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Quantum state exchange is a quantum communication task in which two users exchange their respective
quantum information in the asymptotic setting. In this work, we consider a one-shot version of the quantum
state exchange task, in which the users hold a single copy of the initial state, and they exchange their parts of the
initial state by means of entanglement-assisted local operations and classical communication. We first derive
lower bounds on the least amount of entanglement required for carrying out this task, and provide conditions on
the initial state such that the protocol succeeds with zero entanglement cost. Based on these results, we study
how the users deal with their symmetric information in order to reduce the entanglement cost. Moreover, we
show that it is possible for the users to gain extra shared entanglement after this task.

PACS numbers: 03.67.Hk, 89.70.Cf, 03.67.Mn

I. INTRODUCTION

In quantum information theory, quantum state exchange [1,
2] is a quantum communication task in which two users, Alice
and Bob, exchange their quantum information by means of lo-
cal operations and classical communication (LOCC) assisted
by shared entanglement. A main research aim in the study of
the quantum state exchange is to evaluate the least amount of
entanglement needed for the task, as in other quantum com-
munication tasks, such as quantum state merging [3, 4] and
quantum state redistribution [5, 6].

Most quantum communication tasks [3–8] including the
quantum state exchange usually assume the asymptotic sce-
nario, in which users can have an unbounded number of in-
dependent and identically distributed copies of an initial state,
and they carry out their task with the copies. On the other
hand, it is not easy in a realistic situation to prepare a suffi-
ciently large number of state copies, and the amount of non-
local resources available for the users is limited. To reflect
these practical difficulties, quantum information research has
focused more recently on the one-shot scenario [9–17].

Another reason for considering the one-shot scenario is that
one-shot results can be applied to the asymptotic scenario. For
example, in the original quantum state merging [3, 4], the au-
thors devised a one-shot merging protocol in order to evaluate
the minimum amount of entanglement needed for asymptotic
merging. Since the optimal entanglement costs for the asymp-
totic state exchange tasks are unknown [1, 2], analysis of the
one-shot scenario can be a good turning point in evaluating
the entanglement cost.

In this work, we introduce and study the one-shot quan-
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tum state exchange (OSQSE) task. This is not only a useful
quantum communication task, but can also have a potential
application in quantum computation. Let us consider a spe-
cific situation as follows. Alice and Bob want to carry out the
SWAP gate [18], which plays an important role in universal
quantum computation [19]. The problem is that they cannot
directly apply the SWAP gate, because they are far apart. If
Alice and Bob are sharing prior entanglement, then the OS-
QSE can be a method to non-locally perform the SWAP gate,
as both operationally provide the same result. Thus the OS-
QSE task can be useful for quantum computation.

This paper is organized as follows. In Sec. II, we formally
define three different OSQSE protocols and their optimal en-
tanglement costs. In Sec. III, we derive computable lower
bounds on the latter, which in turn yield bounds for the asymp-
totic quantum state exchange [1, 2]. In addition, we provide
two useful conditions to decide whether a given initial state
enables OSQSE with zero entanglement cost in Sec. IV. In
Sec. V, we present two examples which lead to properties of
the OSQSE. In Sec. VI, we investigate under what conditions
the optimal entanglement cost cannot be negative. We sum-
marize our results and comment on some open problems in
Sec. VII.

II. ONE-SHOT QUANTUM STATE EXCHANGE

Consider two users, Alice and Bob, holding parts A and B
of the initial state |ψ〉 ≡ |ψ〉A1B1A2B2R of systems A = A1A2 and
B = B1B2, respectively, and R indicates the reference system
on which neither Alice nor Bob can perform any operation.
Their goal is either to exchange their parts A1 and B1 or to
exchange their whole parts A and B.

Specifically, let ψ f1 and ψ f12 be the final states of the task,

ψ f1 =
(
1A1→A′1 ⊗ 1B1→B′1 ⊗ 1A2B2R

)
(ψ),

ψ f12 =
(
1A→A′ ⊗ 1B→B′ ⊗ 1R

)
(ψ), (1)

where ψ = |ψ〉 〈ψ|, and B′1 and B′ (A′1 and A′) are Alice’s
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(Bob’s) systems whose dimensions are identical to those of
systems B1 and B (A1 and A), respectively. Then three joint
operations

E1
ψ,K,L : A1Ein

A ⊗ B1Ein
B −→ B′1Eout

A ⊗ A′1Eout
B ,

E
1|2
ψ,K,L : AEin

A ⊗ BEin
B −→ B′1A2Eout

A ⊗ A′1B2Eout
B , (2)

E12
ψ,K,L : AEin

A ⊗ BEin
B −→ B′Eout

A ⊗ A′Eout
B ,

are called the OSQSE protocols of |ψ〉, if they are performed
by LOCC between Alice and Bob, and satisfy

ψ f1 ⊗ Φ =
(
E1
ψ,K,L ⊗ 1A2B2R

)
(ψ ⊗ Ψ)

=
(
E

1|2
ψ,K,L ⊗ 1R

)
(ψ ⊗ Ψ) , (3)

ψ f12 ⊗ Φ =
(
E12
ψ,K,L ⊗ 1R

)
(ψ ⊗ Ψ) ,

where Ψ and Φ are pure maximally entangled states with
Schmidt rank K and L on systems Ein

A Ein
B and Eout

A Eout
B , re-

spectively. It is possible to generalize the above definitions by
adding errors for approximation to Eq. (3), but it suffices to
only consider error-free protocols to obtain our main results.

