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We present a time-domain Schmidt-mode analysis of a broadband continuous-variable 

entanglement of photon pairs generated via a vectorial four-wave mixing (FWM) of 

ultrashort laser pulses in a highly nonlinear birefringent optical fiber. We demonstrate that the 

time-domain eigenmodes of high-purity two-photon states generated through vectorial FWM 

can be steered, by varying the pump wavelength and FWM polarization geometry, from a 

high-purity entangled ket to a high-entropy entangled state in a space of a very high 

dimensionality. Moreover, this pulse-mode analysis is shown to provide a clear physical 

perspective on how the entanglement structure of two-photon states builds up as a result of 

short-pulse FWM dynamics. This insight reveals a correspondence-type relation between the 

quantum and classical pictures of photon-pair generation. With an eye on practical 

applications, a clear understanding of the temporal profile of pulse modes representing high-

purity two-photon states is central to a meaningful shaping of ultrashort photon-packet 

waveforms for super-resolving microscopy and multiphoton spectroscopy using quantum 

states of light. 

 

 

 

I. INTRODUCTION 

High-dimensional quantum entanglement [1 - 4] is a unique resource of quantum 

technologies that paves the ways for an ultrahigh-density information coding in quantum 

communication [5, 6], quantum computations based on novel quantum logic [7], a higher 



precision in quantum phase measurements [8], enhanced immunity with respect to noise [9, 

10], a higher security in quantum cryptography [11], and new tests of fundamental principles 

of quantum theory [2, 12, 13]. Central to the implementation of quantum information 

strategies based on high-dimensional entanglement is the availability of individually 

addressable, manageable, and measurable field modes suitable for information encoding and 

transmission [1, 14].  

Optical fields offer an access to a vast phase space of discrete and continuous variables 

[15, 16], defining the spatial, temporal, spectral, polarization, and spin modes of photons, 

thus offering unique solutions for high-dimensional quantum entanglement [17]. While some 

of these variables, such as the polarization angle, are defined in a space whose dimensionality 

is as low as two, others provide an access to a Hilbert space with an infinite number of 

dimensions. Specifically, various classes of spatial modes, defined by either the orientation of 

the wave vector or the optical angular momentum (OAM), lend an unbounded Hilbert space 

for high-dimensional quantum entanglement [18 – 22]. However, an access to higher 

dimensions in this case is achieved at the expense of beam-profile complexity, which lowers 

their brightness and complicates their integration into fiber-optic communication networks. 

As an attractive alternative solution, spectral and temporal modes of optical fields enable 

continuous-variable energy – time entanglement [15, 23] which is ideally suited for efficient 

high-dimensional information encoding [24, 25]. Unlike entanglement in spatial modes, time- 

or frequency-bin entanglement is fully compatible with fiber-optic transmission. Moreover, 

with the aid of four-wave mixing (FWM) [26 – 32], such entanglement can be generated in 

waveguide modes of an optical fiber, ready for use in fiber-optic communication networks. 

Here, we show that vectorial four-wave mixing (FWM) of ultrashort laser pulses in a 

highly birefringent, highly nonlinear optical fiber can provide a source of broadband high-

dimensional continuous-variable entanglement with finely tunable entropy and purity. We 

will demonstrate, by means of Schmidt-mode analysis, that the broadband photon-pair output 

of such a vectorial FWM can be steered, by varying the pump wavelength and polarization 

geometry, from a high-purity, low-dimensional entangled state to a high-entropy entangled 

state in a space of a very high dimensionality. The time-domain Schmidt-mode analysis will 

be shown to provide a clear physical perspective on how the entanglement structure of such 

two-photon states builds up as a result of short-pulse nonlinear dynamics, revealing a 

fundamental, correspondence-type relation between the quantum and classical pictures of 

photon-pair generation. 

