s

′ + T/2)
]

cos(ωs) cos(ωs′) (38)

+O
[
yb,b′(s

′ + T/2)
]
O
[
ya,a′(s+ T/2)

]
sin(ωs′) sin(ωs)

}
,

O
[
G+
a,a′;b,b′(ω,−ω, T )

]
=i

∫ T/2

−T/2
ds

∫ T/2

−T/2
ds′
{
O
[
ya,a′(s+ T/2)

]
E
[
yb,b′(s

′ + T/2)
]

sin(ωs) cos(ωs′) (39)

−O
[
yb,b′(s

′ + T/2)
]
E
[
ya,a′(s+ T/2)

]
sin(ωs′) cos(ωs)

}
.

From these expressions, it is evident that the even/odd char-
acter of the FFs can be traced back to the even/odd character
of the switching functions ya,a′(t+ T/2) on [−T/2, T/2] or,
equivalently, to the mirror symmetric/antisymmetric character
of the switching functions on [0, T ]. If the switching functions
ya,a′(s + T/2) and yb,b′(s′ + T/2) have the same parity (ei-
ther both even or both odd), then the odd component of the FF
vanishes. Conversely, if ya,a′(s + T/2) and yb,b′(s′ + T/2)
have opposite parity, the even component of the FF vanishes.

B. A sample reconstruction

Finally, we combine all of the above tools and observations
into a sample recipe for reconstructing the spectra influencing
the qubit dynamics in the ΩT � 1 regime. We consider a
qubit with energy splitting Ω/2π = 27 GHz coupled to a bath
that induces noise along all three axes of the Bloch sphere
with non-negligible correlations between axes. In the Carte-
sian representation, we take the bath spectra to be sums of
Gaussians centered at different locations in the frequency do-

main, given for all α, β ∈ {x, y, z} by

Sα,β(ω) = A−e
− (ω−ω−)2

2∆2 +A0e
− (ω−ω0)2

2∆2 +A+e
− (ω−ω+)2

2∆2 .
(40)

If ω0 = 0, ω− = −ω+, and A+ = A−, each Sα,β(ω)
is an even function of ω, symmetric about ω = 0, indicat-
ing a classical noise source. For our simulations, we chose
A− = 332 Hz, A0 = 0.7A−, A+ = 0.5A−, ∆/2π = 0.80
MHz, (ω∓±Ω)/2π = ±0.81 MHz, and ω0/2π = 0.80 MHz,
which produce Sα,β(ω) that are asymmetric about ω = 0,
characteristic of quantum noise. In terms of the Cartesian
spectra, S±1,∓1(ω) are, in general, given by

S±1,∓1(ω) = Sx,x(ω) + Sy,y(ω)± Im[Sxy(ω)]. (41)
Using Eq. (40) and our chosen simulation parameters, it is
easy to see that S−1,+1(−Ω) 6= S+1,−1(Ω), implying unequal
emission and absorption rates.

Our objective is to reconstruct the dephasing spectrum
S0,0(ω) and the spherical spectra S±1,∓1(ω), since they are
the only dynamically relevant spectra in the ΩT � 1 regime.
To accomplish this, we make use of the following six control
sequences describing evolution over [0, Tc] in the interaction-
picture frame,

U1(0, Tc)≡ U0

(3Tc
4
, Tc

)
[π]z U0

(Tc
4
,

3Tc
4

)
[π]z U0

(
0,
Tc
4

)
,

U2(0, Tc)≡
[π

2

]
z
U0

(3Tc
4
, Tc

) [π
2

]
z
U0

(Tc
2
,

3Tc
4

) [π
2

]
z
U0

(Tc
4
,
Tc
2

) [π
2

]
z
U0

(
0,
Tc
4

)
,

U3(0, Tc)≡
[3π

2

]
z
U0

(Tc
2
, Tc

) [π
2

]
z
U0

(
0,
Tc
2

)
,

U4(0, Tc)≡ [π]z U0

(3Tc
4
, Tc

)
[π]y U0

(Tc
2
,

3Tc
4

)
[π]z U0

(Tc
4

Tc
2

)
[π]y U0

(
0,
Tc
4

)
,
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U5(0, Tc)≡ [π]x Ũ0

(Tc
2
, Tc

)
[π]y Ũ0

(Tc
4
,
Tc
2

)
[π]z Ũ0

(
0,
Tc
4

)
,

U6(0, Tc)≡ [π]z Ũ0

(3Tc
4
, Tc

)
[π]z Ũ0

(Tc
2
,

3Tc
4

)
[π]z Ũ0

(Tc
4
,
Tc
2

)
[π]z Ũ0

(
0,
Tc
4

)
.