At this point, it is instructive to inform differences among
the three protocols in Eq. (2) as follows: The first two proto-
cols E1

ψ,K,L and E1|2
ψ,K,L indicate that only the parts A1 and B1

are exchanged, while the whole parts A1A2 and B1B2 are ex-
changed in the third protocol E12

ψ,K,L. In addition, the parts A2
and B2 can be used for exchanging A1 and B1 in the protocol
E

1|2
ψ,K,L, while A2 and B2 are untouched in the protocol E1

ψ,K,L.
These protocols are described in Fig. 1.

Depending on the types of OSQSE protocols, we define
three optimal entanglement costs

eA1↔B1 (ψ) = inf
E1
ψ,K,L

(
log K − log L

)
,

eA2B2
A1↔B1

(ψ) = inf
E

1|2
ψ,K,L

(
log K − log L

)
, (4)

eA↔B (ψ) = inf
E12
ψ,K,L

(
log K − log L

)
,

where the quantity log K − log L is called the entanglement
cost of the OSQSE protocol, and the infimums are taken over
all joint protocols E1

ψ,K,L, E1|2
ψ,K,L, and E12

ψ,K,L, respectively.
By the definitions of the optimal entanglement costs, we

obtain the following proposition.

Proposition 1. For any input state ψ, eA1↔B1 (ψ) ≥ eA2B2
A1↔B1

(ψ).

III. CONVERSE BOUNDS

A real number r is called a converse bound of the optimal
entanglement cost if it is upper bounded by the entanglement
cost of any OSQSE protocol. In this section, we firstly derive
theoretical converse bounds of the three optimal entanglement
costs and also provide computable converse bounds of them.

FIG. 1: Illustrations for three one-shot quantum state exchange pro-
tocols E1

ψ,K,L, E1|2
ψ,K,L, and E12

ψ,K,L: In each illustration, Alice and Bob
can apply local operations to their parts represented by circles, while
they cannot apply any local operations to those depicted by squares.
Shaded circles indicate the systems which are exchanged from the
OSQSE protocols.

Theorem 2. Let F be an additive and Schur concave function
such that F(σM) = log M for any M, where σM is the maxi-
mally mixed state with rank M. Let N be a quantum channel
from R to RA. Then for any initial state ψ,

eA1↔B1 (ψ) ≥ max{l1(ψ), l2(ψ)}, (5)

eA2B2
A1↔B1

(ψ) ≥ l3(ψ), (6)
eA↔B (ψ) ≥ l4(ψ), (7)

where li(ψ) are defined as

l1(ψ) = sup
F,N

∣∣∣F(N(ψ)B1RA ) − F(N(ψ)A1RA )
∣∣∣ , (8)

l2(ψ) = sup
F,N

∣∣∣F(N(ψ)B1A2RA ) − F(N(ψ)ARA )
∣∣∣ , (9)

l3(ψ) = sup
F,N

[
F(N(ψ)B1A2RA ) − F(N(ψ)ARA )

]
, (10)

l4(ψ) = sup
F,N

∣∣∣F(N(ψ)BRA ) − F(N(ψ)ARA )
∣∣∣ . (11)

Proof. As in the asymptotic scenario [1, 2], we consider a one-
shot version of the R-assisted quantum state exchange task, in
which the reference system R is divided into two systems RA
and RB, and then Alice and Bob receive the divided parts RA
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and RB, respectively, so that the initial state |ψ̃〉A1B1A2B2RARB
is

divided into Alice’s parts ARA and Bob’s parts BRB. This can
be realized by using a quantum channel N : R −→ RA and
its complementary channel Nc : R −→ RB [20]. Let R1

ψ̃,K,L
,

R
1|2
ψ̃,K,L

, and R12
ψ̃,K,L

be R-assisted OSQSE protocols of ψ̃,

R1
ψ̃,K,L : A1Ein

A ⊗ B1Ein
B −→ B′1Eout

A ⊗ A′1Eout
B ,

R
1|2
ψ̃,K,L

: AEin
A ⊗ BEin

B −→ B′1A2Eout
A ⊗ A′1B2Eout

B , (12)

R12
ψ̃,K,L : AEin

A ⊗ BEin
B −→ B′Eout

A ⊗ A′Eout
B ,

with the entanglement cost log K − log L such that

ψ̃ f1 ⊗ Φ =
(
R1
ψ̃,K,L ⊗ 1A2B2RARB

) (
ψ̃ ⊗ Ψ

)
=

(
R

1|2
ψ̃,K,L

⊗ 1RARB

) (
ψ̃ ⊗ Ψ

)
, (13)