 



II. TWO-PHOTON STATES VIA VECTORIAL FOUR-WAVE MIXING: SCHMIDT-

MODE ANALYSIS 

We consider vectorial FWM ωp1 + ωp2 = ωs + ωi whereby a dyad of pump fields with central 

frequencies ωp1 and ωp2 in polarization modes j1 and j2 give rise to signal and idler fields with 

central frequencies ωs and ωi. With vectorial FWM in a birefringent optical fiber in mind, we 

assume that the mode indices j1 and j2 can take one of two values, j1, j2 = f, s, corresponding 

to the fast and slow polarization modes of a birefringent optical fiber. The signal and idler 

fields are then also generated in one or both of these polarization states (Figs. 1a – 1e). 

The photon-pair output of such an FWM process is an entangled broadband state ket, 

whose description generally requires a multidimensional Hilbert space. In a standard 

perturbative treatment [28], this two-photon state is given by 
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where κ is the optical gain, F(ω1, ω2) is the joint spectral amplitude (JSA) function, ( )ω†
1ˆ ja  

and ( )ω†
2ˆ ja  are the creation operators for photons with a central frequency ω in polarization 

modes j1 and j2, respectively. 

In the general case, the JSA function is not factorizable as a product of functions of ω1 

and ω2, which makes it difficult, if possible at all, to address and manage individual 

information-carrying field modes. To understand the mode structure of the continuous-

variable entanglement of the two-photon state Ψ , it is instructive to resort to the Schmidt 

decomposition of the JSA function [15, 28], 

( ) ( ) ( )2121, ωϕωψλωω nn
n

nF ∑=        (2) 

Here, λn, ψn(ω), and φn(ω) are found as the eigenvalues and eigenfunctions of the integral 

equations 

( ) ( ) ( )ωψλωωψωω nnn dK =′′′∫ ,1        (3) 

( ) ( ) ( )ωϕλωωϕωω nnn dK =′′′∫ ,2        (4) 

where ( ) ( ) ( )∫ ′′′′′′′=′ ∗ ωωωωωωω dFFK ,,,1  and ( ) ( ) ( )∫ ′′′′′′′=′ ∗ ωωωωωωω dFFK ,,,2 . 

Introducing the effective creation operators, 
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we can rewrite Eq. (1) for the two-photon state Ψ  as  
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With the λn coefficients found from Eqs. (3), (4), we can quantify the entanglement in 

terms of the entropy [15], n
n

nS λλ∑−= 2log . The Schmidt parameter, defined as 

∑=
n nK 2/1 λ , provides a measure for the dimensionality of the Hilbert space (or the number 

of biphoton modes) needed to describe the entanglement [33], with the purity of the two-

photon state quantified as p = 1/K.  

For ωp1 + ωp2 = ωs + ωi FWM driven by pump fields with spectral amplitudes α1(ω) 

and α2(ω), the JSA function is given by [28] 
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is the phase-matching function, L is the length of the nonlinear medium and 

( ) ( ) ( ) ( ) ( ) ( )2211,, PPisisis γγωβωβωωωβωβωωωβ +−−−′−++′=′Δ     (10) 

is the mismatch of the frequency-dependent propagation constants β(ω) of the fields involved 

in the FWM process, γ1 and γ2 are the relevant nonlinear coefficient and P1 and P2 are the 

peak powers of the pump fields. 

The key properties of the JSA functions of photon pairs generated through FWM and 

their relation to phase and group-velocity mismatch have been thoroughly studied in the 

earlier work (see Ref. 28 for a comprehensive analysis and an illuminating discussion of 

photon-pair JSA functions). Moreover, the Schmidt coefficients λn have long been in use for a 

quantitative characterization of the purity of the FWM photon-pair output [15]. In this work, 

we extend these concepts and methods by analyzing the eigenfunctions ψn(ω) and φn(ω) and 

eigenvalues λn of integral equations (3) and (4) with kernels ( )ωω ′,1K  and ( )ωω ′,2K  defined 

through suitable convolutions of the FWM photon-pair JSA functions, as explained above. 