Here, Ũ0(ti, tj) = [−π/4]xU0(ti, tj)[π/4]x denotes free evo-
lution in the interaction picture tilted by [π/4]x, as described
in Eq. (26). In addition to these sequences, the sample recon-
struction relies on the quantities Q1(T ), Q2(T ), Q3(T ) and
Q4(T ). Using the approximate expressions in Eqs. (33)-(36),
we obtain these quantities directly from expectation values of
Pauli observables that we calculate numerically.

1. Sequences for reconstruction of S±1,∓1(ω)

First, we detail the sequences and accessible quantities that
we use to reconstruct the spherical spectra. Observe that by
making a change of variable ω → ω − Ω in Eq. (37) and
taking p = 1, the integrand of Q1(T ) depends on the product
G(1)
−1,+1(ω, Tc)S−1,+1(ω − Ω). To access E [S−1,+1(ω − Ω)]

through Q1(T ), we utilize the sequence U1(0, Tc), under
which G(1)

−1,+1(ω, Tc) is an even function of ω, as shown in
Fig. 1 (a). By applying M = 20 repetitions of U1(0, Tc)
for different cycle times Tc = Tmax, Tmax/2, . . . , Tmax/8
with Tmax = 2.4µs and measuring Q1(MTc), we produce
8 linear equations via the frequency comb approxima-
tion. Each of these equations contains terms of the form
G(1)
−1,+1(nω0, Tc)E [S−1,+1(nω0 − Ω)], where n = 1, . . . , 8

and ω0 = 2π/Tmax. While inverting this system is sufficient
to reconstruct E [S−1,+1(ω − Ω)] at ω = ω0, . . . , 8ω0, we
cannot access this spectrum at ω = 0 since G(1)

−1,+1(0, Tc) = 0

under U1(0, Tc). The sequence U3(0, Tc), on the other hand,
has zero filter order, i.e. G(1)

−1,+1(0, Tc) 6= 0, as seen in Fig. 1
(c). Applying M = 20 repetitions of U3(0, Tc) for Tc = Tmax
produces one additional linear equation that contains a term
depending on G(1)

−1,+1(0, Tc)E [S−1,+1(−Ω)]. Reconstructing

O[S−1,+1(ω − Ω)] is impossible when G(1)
−1,+1(ω, Tc) is

an even function of ω, as Q1(T ) will vanish. Instead, we
rely on the sequence U2(0, Tc) for which G(1)

−1,+1(ω, Tc) is
asymmetric about ω = 0, depicted in Fig. 1 (b). Similar to the
case of E [S−1,+1(ω − Ω)], applying M = 20 repetitions of
U2(0, Tc) for Tc = Tmax, Tmax/2, . . . , Tmax/8 and measuring
Q1(MTc), produces 8 linear equations containing terms of
the form G(1)

−1,+1(nω0, Tc)O[S−1,+1(nω0−Ω)]. It is not nec-
essary to employ an additional sequence with zero filter order
sinceO[S−1,+1(ω−Ω)], being an odd function of ω, vanishes
at ω = 0. Conveniently, we can access S+1,−1(ω) through
quantity Q2(T ) using the same sequences. If we make the
change of variable ω → ω+ Ω in Eq. (37) and take p = 2, the
integrand ofQ2(T ) depends on G(2)

+1,−1(ω, Tc)S+1,−1(ω+Ω).
Analogous to the case of S−1,+1(ω), measuring Q2(MTc)
after applying M = 20 repetitions of the sequences
U1(0, Tc) and U2(0, Tc) for Tc = Tmax, Tmax/2, . . . , Tmax/8

produces 8 linear equations containing the terms
G(2)

+1,−1(nω0, Tc)E [S+1,−1(nω0 + Ω)] and 8 linear equations

containing the terms G(2)
+1,−1(nω0, Tc)O[S+1,−1(nω0 + Ω)],

respectively, for n = 1, ..., 8. As it requires a se-
quence with zero filter order, a linear equation involving
G(2)

+1,−1(0, Tc)E [S+1,−1(Ω)] is again obtained through

U3(0, Tc) with Tc = Tmax. The filters G(2)
+1,−1(ω, Tc) gener-

ated by U1(0, Tc), U2(0, Tc) and U3(0, Tc) are depicted in
Fig. 1 (a-c). For each sequence, note that G(2)

+1,−1(ω, Tc) is a

reflection of its counterpart G(1)
−1,+1(ω, Tc).