ψ̃ f12 ⊗ Φ =
(
R12
ψ̃,K,L ⊗ 1RARB

) (
ψ̃ ⊗ Ψ

)
,

where

ψ̃ f1 =
(
1A1→A′1 ⊗ 1B1→B′1 ⊗ 1A2B2RARB

)
(ψ̃),

ψ̃ f12 =
(
1A→A′ ⊗ 1B→B′ ⊗ 1RARB

)
(ψ̃), (14)

and B′1, B′, A′1, and A′ are defined as in Eq. (1).
We first derive a converse bound of the optimal entangle-

ment cost eA1↔B1 (ψ) as follows.
Note that the protocol R1

ψ̃,K,L
is an LOCC protocol between

Alice’s part ARAEin
A and Bob’s part BRBEin

B . So, from the ma-
jorization condition for LOCC convertibility [21, 22], the state
ρ̃B′1A2RA ⊗ σ

L
Eout

A
majorizes the state ρ̃ARA ⊗ σ

K
Ein

A
, which can be

more succinctly represented by using the notation ≺ as fol-
lows:

ρ̃ARA ⊗ σ
K
Ein

A
≺ ρ̃B′1A2RA ⊗ σ

L
Eout

A
. (15)

Then, from the Schur concavity of the function F, the follow-
ing inequality holds:

F(ρ̃B′1A2RA ⊗ σ
L
Eout

A
) ≤ F(ρ̃ARA ⊗ σ

K
Ein

A
). (16)

Since ρ̃B′1A2RA = ρ̃B1A2RA and F is additive, it follows that

log K − log L ≥ F(ρ̃B1A2RA ) − F(ρ̃ARA )
= F(N(ψ)B1A2RA ) − F(N(ψ)ARA ). (17)

Let us now consider an R-assisted OSQSE protocol R′1
ψ̃ f1 ,K,L

exchanging B′1 and A′1 of the final state ψ̃ f1 , which is defined
by exchanging Alice’s role and Bob’s role in the protocol
R1
ψ̃,K,L

. That is, R′1
ψ̃ f1 ,K,L

is an LOCC protocol

R′
1
ψ̃ f1 ,K,L

: B′1Ein
A ⊗ A′1Ein

B −→ A′′1 Eout
A ⊗ B′′1 Eout

B (18)

of the state ψ̃ f1 satisfying(
R′

1
ψ̃ f1 ,K,L

⊗ 1A2B2RARB

) (
ψ̃ f1 ⊗ Ψ

)
= ψ̃′f1 ⊗ Φ, (19)

where ψ̃′f1 =
(
1A′1→A′′1 ⊗1B′1→B′′1 ⊗1A2B2RARB

)
(ψ̃ f12 ) and A′′1 (B′′1 )

is Alice’s (Bob’s) system whose dimension equals A′1 (B′1).
Then, by using the majorization condition for LOCC convert-
ibility [21, 22] again, we have ρ̃B′1A2RA ⊗σ

K
Ein

A
≺ ρ̃A′′1 A2RA ⊗σ

L
Eout

A
,

which implies that

log K − log L ≥ F(N(ψ)ARA ) − F(N(ψ)B1A2RA ), (20)

since ρ̃B′1A2RA = ρ̃B1A2RA , ρ̃A′′1 A2RA = ρ̃A1A2RA and F is Schur
concave and additive. Thus Eqs. (17) and (20) imply

log K − log L ≥
∣∣∣F(N(ψ)B1A2RA ) − F(N(ψ)ARA )

∣∣∣ . (21)

On the other hand, let us consider a situation that Alice
and Bob want to exchange A1 and B1, by means of LOCC
assisted by shared entanglement, when Alice and Bob hold
A1RA and B1A2B2RB of ψ̃, respectively. In this case, we can
apply the same technique used in obtaining Eq. (21) to Alice’s
part A1RA and Bob’s part B1A2B2RB of ψ̃, and hence we have
that

log K − log L ≥
∣∣∣F(N(ψ)B1RA ) − F(N(ψ)A1RA )

∣∣∣ . (22)

Since any protocol E1
ψ,K,L is also an R-assisted OSQSE proto-

col R1
ψ̃,K,L

, the optimal entanglement cost eA1↔B1 (ψ) is lower
bounded by l1(ψ) and l2(ψ), from Eqs. (21) and (22).

Similarly, we obtain that l3(ψ) and l4(ψ) are converse
bounds of the optimal entanglement costs eA2B2

A1↔B1
and eA↔B,

respectively, by applying the above technique to the protocols
R

1|2
ψ̃,K,L

and R12
ψ̃,K,L

. �

In Theorem 2, if R is directly sent to either Alice or Bob
without splitting, and we restrict the function F to the quan-
tum Rényi entropy S α(%) of order α [23] for a quantum state
%, then we obtain the following computable converse bounds.