We use the eigenfunctions of Eqs. (3) and (4) to define the time-domain eigenmodes of high-

purity two-photon states generated via vectorial FWM processes. As one of the central results 

of this analysis, we demonstrate that such eigenmodes, referred to as pulse modes, can be 

steered, by varying the pump wavelength and FWM polarization geometry, from a high-

purity entangled ket to a high-entropy entangled state in a space of a very high 

dimensionality. Moreover, this pulse-mode analysis is shown to provide a clear physical 

perspective on how the entanglement structure of two-photon states builds up as a result of 

short-pulse nonlinear dynamics. This insight reveals a correspondence-type relation between 



the quantum and classical pictures of photon-pair generation. With an eye on a more practical 

side, a clear understanding of the temporal profile of pulse modes representing high-purity 

two-photon states is central to a meaningful shaping of ultrashort photon-packet waveforms 

for multiphoton spectroscopy [34 - 36] and super-resolving microscopy [37, 38] using 

quantum states of light. 

With these goals in mind, we numerically solve Eqs. (3) and (4) for five polarization 

arrangements of vectorial FWM (Figs. 1a – 1e) in a polarization-maintaining optical fiber. To 

this end, the kernels ( )ωω ′,1K  and ( )ωω ′,2K  were discretized and represented as N x N 

matrices, with N ranging from ~102 to ~103, depending on the convergence rate of the 

numerical solution. Calculations were performed for vectorial FWM in an optical fiber whose 

dispersion, nonlinearity γ, and birefringence δn were varied within the range typical of highly 

nonlinear photonic-crystal fibers (PCFs) [39]. Short-pulse vectorial FWM in this class of 

fibers can provide, as the Schmidt-mode analysis shows, a bright source of photon pairs 

whose entanglement structure can be tailored, by varying the pump wavelength and 

polarization geometry, from a high-purity biphoton entanglement to a high-entropy 

entanglement in a space of a very high dimensionality. 

Both pump fields in our calculations are taken in the form of transform-limited pulses 

with a pulse width of 300 fs. These pulses share the same Gaussian spectral profile 

( ) ( ) ( )[ ]22
021 exp σωωαωαωα p−−==  with a variable central frequency ωp = ωp1 = ωp2 and 

a bandwidth σ. In Figs. 1f – 1j, we present the maps of the coherence length lc = π/(2|Δβ|) 

calculated as a function of the pump, signal, and idler wavelengths λq = 2πc/ωq (q = p, s, i for 

the pump, signal and idler fields, respectively; the wavelengths λq should not be confused 

with λn – the standard notation of the Schmidt coefficients) for five different polarization 

geometries of this FWM process, as sketched in Figs. 1a – 1e, in an optical fiber with typical 

parameters of a highly nonlinear, highly birefringent PCF – γ = 100 W-1 km-1, δn ranging 

from 10–4  to 10–3, and a group-velocity dispersion (GVD) profile as shown in Fig. 2a, with 

the zero-GVD wavelength at λz ≈ 740 nm. This set of parameters is provided by a generic 

PCF structure with a core radius of about 1.45 µm and a hexagonal lattice of holes in the 

cladding with an air-filling factor of ≈ 0.36. The laser peak power is set at P1 = P2 = P = 50 

W and the fiber length is taken as L = 40 cm.  

 

III. ENTROPY- AND PURITY-TAILORED BROADBAND TWO-PHOTON STATES 

As an instructive example of fiber-based entanglement engineering, Fig. 3 presents the JSA 

functions and the Schmidt eigenvalues calculated for a photon-pair FWM output of a fiber 

with the above-specified parameters driven by two cross-polarized pump fields, giving rise to 



the signal and idler fields detected in the s and f polarization modes, respectively (Fig. 1d). 