2. Sequences for reconstruction of S0,0(ω)

The dephasing spectrum, S0,0(ω), enters the qubit dynam-
ics through Q3(T ) and Q4(T ) in Eq. (37). Note, how-
ever, that S±1,∓1(ω) also enter Q3(T ) and Q4(T ), a fact
that prevents us from solving for the spherical and dephas-
ing spectra individually. The filter G(3)

0,0(ω, Tc), which cou-
ples to S0,0(ω) in Q3(T ), is an even function of ω for se-
quence U4(0, Tc), as shown in Fig. 1 (d). Thus, measur-
ing Q3(T ) after M = 20 repetitions of U4(0, Tc) for Tc =
Tmax, Tmax/2, . . . , Tmax/8 creates 8 linear equations that de-
pend on G(3)

0,0(nω0, Tc)E [S0,0(nω0)], n = 1, . . . , 8. S0,0(0)

is extracted using U6(0, Tc), for which G(3)
0,0(0, Tc) 6= 0,

as depicted in Fig. 1 (f). Applying M = 20 rep-
etitions of U6(0, Tc) for Tc = Tmax generates an addi-
tional linear equation containing a term that depends on
G(3)

0,0(0, Tc)E [S0,0(0)]. To access O[S0,0(nω0)], we must
generate a filter that is not an even function of ω. Under
U5(0, Tc), the filter G(4)

0,0(0, Tc), which couples to S0,0(ω)

in Q4(T ), is asymmetric about ω = 0 [Fig. 1 (e)]. Mea-
suring Q4(T ) after M = 20 repetitions of U5(0, Tc) for
Tc = Tmax, Tmax/2, . . . , Tmax/8 creates 8 more linear equa-
tions containing terms G(4)

0,0(nω0, Tc)O[S0,0(nω0)], for n =
1, . . . , 8, as needed.

3. Recontruction results

To actually implement the reconstruction, we combine the
linear equations generated in the previous steps (51 equations
total, 17 for each spectrum). Inverting the system of equations
produces estimates of E [S±1,∓1(nω0 ±Ω)] and E [S0,0(nω0)]
for n = 0, . . . , 8, as well as O[S±1,∓1(nω0 ± Ω)] and
O[S0,0(nω0)] for n = 1, . . . , 8. By combining the even
and odd components of each spectrum, we obtain reconstruc-
tions of S±1,∓1(ω) and S0,0(ω) in the frequency windows
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FIG. 1. (Color online) FFs used to reconstruct dynamically relevant spectra in the ΩT � 1 limit. Top: FFs used for the spherical spectra,
S±1,∓1(ω). The FFs G(1)−1,+1(ω, T ) (solid line) and G(1)+1,−1(ω, T ) (dashed line), coupling to S−1,+1(ω) in Q1(T ) and S+1,−1(ω) in Q2(T ),
respectively, are plotted versus multiples of the harmonic frequency. Columns correspond to the control sequences U1(0, T ) (a), U2(0, T ) (b)
and U3(0, T ) (c). Bottom: FFs used for the dephasing noise spectrum, S0,0(ω). The FFs G(3)0,0(ω, T ) and G(4)0,0(ω, T ), which couple to S0,0(ω)
in Q3(T ) and Q4(T ), respectively, are plotted versus multiples of the harmonic frequency. Columns correspond to the control sequences
U4(0, T ) (d), U5(0, T ) (e) and U6(0, T ) (f). All FFs, top and bottom, are scaled by 1/T 2, so that they are independent of T .

[−8ω0±Ω, 8ω0±Ω] and [−8ω0, 8ω0], respectively. Figure 2
shows plots of the actual and numerically reconstructed spec-
tra in their respective windows. The remarkable accuracy of
the reconstruction supports our formal claim in Sec. IV B 2
regarding the negligible contribution of certain spectra in the
ΩT � 1 regime. The expectation values that we use to ob-
tain Q1(T ), Q2(T ), Q3(T ) and Q4(T ) are calculated numer-
ically using Sα,β(ω) in Eq. (40) for all α, β. If there were
dynamically relevant spectra besides S±1,∓1(ω) and S0,0(ω),
significant deviations would have been observed.