Corollary 3. For any input state ψ,

eA1↔B1 (ψ) ≥ max
α∈[0,∞]

max{ f (1)
ψ (α), | f (2)

ψ (α)|, | f (3)
ψ (α)|}, (23)

eA2B2
A1↔B1

(ψ) ≥ lcnew (ψ) ≡ max
α∈[0,∞]

max{ f (2)
ψ (α), f (3)

ψ (α)}, (24)

eA↔B (ψ) ≥ max
α∈[0,∞]

f (4)
ψ (α), (25)

where f (i)
ψ (α) are functions of |ψ〉 and α defined by

f (1)
ψ (α) = max{|S α(ρA1 ) − S α(ρB1 )|, |S α(ρAB2 ) − S α(ρA2B)|},

f (2)
ψ (α) = S α(ρA1B2 ) − S α(ρB),

f (3)
ψ (α) = S α(ρB1A2 ) − S α(ρA),

f (4)
ψ (α) = |S α(ρA) − S α(ρB)|. (26)

Remark that the converse bounds in Corollary 3 can be eas-
ily computed by means of analytical or numerical methods,
since the functions f (i)

ψ (α) are one-variable and differentiable
on (0,∞). In addition, we can know that if lcnew (ψ) < 0, then
eA1↔B1 (ψ) > 0, by observing the bounds in Corollary 3.
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Proof of Corollary 3. It suffices to show that, for each i, there
exists a number α(i)

0 ∈ [0,∞] such that maxα∈[0,∞] f (i)
ψ (α) =

f (i)
ψ (α(i)

0 ). Note that the function f (i)
ψ (α) is continuous on the

compact set [0, 1]. So the extreme value theorem implies that
there exists a number α(i)

1 ∈ [0, 1] such that f (i)
ψ (α(i)

1 ) ≥ f (i)
ψ (α)

for all α ∈ [0, 1]. Let us consider the function g(i)(x) on the
interval [0, 1] defined as

g(i)(x) =

 f (i)
ψ (∞) if x = 0

f (i)
ψ ( 1

x ) otherwise,
(27)

then g(i)(x) is continuous on [0, 1]. By using the extreme value
theorem again, there exists a number x(i)

0 ∈ [0, 1] such that
g(i)(x(i)

0 ) ≥ g(i)(x) for all x ∈ [0, 1]. It follows that there exists
a number α(i)

2 ∈ [1,∞] such that f (i)
ψ (α(i)

2 ) ≥ f (i)
ψ (α) for all

α ∈ [1,∞]. By setting α(i)
0 = max

{
α(i)

1 , α
(i)
2

}
, we obtain that

max
α∈[0,∞]

f (i)
ψ (α) = f (i)

ψ (α(i)
0 ) ≥ f (i)

ψ (α), (28)

for all α ∈ [0,∞]. Similarly, we know that, for each i, there
exists β(i) ∈ [0,∞] such that maxα∈[0,∞] | f

(i)
ψ (α)| = | f (i)

ψ (β(i))|.
�

We also remark that in Theorem 2, if F is chosen as the
von Neumann entropy [20], then the converse bound l3 re-
covers a theoretical converse bound in Ref. [2]. In addi-
tion, a computable converse bound therein is just lcold(ψ) =

max{ f (2)
ψ (1), f (3)

ψ (1)} in Corollary 3. By virtue of the additiv-
ity of F, it is clear that l3 and lcnew are also converse bounds
of the optimal entanglement cost for the asymptotic quantum
state exchange task. Hence, our converse bounds improve the
existing bounds in Ref. [2]. For example, if the initial state
|ψ1〉 ≡ |ψ1〉A1B1A2B2R has the specific form

|ψ1〉 = 1
5 |00000〉 +

√
3
50 |00010〉 + 3

5 |01001〉 +
√

27
50 |11100〉,

(29)
then we can find a value α0 ∈ [0,∞] such that

lcnew(ψ1) = max
{
f (2)
ψ1

(α0), f (3)
ψ1

(α0)
}
> lcold(ψ1) (30)

as depicted in Fig. 2. This example shows that our bound
lcnew(ψ) is tighter than the existing bound lcold(ψ).

IV. CONDITIONS FOR ZERO ENTANGLEMENT COST

We now present conditions for OSQSE at zero entangle-
ment cost.

By the converse bounds in Corollary 3, it is obvious that
if there exist Alice’s and Bob’s local isometries performing
the OSQSE task, then the optimal entanglement cost is zero.
We first characterize this type of strategy. Let (X,Y) be a pair
of two systems, which can be either (A1, B1) or (A, B), and
consider a spectral decomposition of the reduced state ρXY for

FIG. 2: The graph of the function max{ f (2)
ψ1

(α), f (3)
ψ1

(α)} for a specific
initial state |ψ1〉 in Eq. (29). The maximum of the function is attained
at the point α0 (≈ 3.362), leading to an improved converse bound
compared to that in Ref. [2]. In the graph, α0 is represented as the
yellow dashed line, and 1 is represented as the red dashed dotted line.

|ψ〉, ρXY =
∑N

i=1 λi |ξi〉 〈ξi|XY , where λi > 0 with
∑N

i=1 λi = 1.
For each i, we define the matrix Ω

(i)
XY (ψ) as

Ω
(i)
XY (ψ) =

∑
j,k

(
〈 j|X ⊗ 〈k|Y

)
|ξi〉XY | j〉 〈k| , (31)

where {| j〉} and {|k〉} indicate the computational bases on Al-
ice’s and Bob’s systems, respectively. Then we obtain the fol-
lowing sufficient condition.

Theorem 4. Let (X,Y) be either (A1, B1) or (A, B). If there
exist isometries U and V such that, for each i,(

Ω
(i)
XY (ψ)

)t
= UΩ

(i)
XY (ψ)V, (32)

where W t is the transpose of the matrix W, then eX↔Y (ψ) = 0.