This polarization geometry is referred to as sf – fs hereinafter. With the central wavelength of 

the pump set at λp = 800 nm, the central maximum of the phase-matching function 

( )is ωωω ,,′Φ  for this FWM process gives rise to an almost horizontal stripe at the center of 

the JSA map (Fig. 3a), representing ≈ 98% of the photon-pair generation probability. If only 

the entire signal bandwidth, Δωs ≈ 35 THz, within this central lobe of the JSA map could be 

accommodated by a single spectral mode ψ1(ω), the photon-pair output would be 

overwhelmingly dominated by biphotons with a factorizable wave function Ψ .  

Results of the Schmidt-mode analysis, presented in Fig. 3d, show that the structure of 

the central lobe in the JSA map in Fig. 3a can indeed be accurately approximated as a product 

of two spectral modes – ψ1(ω), and φ1(ω). This pair of modes enters into the Schmidt 

decomposition of Eq. (2) with a weighting factor 1λ  ≈ 0.99, thus accounting for 99% of the 

two-photon state generated as the fiber output. The second largest λn coefficient in this 

expansion is almost two orders of magnitude smaller than λ2 (Fig. 3d). The purity of the 

photon-pair FWM output in this regime is p ≈ 0.96. The entanglement entropy is S ≈ 0.15 

(Fig. 2d). The effective dimensionality of the Hilbert space needed to describe the 

entanglement structure of such a two-photon state is K ≈ 1.04. 

It is pleasing that, with a rather simple fiber design, vectorial FWM can be steered 

toward high-purity photon-pair generation with a pump at around 800 nm – the central 

wavelength of Ti: sapphire short-pulse laser sources. Off this wavelength, the sf – fs FWM 

tends to deliver two-photon states whose continuous-variable spectral entanglement structure 

can only be described in a Hilbert space of higher dimensionality. Specifically, with the 

cross-polarized pump fields centered at λp = 850 nm, the central lobe in the JSA map for this 

FWM process is tilted (Fig. 3b), indicating a positive correlation between different frequency 

components within broadband signal and idler FWM sidebands. In this case, the two-photon 

state Ψ  is no longer reducible to a single term in expansion (7), as several Schmidt-mode 

products in this expansion have nonnegligible λn (Fig. 3e), providing noticeable contributions 

to Ψ . The two-photon state generated at the fiber output is thus no longer factorizable, but 

is given by a superposition of several pairs of Schmidt modes. The effective dimensionality 

of the Hilbert space needed to describe the entanglement of the photon-pair fiber output in 

this case is K ≈ 3.4. The purity of the photon-pair FWM output is p ≈ 0.29, with the 

entanglement entropy is S ≈ 1.9. 

An even larger number of Schmidt modes is needed to characterize the entanglement of 

the photon-pair output of an sf – fs FWM driven by cross-polarized pump fields centered at λp 



= 750 nm (Figs. 3c). In this case, the spectrum of λn extends to very high n (Fig. 3f), 

indicating that the two-photon state Ψ  is a superposition of a very large number of 

Schmidt-mode pairs. The effective dimensionality of the Hilbert space in this case is K > 400, 

correlation between different frequency components of the signal and idler fields is negative, 

the purity of the photon-pair output is as low as p ≈ 0.002, and the entanglement entropy is at 

S ≈ 6.5. 

In Fig. 4, we present calculations performed for an sf – sf FWM process, in which two 

cross-polarized pump fields with the same central wavelength and identical Gaussian spectral 

profiles give rise to the signal and idler fields in the fast and slow modes, respectively (Fig. 

1e). For this polarization geometry, two-photon states with the highest purity are achieved 

when the pump wavelength is set at ≈ 670 nm. The central lobe of the JSA map in this regime 

is vertical (Fig. 4a) and is accurately (with a ≈1.5% error) approximated as a product of 

ψ1(ω), and φ1(ω). The two-photon state generated in this regime at the fiber output is 

dominated by the first term in expansion (7), with the largest Schmidt eigenvalue, λ1, being 

≈60 times larger than the second largest λn coefficient (Fig. 4d). The purity of this photon-

pair FWM output is now p ≈ 0.93, the effective dimensionality of the Hilbert space is K ≈ 

1.06, and the entanglement entropy is S ≈ 0.26 (Fig. 2f).  