Note that in our simulations we treated the qubit rotations
that compose the sequences as being instantaneous in time.
In a realistic implementation, this is a good approximation
provided that the pulse-widths are much shorter than the free
evolution time in the sequences. Staying within the regime of
near instantaneous pulses places a lower limit on the amount
of free evolution time and, hence, the cycle times Tc. This
constrains the range over which the spectra can be recon-
structed since the number of cycle times determines the num-
ber of sample points in the reconstruction. Leaving the regime
of near instantaneous pulses will not affect the emergence of
the frequency comb, though it can introduce distortions into
the FFs. In principle, distortions arising from non-negligible
pulse widths can be accounted for using the methods in [31].

VI. LIMITATIONS OF COMB-BASED QNS

We conclude our present analysis by discussing an impor-
tant practical limitation of the proposed QNS protocols, which
is rooted in the frequency-comb approach. We do not intend
this as a critique to the protocol itself, but, in the same spirit of
recent work [44], as a way to highlight the regimes in which
it is applicable under realistic conditions. We consider this
to be crucial, as applying the protocol without being wary of
the underlying assumptions may lead to misleading spectral
reconstructions, as we demonstrate below.

As explained in Sec. III B, a key step in QNS protocols is
ensuring the convolutions involving the filters and the spec-
tra turn into discrete and, importantly, truncated sums (as
in Eq. (23)). Once this is achieved, one can build a linear
system of equations, from which the desired spectral infor-
mation is extracted. In comb-based QNS protocols, this is
achieved via the introduction of certain control symmetries
– mainly sequence repetition, as it was the case in this pa-
per. Crucially, the comb effectively generates a “sampling
grid” in frequency, with points at multiples of a sampling fre-
quency ω0 = 2π/Tc, which is fundamentally upper-bounded
by the minimum achievable time resolution (finite in any ex-
periment), and lower-bounded by the maximum possible evo-
lution time (also necessarily finite). This mandates a physical
upper bound on the sampling frequency.

As a result, issues arise when the target spectrum has a very
wide support in frequency space. Imagine that the spectrum
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FIG. 2. (Color online) Reconstructions of target multiaxis spectra,
{S∓1,±1(ω), S0,0(ω)}, derived from Eq. (40). From left to right,
the transverse noise spectrum S−1,+1(ω) (blue solid line) and recon-
struction Ŝ−1,+1(ω) (blue circles) are plotted in a frequency band
centered at ω = −Ω, the dephasing noise spectrum S0,0(ω) (purple
solid line) and reconstruction Ŝ0,0(ω) (purple circles) are plotted in
a frequency band centered at ω = 0, and the transverse noise spec-
trum S+1,−1(ω) (green solid line) and reconstruction Ŝ+1,−1(ω)
(green circles) are plotted in a frequency band centered at ω = Ω.
Dashed vertical lines, from left to right, correspond to the frequen-
cies ω = −Ω, ω = 0, and ω = Ω.

has support in ω ∈ [0,Ωcutoff ]. The first step in a success-
ful discretization is to guarantee that the convolution is well
approximated by the discrete sum. This entails, as Eq. (23)
suggests, that one has to guarantee that

Kω0 ≥ Ωcutoff ,

namely, that the reconstruction window be large enough to
sample the full support/bandwidth of the spectrum. Clearly,
this implies that, given Ωcutoff and the upper bound on ω0

implied by the physical constraints on the control, there is a
lower bound, K0, to the value of K, and thus on the size of
the linear system of equations that may be assembled.

The problem arises when K0 is very large: this requires
finding at least K0 sufficiently “different” control sequences
that ensure the resulting linear system to be well-conditioned,
thus affording a faithful and robust recovery of the desired
spectral information. Since the FFs themselves decay with
frequency, even though one may in principle displace the cen-
ter of the filter in frequency, it becomes challenging to build a
well-conditioned system of equations. This limitation has to
be taken into account in designing the QNS protocol.