Here, the isometries U and V indicate Alice’s and Bob’s
local operations exchanging the parts X and Y without shared
entanglement.

Proof of Theorem 4. For X = A and Y = B, we consider
the Schmidt decomposition, |ψ〉ABR =

∑N
i=1
√
λi |ξi〉AB ⊗ |ιi〉R,

where λi > 0 with
∑N

i=1 λi = 1. For the computational bases
{| j〉} and {|k〉} on the systems A and B, respectively, we have

|ψ〉ABR =

N∑
i=1

√
λi

∑
j,k

[Ω(i)
AB(ψ)] jk | j〉A ⊗ |k〉B ⊗ |ιi〉R , (33)

where [Ω(i)
AB(ψ)] jk =

(
〈 j|A ⊗ 〈k|B

)
|ξi〉AB. If the parts A and B

are perfectly exchanged, then Alice and Bob hold the final
state

|ψ〉BAR =

N∑
i=1

√
λi

∑
j,k

[Ω(i)
AB(ψ)]k j | j〉B ⊗ |k〉A ⊗ |ιi〉R . (34)

Assume that there exist isometries U and V such that(
Ω

(i)
AB(ψ)

)t
= UΩ

(i)
AB(ψ)V (35)
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for each i. Then we have, for each i,

[Ω(i)
AB(ψ)]k j =

∑
l,m

[Ω(i)
AB(ψ)]lm 〈 j|U |l〉 〈k|V t |m〉 , (36)

which implies that

|ψ〉BAR =

N∑
i=1

√
λi

∑
l,m

[Ω(i)
AB(ψ)]lm

∑
j

| j〉 〈 j|U |l〉

⊗
∑

k

|k〉 〈k|V t |m〉 ⊗ |ιi〉R

=

N∑
i=1

√
λi

∑
l,m

[Ω(i)
AB(ψ)]lmU |l〉 ⊗ V t |m〉 ⊗ |ιi〉R

=
(
U ⊗ V t ⊗ IR

)
|ψ〉ABR . (37)

Hence, eA↔B (ψ) = 0. Similarly, for X = A1 and Y = B1, we
show that eA1↔B1 (ψ) = 0 by using isometries U′ and V ′ such
that for each i,

(
Ω

(i)
A1B1

(ψ)
)t

= U′Ω(i)
A1B1

(ψ)V ′. �

From the converse bounds in Corollary 3, observe that if the
spectrum of Alice’s state is different from that of Bob’s state,
then the optimal entanglement cost cannot be zero. Based
on this observation, we obtain the following theorem, whose
proof can be found in Appendix A.

Theorem 5. Let (X,Y) be either (A1, B1) or (A, B). If
eX↔Y (ψ) = 0, then there exists an isometry UX→Y such that
ρY = UX→YρX(UX→Y )†.

We remark that the converse of Theorem 5 is not true in
general. Let us consider the following simple initial state

|ψ2〉A1B1A2B2
= 1

2 (|0000〉 + |0101〉 + |1010〉 + |1111〉), (38)

then, from Corollary 3, we know that eA1↔B1 (ψ2) ≥ | f (3)
ψ2

(α)| =
2 for any α. In addition, Alice and Bob can exchange A1
and B1, by using quantum teleportation [24]. In this case,
the entanglement cost is two ebits. Thus we obtain that
eA1↔B1 (ψ2) = 2. However, the state |ψ2〉 satisfies the neces-
sary condition in Theorem 5, since its reduced states ρA1 and
ρB1 are identical.

V. EXAMPLES

In this section, we present two examples, which show prop-
erties of the OSQSE task.

A. Symmetric information

For the initial state |ψ〉, let us consider a scenario in
which Alice and Bob exchange their whole information A
and B. Assume that their parts A2 and B2 are symmet-
ric, while the remaining parts A1 and B1 are not symmet-
ric, i.e., the initial state |ψ〉 satisfies

(
SWAPA1↔B1

)
(ψ) , ψ

and
(
SWAPA2↔B2

)
(ψ) = ψ, where SWAPX↔Y is the operation

swapping quantum states in systems X and Y .
In the OSQSE, the proper use of the symmetric parts A2

and B2 can more efficiently reduce the entanglement cost com-
pared to exchanging only A1 and B1 without using A2 and B2.
To be specific, there exists an initial state |ψ〉 such that the
parts A2 and B2 are symmetric and eA↔B (ψ) = 0 while the
rest parts A1 and B1 are not symmetric. Consider the specific
initial state

|φ1〉A1B1A2B2R = 1
√

2
(|00000〉 + |01111〉), (39)

where A2 and B2 are symmetric but A1 and B1 are not. Since
Ω

(1)
AB(φ1) = |00〉 〈00| and Ω

(2)
AB(φ1) = |01〉 〈11|, we can show

that Ω
(1)
AB(φ1) and Ω

(2)
AB(φ1) satisfy the condition in Theorem 4,

by setting

U = V = |00〉 〈00| + |01〉 〈11| + |10〉 〈10| + |11〉 〈01| . (40)

Thus we obtain that eA↔B (φ1) = 0, which means that A and B
can be exchanged by means of LOCC without consuming any
non-local resource.