As the central wavelength of the cross-polarized pump is detuned off this wavelength, 

the central lobe in the JSA map becomes tilted (Figs. 4b, 4c), indicating positive (Fig. 4b) or 

negative (Fig. 4c) correlations between the frequency components of the signal and idler 

fields. With the pump wavelength set at λp = 700 nm (Fig. 4c), an extended spectrum of λn 

(Fig. 4f) indicates a very high dimensionality of the Hilbert space, K > 70,  needed to 

accommodate all the modes of the two-photon state produced at the fiber output. The purity 

of this state is as low as p ≈ 0.01, while the entanglement entropy is S ≈ 4.0. 

Among other polarization FWM geometries, an ff – ss FWM process, in which both 

pump fields propagate in the fast mode, while the signal and idler fields are generated in the 

slow mode (Fig. 1b), stands out as an interesting setting enabling the generation of high-

purity two-photon states. Indeed, with the pump wavelength tuned to λp = 800 nm, this FWM 

process is seen to deliver two-photon states with a purity as high as p ≈ 0.9 (Fig. 2c), 

indicating a high factorizability degree of the photon-pair fiber output. The problem is, 

however, that, in this polarization geometry, FWM generates the signal and idler photons in 

the same polarization mode (Fig. 1b), thus lacking the elegance and power of FWM with 

cross-polarized pump (sf – fs and sf – sf polarization schemes in Figs. 1d and 1e), where the 

information-carrying modes can be easily addressed and manipulated using polarization 

optics. 



 

IV. PULSE MODES AND CLASSICAL-FIELD DYNAMICS 

While the spectral maps of the JSA function provide a powerful tool for visualizing the 

structure of quantum entanglement in the frequency domain, it is the time-domain Schmidt-

mode analysis that offers, as we are going to show below in this section, a clear physical 

perspective of how exactly this entanglement structure builds up as a result of field-waveform 

dynamics and reveals a fundamental, correspondence-type relation between the quantum and 

classical pictures of photon-pair generation. 

To gain these insights, we transform the Schmidt eigenfunctions ψn(ω) and φn(ω) into 

the time domain, 

( ) ( ) ( ) ωωωψ dtitu nn −= ∫ exp ,        (11) 

( ) ( ) ( ) ωωωϕ dtitv nn exp∫= ,         (12) 

to represent the signal and idler field operators as expansions 

( ) ( )∑=
n

nns gbzE ηη ˆ,ˆ ,         (13) 

( ) ( )∑=
n

nni hczE ηη ˆ,ˆ ,          (14) 

where ηq = t – z/vq is the time in the retarded frame of reference, t is the time in the laboratory 

frame of reference, z is the coordinate along the fiber, vq is the group velocity, and q = p1, p2, 

s, and i for the pump, signal and idler pulses. For the pump pulses, t = 0 is chosen to 

correspond to the peak of the pulses at z = 0. Had these pulses remained undistorted in the 

course of pulse evolution in the fiber, their peaks would have stayed at η = 0 at any z. 

For high-purity two-photon states with JSA maps as those shown in Figs. 3a and 4a, 

with λ1 >> λn for any n > 1, expansion (2) for the JSA and expansion (7) for Ψ  are 

dominated by the n = 1 term. A two-photon state with such a structure is composed, as Eqs. 

