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Single photon detection generally consists of several stages: the photon has to interact with one
or more charged particles, its excitation energy will be converted into other forms of energy, and
amplification to a macroscopic signal must occur, thus leading to a “click.” We focus here on the
part of the detection process before amplification (which we have studied in a separate publication).
We discuss how networks consisting of coupled discrete quantum states and structured continua (e.g.
band gaps) provide generic models for that first part of the detection process. The input to the
network is a single continuum (the continuum of single-photon states), the output is again a single
continuum describing the next irreversible step. The process of a single photon entering the network,
its energy propagating through that network, and finally exiting into another output continuum of
modes can be described by a single dimensionless complex transmission amplitude, T (ω). We
discuss how to obtain from T (ω) the photo detection efficiency, how to find sets of parameters that
maximize this efficiency, as well as expressions for other input-independent quantities such as the
frequency-dependent group delay and spectral bandwidth. We then study a variety of networks,
discuss how to engineer different transmission functions T (ω) amenable to photo detection, and
discuss implications for single photon detection technology.

I. INTRODUCTION

The development of single photon detectors is a state of
the art research area [1–3]. Fundamental limits to single
photon detector (SPD) performance have yet to be un-
covered. That is, even though there is a large amount of
theory for each type of photo detector, fundamental lim-
its, independent of platform and architecture, should be
derived from a general fully quantum-mechanical model
of the whole photo detection process, from the initial
physical contact the photon makes with the detector to
the final “click.” Device-specific theories, however, are
often at least in part phenomenological in nature. The
underlying basics of photodetection theory was developed
in the early 1960s [4–6], with the quantum nature of light
being taken into account, and with later additions to the
theory also incorporating the backaction of the detec-
tor on the detected quantum field [7–11]. More recent
additions to the theory have analyzed more deeply the
amplification process by itself [12] and its relation to the
absorption and transduction part of the process [1, 13].
In particular, it turns out that for an ideal detector one
should decouple the two processes [by having an irre-
versible step in between the two] such that the amplifica-
tion part does not interfere negatively with the absorp-
tion/transduction part [1, 11]. This decoupling will be
assumed in this paper, too. In order to develop a use-
ful fully quantum-mechanical theory we cannot be com-
pletely general; or, rather, if we are completely general,
then the only statements on fundamental limits we can
make are likely going to be merely examples of Heisen-
berg’s uncertainty relations. So we will make three re-
strictive but—we think—reasonable assumptions about
our quantum theory of photo detection.

First, we focus on single-photon detection. The main
reason is that number-resolved photo detection is possible

FIG. 1: An array of single photon detecting (SPD)
pixels. A series of beamsplitters with low reflectivity
ensure that at most one photon is incident on each
single photon detector.

using arrays of SPDs where each “pixel” receives at most
one photon as in Fig. 1 (also see [14], or [15] for the time-
reversed process of creating a single photon on demand).
So we focus on an individual pixel here. (See Ref. [16] for
a modeling framework for systems with multiple inputs
and Refs. [17–19] for non-linear S-matrix treatments of
few-photon transport.)

Second, although a general state of a single photon is
a function of four quantum numbers, one related to the
spectral degree of freedom, two related to the two trans-
verse spatial degrees of freedom, and one related to the
polarization or helicity degree of freedom, we will restrict
ourselves to the spectral (or, equivalently, the temporal)
degree of freedom. That is, the input state can be de-
fined in terms of frequency-dependent creation operators
â+(ω) acting on the vacuum. The reason is that the



other three degrees of freedom can, in principle, if not
in practice, be sorted before detection. For example, if
one wishes to distinguish between horizontally and verti-
cally polarized photons, one may use a polarizing beam
splitter and put two detectors behind each of the two
output ports. Similarly, efficient sorting of photons by
their orbital angular momentum quantum number [20]
and spatial mode are also possible [21, 22]. It is easier
to consider sorting as part of the pre-detection process,
rather than a task for the detector itself (see footnote
[23]). On the other hand, the spectral response of a de-
tector cannot be eliminated; the time/frequency degree
of freedom is intrinsic to the resonance-structure of the
photo detecting device.

Third, we are going to assume that each pixel’s oper-
ation is passive. That is, apart from being turned on at
some point, and being turned off at some later point, it
operates in a time-independent manner. Thus an incom-
ing photon will interact with a time-independent quan-
tum system. As we will see, active filtering is not needed
for perfect detection provided the photo detector has
no internal losses (couplings to additional continua/side
channels).

We can now describe the interaction of a single photon
with an arbitrary quantum system as follows. The system
may be naturally decomposed into subsystems, each of
which may have discrete and/or continuous energy eigen-
states. (For example, the photon may be absorbed by a
molecule or atom or quantum dot or any structure with
a discrete transition that is almost resonant with the in-
coming photon.) The continua will in general be struc-
tured (for example, containing bands and band gaps in
between) [24–26], but structured continua can be equiv-
alently described as structureless (flat) continua coupled
to (fictitious) discrete states [27–30], enabling a Marko-
vian description of the system independent of an input
photon’s bandwidth. Indeed, it is well known that a non-
Markovian open system can always be made Markovian
by expanding the Hilbert space (the converse of the usual
Stinespring dilation [31]). And so an arbitrary quantum
system may be described by a network of discrete states
(some physical, some fictitious), coupled to flat continua.
The latter coupling makes the time evolution irreversible.
Of course, an actual detector is indeed irreversible. In
particular, the amplification process (converting the mi-
croscopic input signal into a classical macroscopic output
signal) is intrinsically irreversible.