The above example also shows that the use of the symmet-
ric parts A2 and B2 can reduce the entanglement cost for ex-
changing A1 and B1. From the converse bound in Corollary 3,
we obtain eA1↔B1 (φ1) ≥ f (1)

φ1
(α) = 1 for any α. Using quan-

tum teleportation [24], B1 can be sent from Bob to Alice by
consuming an ebit, and Bob can prepare the part A1. This im-
plies that eA1↔B1 (φ1) = 1. Observe that the isometry U (V)
in Eq. (40) represents Alice’s (Bob’s) local operation CNOTA
(CNOTB) whose target and controlled systems are A1 (B1) and
A2 (B2), respectively. This implies that Alice and Bob can ex-
change A1 and B1 by using local operations. It follows that
0 ≥ eA2B2

A1↔B1
(φ1). In fact, eA2B2

A1↔B1
(φ1) = 0 from Corollary 3.

Therefore, we obtain eA1↔B1 (φ1) > eA2B2
A1↔B1

(φ1).
When A2 and B2 are symmetric, we can show the following

relation between the optimal entanglement costs by definition.

Proposition 6. eA↔B (ψ) = eA2B2
A1↔B1

(ψ), if the parts A2 and B2
of |ψ〉 are symmetric.

From Proposition 6, we can see that, when Alice and Bob
exchange systems A and B of |ψ〉 with symmetric parts A2
and B2, they can achieve the optimal entanglement cost by ex-
changing only A1 and B1, making the most of this symmetry.

B. Negative entanglement cost

As in the asymptotic quantum state exchange task [1, 2],
there exist initial states to show that the entanglement cost of
the OSQSE task can be negative. Assume that Alice and Bob
exchange the parts A1 and B1 of the initial state

|φ2〉A1B1A2B2
= 1

2
∑1

i, j=0 |i〉A1
| j〉B1

| j〉A2
|i〉B2

, (41)

where |φ2〉 consists of two ebits |e〉A1B2
and |e〉B1A2

. To ex-
change A1 and B1, both Alice and Bob prepare an ebit, re-
spectively, and they locally implement entanglement swap-
ping [25] by performing two Bell measurements on A2, B2,
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FIG. 3: Illustration of the one-shot quantum state exchange protocol
of |φ2〉 in Eq. (41). (a) In order to exchange A1 and B1, Alice and Bob
locally prepare an ebit each, and they apply Bell measurements to the
shaded areas. (b) By performing local operations corresponding to
the measurement outcomes, the parts A1 and B1 can be exchanged.
At the same time, Alice and Bob can share two ebits.

and the parts of the ebits, as described in Fig. 3. Then they
can exchange A1 and B1, and can share two ebits at the same
time. In fact, we have eA2B2

A1↔B1
(φ2) = −2 from Corollary 3.

This means that the entanglement cost can be negative.
We note that, in Ref. [2], the negativity of the entangle-

ment cost has been theoretically shown by using the merge-
and-merge strategy, which is not optimal in general. On the
other hand, our example in Eq. (41) elucidates the OSQSE
strategy, in which Alice and Bob can exactly achieve the neg-
ative optimal entanglement cost.

Moreover, this example tells us that it is worth using Alice’s
and Bob’s parts A2 and B2 in order to reduce the entanglement
cost. Assume that Alice and Bob do not apply any local op-
erations on A2 and B2, then they can exchange A1 and B1 by
using quantum teleportation [24] twice. From the converse
bound in Corollary 3, eA1↔B1 (φ2) ≥ 2, and so we obtain that
eA1↔B1 (φ2) = 2 and the optimal OSQSE protocol for φ2 is
just two quantum teleportation protocols for A1 and B1. This
means that it is not always possible for Alice and Bob to re-
duce the amounts of entanglement and classical communica-
tion, even though they know the information about the initial
state. On the other hand, in this case, if Alice and Bob use
their parts A2 and B2, then the entanglement cost can be re-
duced as follows:

eA1↔B1 (φ2) = 2 > −2 = eA2B2
A1↔B1

(φ2) . (42)

VI. NON-NEGATIVITY CONDITIONS FOR
ENTANGLEMENT COST

From Proposition 6, we can know that if A2 and B2 are sym-
metric, then eA2B2

A1↔B1
(ψ) cannot be negative, contrary to the ex-

ample in Sec. V B. One may ask the question: Is there any
condition that implies the non-negativity of the optimal en-
tanglement cost eA2B2

A1↔B1
? To answer this question, we present

the following inequalities.

Proposition 7.

eA2B2
A1↔B1

(ψ) + eA2B2
B′1↔A′1

(ψ f1 ) ≥ 0,

eA2B2
A1↔B1

(ψ) + eB′1A′1
A2↔B2

(ψ f1 ) ≥ eA↔B(ψ), (43)

where eA2B2
B′1↔A′1

(ψ f1 ) is the optimal entanglement cost for ex-

changing B′1 and A′1 when using A2 and B2, and eB′1A′1
A2↔B2

(ψ f1 ) is
the optimal entanglement cost for exchanging A2 and B2 when
using B′1 and A′1.