(13) and (14) show, of signal and idler pulse modes g1(η) and h1(η). In Figs. 5a and 5b, we 

show these modes calculated as Fourier transforms of the eigenfunctions ψ1(ω) and φ1(ω) 

found by solving Eqs. (3) and (4) for two-photon states produced via sf – fs FWM with λp = 

800 nm and sf – sf FWM with λp = 670  nm  – FWM processes that deliver high-purity two-

photon states (Figs. 2e, 2f). The two-photon state produced via sf – fs FWM with λp = 800 nm 

(Fig. 5a) is seen to consist of a short signal pulse with a pulse width of ≈ 300 fs and a much 

longer idler pulse, which waveform is not immediately comprehensible. The structure of the 

photon pair in Fig. 5b is in many ways complementary, as the two-photon state in this case is 

a combination of a short idler pulse and a much longer signal pulse. The similarity in the 



temporal structure of Schmidt-mode pairs of the two-photon states in Figs. 5a and 5b is 

striking. 

To understand these results, we resort to the classical nonlinear dynamics behind the 

buildup of the signal and idler waveforms as a result of short-pulse FWM. Central to this 

analysis are effects related to the mismatch of the group velocities vp1, vp2, vs, and vi of the 

pump, signal, and idler pulses. In Figs. 5c and 5d, we present these group velocities 

calculated as functions of the wavelength for sf – fs FWM driven by 800-nm pump (Figs. 5c) 

and sf –sf FWM with a 670-nm pump (Figs. 5d).  

For sf – fs FWM with λp = 800 nm, the group velocity of the signal pulse is seen to fall 

in-between the group velocities of the pump fields propagating in the fast and slow modes of 

the fiber. The group velocity of the idler pulse, on the other hand, is considerably lower than 

the group velocities of the pump fields. With such a relation of the group velocities, the 

generation of the signal and idler fields is efficient only as long as the group delay between 

the pump fields is smaller than the pump pulse width. As vs falls in the range right between 

vp1 and vp2, such a nonlinear process gives rise to a short signal pulse whose pulse width 

corresponds to the bandwidth Δωs of the central lobe in Fig. 3a. As long as they overlap in 

time, the pump and signal pulses continue to generate the idler field. However, since the 

group velocity of the idler pulse is appreciably lower than vp1, vp2, and vs, this pulse 

continuously lags behind the pump and signal pulses. As a result, the idler field waveform 

acquires a complicated temporal envelope with a sharp peak in its trailing edge, whose width 

is close to the signal pulse width and which is delayed relative to the signal pulse by a well-

defined delay time.  

With this classical picture in mind, we are tempted to estimate this delay time as 

)( 11 −− −≈ sid vvLτ . This simple estimate gives τd ≈ 1.2 ps (vertical dashed lines in Fig. 5a), 

which agrees remarkably well with the time separation between the temporal Schmidt mode 

of the signal field and the peak in the trailing edge of the pulse mode of the idler field. 

For an sf – sf FWM process driven by a 670-nm pump (Figs. 1e), the relation of the 

signal and idler group velocities is in many ways opposite. Since it is now the group velocity 

of the idler pulse that falls in-between the group velocities of the pump fields polarized along 

the s and f fiber axes (Fig. 5d), the idler-wave output is a short pulse whose pulse width 

corresponds to the bandwidth Δωi of the central lobe in Fig. 4a. Because the signal group 

velocity is now the lowest among all the pulses, it is now the signal pulse that continuously 

lags behind the other three pulses and acquires a complicated temporal envelope with a sharp 

peak in its trailing edge. The width of this peak is close to the idler pulse width. The time 

delay between the idler pulse and this peak in the trailing edge of the signal field waveform 



agrees, once again, very closely with a simple estimate )( 11 −− −≈ sid vvLτ ≈ 1.2 ps, as shown by 

the vertical dashed lines in Fig. 5b. 

Off the pump wavelengths providing suitable group-velocity relations, vectorial FWM 

generates two-photon states with a complex, high-dimensional structure of spectral 

entanglement, which can only be described in a Hilbert space of higher dimensionality. 

Specifically, for sf – fs FWM with a pump at λp = 750 nm, both the signal and idler group 

velocities are considerably lower than the group velocities of both pump pulses (Fig. 5e). The 

two-photon state generated by such an FWM process is a broadband ket (1) whose 

entanglement structure is described in a high-dimensional space with K > 400 (Figs. 3c, 3f). 