We stress that this is not an issue exclusive to multiaxis
noise and, indeed, we tangentially discussed this question in
a previous work [6], where we considered a pure-dephasing
regime. However, in practical applications, and in particular
in the context of solid-state devices, dephasing noise is typi-
cally associated with spectra that are strongly concentrated at
low frequencies, which has proven to be favorable to comb-
based QNS techniques. In both superconducting qubits and
spin qubits, for instance, spectroscopy of dephasing noise has
revealed spectra that are strongly suppressed with frequency,

FIG. 3. (Color online) Effect of increased bandwidth. In a frequency
band centered at ω = −Ω, three different transverse noise spec-
tra (blue solid lines) are plotted along with their corresponding re-
constructions (blue circles). The transverse spectra are Gaussian of
varying bandwidth, with (a) ∆/2π = 2.4 MHz, (b) ∆/2π = 4.0
MHz, and (c) ∆/2π = 8.0 MHz.

typically following power-laws of the form∼ 1/ω0.8-2.5, aris-
ing from charge noise [25, 26], flux noise [2, 34], nuclear
spin-baths [52], or external magnetic field instabilities [24].
By contrast, in these same systems, noise sources leading to
qubit relaxation (here corresponding to noise along x, y, or
both) are commonly associated with spectra that grow with
frequency, up to a cutoff that can be orders of magnitude above
the qubit splitting. For example, for spin qubits in semicon-
ductors, phononic environments play a prominent role in qubit
relaxation [53–55], leading to spectra whose frequency de-
pendencies correspond to rapidly increasing power laws [56].
Qubit-relaxation phenomena in the solid state also frequently
involve Ohmic noise spectra (∝ ω). Examples of processes
that can be associated with Ohmic spectra include Johnson-
Nyquist noise afflicting spin qubits [55, 57], and two-level
fluctuators coupled to superconducting qubits, for which a
crossover between 1/f and Ohmic noise is typically observed
in the GHz frequency range [2, 23, 34, 58]. Comb-based QNS
approaches are particularly ill-suited for such noise spectra;
indeed, those techniques would then require including har-
monics over a frequency support that can well be hundreds of
GHz or more (up to the cutoff frequency), whereas the avail-
able control is rarely faster than 10 ns, leading to harmonics
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separated by only ∼ 100 MHz. This would imply designing
well-conditioned reconstructions including several thousands
of pulse sequences. Therefore, we argue that the shortcomings
of the comb approach described above will manifest them-
selves most strongly in a multiaxis setting, in which dephasing
and relaxation noise are simultaneously characterized.

In order to showcase this effect more quantitatively, we
fix the size of the reconstruction window and attempt to re-
construct spectra with increasingly large support in frequency
space. The results, depicted in Fig. 3, show that as the support
of the spectrum becomes larger, the quality of the reconstruc-
tion indeed decreases. More importantly, they support our
previous warning: the choice of control sequences is dictated
by the assumed width of the spectrum and this is an impor-
tant consideration which has to be properly taken into account
when implementing comb-based QNS protocols. These limi-
tations can be potentially overcome, even in the general deco-
herence scenario, by switching to a more flexible continuous-
time control paradigm (see Ref. [21] for a CW spectroscopy
protocol in a dephasing-only regime). Developing and ana-
lyzing such improved protocols is one of the objectives of our
current efforts [59].

VII. CONCLUSION

We have presented a DD comb-based spectroscopy proto-
col capable of characterizing the noise affecting a qubit in all
directions, i.e., a qubit undergoing general decoherence from
a temporally correlated environment. This significantly in-
creases our ability to understand, and eventually control, the
different types of noise processes leading to corruption of in-
formation in a qubit, as we are now capable of simultaneously
reconstructing the power spectra of noise inducing T1 and T2

processes, including their possible cross-correlations.
In particular, we showed how to extend comb-based noise

spectroscopy methods to the general decoherence scenario for
dynamical regimes of increasing complexity – from the sim-
plest case where the internal qubit energy splitting Ω is negli-
gibly small, and only balanced filters enter the problem, sim-
ilar in spirit to dephasing settings; to the practically relevant
case where Ω is large as compared to the inverse evolution
time of the system, and the presence of imbalanced filters

mandates a qualitatively different treatment. The essence of
our analysis is to recognize that, in each regime, all the rele-
vant power spectra can be accurately reconstructed in princi-
ple. As a main result of independent interest, we have shown
that, in the ΩT � 1 regime, these relevant spectra encompass
a substantially smaller set than the original ones, consisting
only of a dephasing spectrum and two (generally complex)
transverse spherical spectra. In the process, we have provided
constructive principles for control design, which allow the re-
construction of the target noise spectra to be carried out ex-
plicitly, as we have numerically demonstrated in a representa-
tive scenario.