In Proposition 7, the first inequality comes from the fact that
Alice and Bob cannot increase the amount of entanglement
between them by means of LOCC [26], while the second one
is straightforward from the definitions of the optimal entangle-
ment costs. From Proposition 7, we can see that if eA2B2

B′1↔A′1
(ψ f1 )

or eB′1A′1
A2↔B2

(ψ f1 ) is non-positive, then eA2B2
A1↔B1

(ψ) cannot be nega-

tive. Moreover, if the condition eB′1A′1
A2↔B2

(ψ f1 ) ≤ eA↔B(ψ) holds,
then Proposition 7 implies eA2B2

A1↔B1
(ψ) ≥ 0.

In particular, let us assume that A1 and B1 are symmet-
ric. Then it is obvious that 0 ≥ eA2B2

A1↔B1
(ψ), from Proposi-

tion 1. If 0 > eA2B2
A1↔B1

(ψ) then it follows from Proposition 7
that eA2B2

B′1↔A′1
(ψ f1 ) > 0. However, since B′1 and A′1 are also sym-

metric, Proposition 1 implies eA2B2
B′1↔A′1

(ψ f1 ) ≤ 0, which leads to
a contradiction. Therefore, we obtain the following corollary.

Corollary 8. If the parts A1 and B1 of |ψ〉 are symmetric, then
we have eA2B2

A1↔B1
(ψ) = 0.

This tells us that if A1 and B1 are symmetric, Alice and Bob
cannot increase the amount of shared entanglement after the
OSQSE task, even if they make use of the parts A2 and B2.

VII. CONCLUSION

In this work, we have introduced a one-shot version of the
original quantum state exchange task, formally defining the
OSQSE task and its optimal entanglement costs. We have de-
rived converse bounds on the optimal entanglement costs, and
have presented conditions on the initial state to achieve zero
entanglement cost. As a related open problem, we can ask
the following question: If eA↔B (ψ) = 0, then is it possible to
exchange the parts A and B, without classical communication
and entanglement, that is, are there local operations LA and
LB such that ψ f12 = (LA ⊗ LB) (ψ)?

We have also provided two interesting properties of the OS-
QSE, by presenting specific examples. One of the properties
tells us that it is worth using the symmetric parts in order to
optimally perform the OSQSE. The other shows that the en-
tanglement cost of the OSQSE can be negative. Moreover,
we have found the conditions for non-negative optimal en-
tanglement costs. By observing the aforementioned exam-
ples, we can provide another interesting open problem: If
eA2B2

A1↔B1
(ψ) ≤ 0, do there exist Alice’s and Bob’s local oper-

ations L′A and L′B such that ψ f1 ⊗ Φ =
(
L′A ⊗ L′B

)
(ψ)?
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A further open problem is whether the catalytic use of en-
tanglement [27–29] can reduce the optimal entanglement cost
for the OSQSE. To be more specific, for the initial state |ψ〉,
do there exist a bipartite entangled state |ψc〉A3B3

shared by
Alice and Bob and an OSQSE protocol CK,L : AA3Ein

A ⊗

BB3Ein
B −→ B′A3Eout

A ⊗ A′B3Eout
B such that ψ f12 ⊗ ψc ⊗ Φ =(

CK,L ⊗ 1R
)

(ψ ⊗ ψc ⊗ Ψ) and log K − log L < eA↔B (ψ)?
Theoretically, the OSQSE is a powerful two-user quan-

tum communication task, which includes quantum teleporta-
tion [24] and quantum state merging [3, 4] as special cases.
Practically, this task can be a fundamental building block
for applications involving multiple users, such as distributed
quantum computation [30, 31] and quantum network [32–35].
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Appendix A: Proof of Theorem 5

We use the following lemma in order to prove Theorem 5.

Lemma 9. Let Z and W be any discrete random variables
on alphabets Z and W with |Z| = N and |W| = M. Let
{pi}

N
i=1 and {qi}

M
i=1 be probability distributions for Z and W,

respectively. If the following equality holds for all α ∈ [0,∞],

Hα(Z) = Hα(W), (A1)

where Hα(·) is the Rényi entropy of classical random vari-
ables, then |Z| = |W| and there exists a permutation σ ∈ S N
such that pi = qσ(i) for all i ∈ [N], where S N is the set of all
permutations on [N] = {1, . . . ,N}.

Note that, for each α ∈ [0,∞], Hα(Z) = limx→α Hx(Z) and
S α(ρA) = limx→α S x(ρA).

Proof of Lemma 9. Suppose that Hα(Z) = Hα(W) for all α ∈
[0,∞]. Since H0(Z) = H0(W), it holds that |Z| = |W|.
For convenience, we assume that any probability distribution
{ri}

N
i=1 satisfies r1 ≥ ri for all i ∈ [N].

We now prove the statement by using mathematical induc-
tion on N.

(i) If N = 2, then H∞(Z) = H∞(W) implies p1 = q1 and so
p2 = 1 − p1 = 1 − q1 = q2. Thus the statement is true.