For sf –sf FWM with λp = 700 nm, the signal and idler pulses are also seen to be substantially 

slower than the pump pulses (Fig. 5f), translating into a high-dimensional entanglement of 

the photon-pair FWM output with K > 70 and purity as low as p ≈ 0.01 (Figs. 4c, 4f).   

 

V. CONCLUSION 

To summarize, we have shown that vectorial four-wave mixing (FWM) of ultrashort laser 

pulses in a highly birefringent, highly nonlinear optical fiber can provide a source of 

broadband high-dimensional continuous-variable entanglement with finely tunable entropy 

and purity. We have demonstrated that the broadband photon-pair output of such a vectorial 

FWM can be steered, by varying the pump wavelength and polarization geometry, from a 

high-purity entangled ket to a high-entropy entangled state in a space of a very high 

dimensionality. The time-domain Schmidt-mode analysis has been shown to provide a clear 

physical perspective on how the entanglement structure of such two-photon states builds up 

as a result of short-pulse nonlinear dynamics. When viewed from this perspective, the pulse 

modes comprising high-purity two-photon states generated via vectorial FWM can be 

adequately understood in terms of classical-field short-pulse nonlinear dynamics. This insight 

reveals a correspondence-type relation between the quantum and classical pictures of photon-

pair generation. 
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Fig. 1. (a – e) Polarization geometries in 2ωp = ωs + ωi four-wave mixing in a birefringent 
optical fiber with fast and slow axes f and s and (f – j) the respective phase-matching maps, 
showing the coherence length lc = π/|Δβ| as a function of the pump, signal, and idler 
wavelengths for an optical fiber with γ = 100 W–1 km–1, δn = 10–4  (g, h), δn = 10–3 (i, j), and a 
GVD profile as shown in Fig. 2a: (a, f) scalar FWM, (b, g) ff – ss, (c, h) ss – ff, (d, i) sf – fs, 
(e, j) sf – sf. 
 
 
 

 



  
 

 
Fig. 2. (a) The group-velocity dispersion of the fiber used in calculations. (b – f) The 
entanglement entropy (blue solid line) and the purity of the two-photon states at the fiber 
output (pink dashed line) for different polarization geometries: (b) scalar FWM, (c) ff – ss, (d) 
ss – ff, (e) sf – fs, (f) sf – sf. 

 
 
 
 
 



  
 
 
Fig. 3. (a – c) The joint spectral amplitude F(λs, λi) for the sf – fs polarization geometry of 
2ωp = ωs + ωi four-wave mixing. (d – f) The eigenvalues λn for a two-photon state generated 
through the sf – fs polarization geometry of 2ωp = ωs + ωi four-wave mixing with a pump at 
λp = 800 nm (a, d), 850 nm (b, e), and 750 nm (c, f).  
 
 

 
 



 

  
 

 
Fig. 4. (a – c) The joint spectral amplitude F(λs, λi) for the sf – sf polarization geometry of 
2ωp = ωs + ωi four-wave mixing. (d – f) The eigenvalues λn for a two-photon state generated 
through the sf – sf polarization geometry of 2ωp = ωs + ωi four-wave mixing with a pump at 
λp = 670 nm (a, b), 620 nm (b, e), and 700 nm (c, f).  
 
 
 
 
 



 
 

Fig. 5. (a, b) Signal (blue solid line) and idler (red dashed line) pulse modes produced as a 
part of the photon-pair fiber output and (d – e) the group velocities of the fast 
(pink dashed line) and slow (blue solid line) fiber modes as functions of the wavelength for sf 
– fs FWM with a pump at λp = 800 nm (a, c) and 750 nm (e) and sf –sf FWM with λp = 670 
nm (b, d) and 700 nm (f). The group velocities of the signal, pump, and idler fields are shown 
by blue filled circles, green open circles, and purple squares. 
 
 
 

 
 
 
 
 
 
 