In developing the proposed multiaxis noise spectroscopy
protocol, we have purposefully restricted ourselves to control
symmetries compatible with our previous results on comb-
based spectroscopy of single-qubit non-Gaussian and multi-
qubit Gaussian dephasing noise models [6, 41]. In principle,
we expect that this should allow us to merge them with the
results presented here in a relatively straightforward manner,
thus achieving the coveted general multiaxis and multiqubit
noise characterization. This is part of our current efforts. On
the experimental side, we expect that our results will be in-
strumental to further boost qubit fidelities, by paving the way
to noise-tailored and noise-optimized quantum control modal-
ities. Indeed, subject to the caveats we elucidated in Sec. VI
in relation to spectra with extended bandwidth, similar exper-
iments to the ones performed in platforms where dephasing
noise is dominant [24, 26, 31], should now also be possible
in platforms where both T1 and T2 processes are significant.
As we already mentioned, we intend to separately address the
challenge posed by extended spectral support, by turning to
continuous control modulation [59].
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Appendix A: Accessible quantities for vanishing qubit splitting

In Sec. IV A of the main text, we showed that only G+ filters are necessary for QNS protocols. This need not imply, however,
that G− filters do not contribute to the reduced qubit dynamics. Indeed, an explicit calculation shows that, in general, both types
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of filters can contribute. We find:

Cx,0 = −2

∫ ∞
0

dω

2π
(Re[S+

y,y(ω)]Re[G+
y,y,y,y(ω, T )] + Re[S+

z,z(ω)]Re[G+
z,z,z,z(ω, T )]),

Cy,0 = −2

∫ ∞
0

dω

2π
(Re[S+

x,x(ω)]Re[G+
x,x,x,x(ω, T )] + Re[S+

z,z(ω)]Re[G+
z,z,z,z(ω, T )]),

Cz,0 = −2

∫ ∞
0

dω

2π
(Re[S+

x,x(ω)]Re[G+
x,x,x,x(ω, T )] + Re[S+

2,2(ω)]Re[G+
2,2,2,2(ω, T )]),

Cx,y − Cz,y = 4i

∫ ∞
0

dω

2π
(Im[S+

x,z(ω)]Im[G+
x,x,z,z(ω, T )]− Re[S+

x,z(ω)]Re[G+
x,x,z,z(ω, T )]),

Cx,z − Cy,z = −4i

∫ ∞
0

dω

2π
(Im[S+

x,y(ω)]Im[G+
x,x,y,y(ω, T )]− Re[S+

x,y(ω)]Re[G+
x,x,y,y(ω, T )]),

Cz,x − Cy,x = 4i

∫ ∞
0

dω

2π
(Im[S+

y,z(ω)]Im[G+
y,y,z,z(ω, T )]− Re[S+

y,z(ω)]Re[G+
y,y,z,z(ω, T )]),

Cx,y + Cz,y = −4i

∫ ∞
0

dω

2π
(Im[S+

x,z(ω)]Im[G−x,x,z,z(ω, T )]− Re[S+
x,z(ω)]Re[G−x,x,z,z(ω, T )]),

Cx,z + Cy,z = 4i

∫ ∞
0

dω

2π
(Im[S+

x,y(ω)]Im[G−x,x,y,y(ω, T )]− Re[S+
x,y(ω)]Re[G−x,x,y,y(ω, T )]),

Cz,x + Cy,x = 4i

∫ ∞
0

dω

2π
(Im[S+

y,z(ω)]Im[G−y,y,z,z(ω, T )]− Re[S+
y,z(ω)]Re[G−y,y,z,z(ω, T )]),

Cx,x = 4

∫ ∞
0

dω

2π
(Re[S−y,z(ω)]Im[G+

y,y,z,z(ω, T )] + Im[S−y,z(ω)]Re[G+
y,y,z,z(ω, T )]),

Cy,y = 4

∫ ∞
0

dω

2π
(Re[S−x,z(ω)]Im[G+

x,x,z,z(ω, T )] + Im[S−x,z(ω)]Re[G+
x,x,z,z(ω, T )]),

Cz,z = 4

∫ ∞
0

dω

2π
(Re[S−x,y(ω)]Im[G+

x,x,y,y(ω, T )] + Im[S−x,y(ω)]Re[G+
x,x,y,y(ω, T )]).