(ii) Suppose that the statement is true for N = k − 1. Let
Z and W be discrete random variables on alphabetsZ andW
with |Z| = |W| = k. Let {pi}

k
i=1 and {qi}

k
i=1 be probability dis-

tributions for Z and W, respectively. Since H∞(Z) = H∞(W),
p1 = q1. By setting p′i =

pi+1
1−p1

and q′i =
qi+1

1−p1
for each

i ∈ [k−1], we can construct random variables Z′ and W ′ on al-
phabetsZ′ andW′ whose probability distributions are {p′i}

k−1
i=1

and {q′i}
k−1
i=1 , respectively. Obviously, |Z′| = |W′| = k − 1, and

so H0(Z′) = H0(W ′). Observe that for α ∈ (0, 1) ∪ (1,∞),

Hα(Z) = Hα(W)

=⇒
1

1 − α
log

 k∑
i=1

pαi

 =
1

1 − α
log

 k∑
i=1

qαi


=⇒

k∑
i=2

pαi =

k∑
i=2

qαi

=⇒

k−1∑
i=1

(
pi+1

1 − p1

)α
=

k−1∑
i=1

(
qi+1

1 − p1

)α

=⇒
1

1 − α
log

 k−1∑
i=1

(p′i)
α

 =
1

1 − α
log

 k−1∑
i=1

(q′i)
α


=⇒ Hα(Z′) = Hα(W ′). (A2)

In addition, if α = 1, then

H1(Z) = H1(W)

=⇒

k∑
i=1

pi log
1
pi

=

k∑
i=1

qi log
1
qi

=⇒

k∑
i=2

pi log
1
pi

=

k∑
i=2

qi log
1
qi

=⇒ (1 − p1) log (1 − p1) +

k∑
i=2

pi log
1
pi

= (1 − p1) log (1 − p1) +

k∑
i=2

qi log
1
qi

=⇒

k∑
i=2

pi

1 − p1
log

1 − p1

pi
=

k∑
i=2

qi

1 − p1
log

1 − p1

τi

=⇒

k−1∑
i=1

p′i log
1
p′i

=

k−1∑
i=1

q′i log
1
q′i

=⇒ H1(Z′) = H1(W ′). (A3)

Finally, we have

H∞(Z′) − H∞(W ′) = lim
α→∞

Hα(Z′) − lim
α→∞

Hα(W ′)

= lim
α→∞

(
Hα(Z′) − Hα(W ′)

)
= 0. (A4)

It follows that Hα(Z′) = Hα(W ′) for all α ∈ [0,∞]. By the
induction hypothesis, there exists a permutation σ′ ∈ S k−1
such that p′i = q′σ′(i) for all i ∈ [k − 1]. Define σ(1) = 1 and
σ(i) = σ′(i − 1) with i , 1. Then σ ∈ S k and pi = qσ(i) for all
i ∈ [k]. Therefore, the statement is true for N = k. �
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In fact, we can prove Lemma 9 by assuming a weaker con-
dition as follows. Let S be a subset of [0,∞] including 0,
the extended real number∞, and a sequence {sn}n∈N such that
limn→∞ sn = ∞. Then we can show that if Hα(Z) = Hα(W)
holds for all α ∈ S , then Z and W have the same probability
distribution.

The contrapositive of the following lemma proves Theo-
rem 5.

Lemma 10 (Sufficient conditions on the initial state |ψ〉 with
eX↔Y (ψ) > 0). Let (X,Y) be the pair of two systems, which
can be either (A1, B1) or (A, B). Let {λi}

N
i=1 and {τi}

M
i=1 be non-

zero eigenvalues for the reduced states ρX and ρY of |ψ〉, re-
spectively, which satisfy λ1 ≥ . . . ≥ λN , τ1 ≥ . . . ≥ τM , and∑N

i=1 λi =
∑M

i=1 τi = 1. Then eX↔Y > 0, if one of the following
conditions holds:

(i) N , M.
(ii) N = M and λi′ , τi′ for some i′ ∈ [N] = {1, . . . ,N}.

Proof. (i) If N , M, then rank(ρX) , rank(ρY ), which means

eX↔Y (ψ) ≥ |S 0(ρX) − S 0(ρY )| > 0, (A5)

by the converse bounds in Corollary 3.

(ii) Suppose that |ψ〉 satisfies N = M and λi′ , τi′ for some
i′ ∈ [N]. Let Z and W be discrete random variables on al-
phabets Z and W with |Z| = |W| = N, whose probability
distributions are {λi}

N
i=1 and {τi}

N
i=1, respectively. Let us con-

sider the set

A = {i ∈ [N]|λi , τi}, (A6)

then A is a non-empty subset of [N], since i′ ∈ A. So we
can choose the largest element in A, say j. Then λ j , τ j and
λi = τi for all i > j by the definition of the set A. If λ j > τ j (or
λ j < τ j) than λi > τ j (or λ j < τi) for all i ∈ [ j]. Thus λi , τ j
(or λ j , τi) for all i ∈ [ j], which shows that for each σ ∈ S j,
there exists i ∈ [ j] such that λi , τσ(i). It follows that for
each σ ∈ S N , there exists i ∈ [N] such that λi , τσ(i). From
the contrapositive of Lemma 9, there exists α′ ∈ [0,∞] such
that Hα′ (X) , Hα′ (Y). Therefore, from the converse bounds
in Corollary 3, we obtain

eX↔Y (ψ) ≥ |S α′ (ρX) − S α′ (ρY )| > 0. (A7)
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