As one can see from the above equations, by also recalling Eq. (27), the expectation value of any observable, given an arbitrary
initial state, manifestly depends on both G+ and G− filters in general. What makes the multiaxis dynamics special is that one
may identify combinations of observable-and-initial state, which depend solely on G+ filters – in stark contrast to a multiqubit
scenario under pure dephasing [41].

Appendix B: On the vanishing of imbalanced filters in the large ΩT regime

In Sec. IV B 2 of the main text, we provided the intuition behind the observation that, when the splitting Ω is sufficiently large,
certain filters and the corresponding spectra do not contribute to the probe dynamics. Here we show this more formally.

To see the argument in detail, note that the filtersG± are linear combinations of the second-order filters F (2)
a,a′;b,b′(ω+sΩ,−ω+

s′Ω, T ). The filter is balanced when s+s′ = 0 and imbalanced otherwise (whenever s+s′ = ±1 or s+s′ = ±2). By redefining
the integration variables in terms of t± ≡ (t1 ± t2)/2, it follows then that we can rewrite the filter as

F
(2)
a,a′;b,b′(ω + sΩ,−ω + s′Ω, T )/2 =

∫
Λ±

d~t ei[2ω+(s−s′)Ω]t−+i(s+s′)Ωt+ya,a′(t+ + t−)yb,b′(t+ − t−), (B1)

where Λ± is the triangular integration domain defined by the vertices {(t−, t+)} = {(0, T ), (T/2, T/2), (0, 0)} or, alternatively,
by the relations t− ∈ [0, T/2] and t+ ∈ [t−, T − t−]. Let us further assume that the applied control induced switching functions
are “slow” compared to Ω. That is to say, we assume that yc,c′(t+ ± t−), for c, c′ = a, b, is well approximated by its truncated
inverse Fourier transform, namely,

yc,c′(t+ ± t−) '
∫ Ω0

−Ω0

dω
(~c)
+

2π
eiω

(~c)
+ t+

∫ Ω0

−Ω0

dω
(~c)
−

2π
eiω

(~c)
− t− ŷ±c,c′(ω

(~c)
+ , ω

(~c)
− ),
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where ŷ±c,c′(ω
(~c)
+ , ω

(~c)
− ) represents the Fourier transform of yc,c′(t+ ± t−) and Ω0 � Ω is the integration bound. By using this

expression to rewrite ya,a′(t+ + t−) and yb,b′(t+ − t−), the FF in Eq. (B1) becomes

F
(2)
a,a′;b,b′(ω + sΩ,−ω + s′Ω, T )/2 = I(o+, o−) ŷ+

a,a′(ω
(~a)
+ , ω

(~a)
− ) ŷ−b,b′(ω

(~b)
+ , ω

(~b)
− ),

where

I(o+, o−) ≡
∫

Λ±

d~t eit+o+ eit−o− , o− ≡ 2ω + (s− s′)Ω− (ω
(~a)
− + ω

(~b)
− ), o+ ≡ (s+ s′) Ω− (ω

(~a)
+ + ω

(~b)
+ ). (B2)

By letting α = o+/o−, substituting o− = (1/α)o+ into I(o+, o−), and performing the time integration, we find

|I(o+, o−)|≤


T 2

(o+T )2

(
| α1+α |+|

2α2

−1+α2 |+| α
−1+α |

)
, α 6= 1,

T 2
(

1
(o+T )2 + | 1

2o+T
|
)
, α = 1.

From this expression, it is apparent that |I(o+, o−)| and, hence, |F (2)
a,a′;b,b′(ω+sΩ,−ω+s′Ω, T )|, are small whenever |o+T | � 1.

To verify that this condition is met, recall that |ω(~a)
+ |, |ω

(~b)
+ | ≤ Ω0 � Ω due to our assumption of slow control. From Eq. (B2),

it then follows that |o+| ≥ | |s+ s′|Ω− 2Ω0|. This translates into the observation that whenever

T |o+| ≥ T
∣∣∣ |s+ s′|Ω− 2Ω0

∣∣∣� 1,

the contributions from imbalanced filters are negligible compared to those of balanced filters, for both G+ and G−. Since
Ω� Ω0 by the assumption of slow control, we can practically neglect the imbalanced filters whenever ΩT � 1.
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