What we do here is give a general description of the
photon entering some network of discrete states [indi-
cated by the black box in Fig. 2] up to and including
the first coupling to a flat continuum, that is, up to and
including the first irreversible step in the process. We
analyzed the (irreversible) amplification step in another
paper [12] and found the fundamental limits on added
noise arising from amplification are so mild that funda-
mental tradeoffs of a detector are in essence determined
by the pre-amplification process which we analyze here.

As we will show, this first part of the process can then

FIG. 2: Input and output fields coupled to a two-port
black box quantum network. The input and output
operators are continuous mode (as functions of
frequency ω) annihilation operators, satisfying canonical
commutation relations [32]. Here the mode ain(ω)
carries the single-photon input state, the reflected mode
is described by aout(ω), and the output mode bout(ω)
contains the excitation energy if the input energy
successfully traversed the network (and may serve as
input to the next part of the photo detection process,
e.g., amplification, see Ref. [12]). bin(ω) may contain
thermal excitations, but is never occupied by the
photon we wish to detect.

be fully described in terms of a complex transmission am-
plitude T (ω), which is the probability amplitude for the
frequency component of the input signal at frequency ω
to survive the first part of the process and enter the next
(amplification) process. (By then the energy h̄ω will have
been converted into a different type of energy, i.e., a dif-
ferent type of excitation, but that plays no particular role
here.) It is straightforward to calculate the transmission
coefficient through a network (the equations are linear!).
The point here is that from T (ω) we can determine three
input-independent quantities of interest to the photo de-
tection process. (That one complex function T (ω) is suf-
ficient is due to our considering only the time/frequency
degree of freedom, see again footnote [23].)

Our paper is organized as follows. After defining our
quantities of interest in section II (short), we start with
analyzing the simplest quantum network to illustrate how
we calculate T (ω) and how our three quantities of inter-
est behave in section III (also short). We then present a
systematic survey of more complicated networks in the
much longer section IV; for each network class, we analyt-
ically calculate T (ω) and discuss the behavior of the three
quantities of interest. Then in section V, we briefly dis-
cuss extensions to arbitrary quantum networks including
the effects of couplings to additional continua/side chan-
nels before summarizing our findings in the conclusions.

II. QUANTITIES OF INTEREST

First, |T (ω)|2 gives an upper bound on the probability
for the frequency component ω to be detected. (If there
were no losses downstream, it would equal the probabil-
ity of detection.) We are thus particularly interested in
identifying quantum systems for which there is at least
one frequency ωi for which |T (ωi)| = 1.

Second, an upper bound to the total detectable fre-
quency range is then given by the spectral bandwidth,



defined as

Γ̃ =
1

π

∫ ∞
0

dω|T (ω)|2. (1)

(The 1
π factor gives agreement with a classical Lorentzian

filter; the transmission function is T (ω) = Γ
Γ−i(ω−ω0) for

a filter with damping factor Γ and resonant frequency ω0

and we find Γ̃ = Γ, see Eq. (14) below.) The inverse of
this quantity is also a measure of the time the photon
spends in the detector. Indeed, Γ̃−1 is a lower bound on
the contribution to timing jitter from integrated detec-
tion event when quasi-monochromatic photon states are
detected with high efficiency (see footnote [33]).

Third, we can also define a delay (latency) using the
polar decomposition of T (ω)

T (ω) = |T (ω)| exp(iφ(ω)) (2)

and using the standard definition of group delay as

τg(ω) = −dφ(ω)

dω
. (3)

We can see how this group delay directly relates to an
experimentally-measured latency by considering an in-
put single-photon with temporal wave packet ψin(t) and

Fourier transform ψ̃in(ω). We can then write the output
single-photon state

|ψ′〉 =

∫ ∞
0

dωψ̃in(ω)R(ω)â+
out(ω)|vac〉

+

∫ ∞
0

dωψ̃in(ω)T (ω)b̂+out(ω)|vac〉 (4)

where the first and second terms correspond to the
reflected and transmitted parts of the single-photon
state, respectively (for details, see Ref. [34]). From (4)
we note that, after interacting with the network, the
transmitted wave packet will have the form ψout(t) =

FT−1[ψ̃in(ω)T (ω)]. For a long input pulse with central

frequency ω′, we find ψout(t) ≈ |T (ω′)|ψin(t − τ)eiω
′τ ′

with τ ′ the difference between the group delay τg(ω
′) de-

fined above and the (unmeasurable) phase delay.
The effect of the group delay on an arbitrary input

photon state is to selectively delay and reshape the trans-
mitted wave packet. Of course, if an input photon has a
wide spread of frequencies, a differential group delay may
increase (or decrease) the temporal spread of the wave
packet. This increase (or decrease) in the arrival times of
different frequencies is manifestly input-dependent and
will not play a role in the input-independent temporal
uncertainty or jitter. We can, however, define an ad-
ditional quantity characterizing the input-independent
group delay-induced dispersion

Tg =

∫ ∞
0

dω

∣∣∣∣dτg(ω)

dω

∣∣∣∣ |T (ω)|2 (5)

whose definition agrees with our physical intuition that
a constant group delay over the transmission window
will not contribute to dispersion, nor will frequencies

that are not transmitted regardless of how large
dτg(ω)
dω

may be. We find that, for a flat transmission func-
tion that is unity over some spectral range ω0 ± δω
and zero everywhere else and a monotonic group delay
τg(ω), (5) gives the difference in group delay between
the minimum and maximumly transmitted frequencies:
Tg = |τg(ω0 − δω)− τg(ω0 + δω)|. This is the maximum
dispersion possible for any input to this system.

Finding key conditions that change the transmis-
sion function T (ω) and frequency-dependent group delay
τg(ω) are important for the design of coupled-resonator
optical waveguide (CROW) networks [35] for delay-lines
[36] and spectral filtering [37], where the transmission
efficiency, frequency-dependent group delay, and spec-
tral bandwidth will all affect performance. These are
the three quantities we focus on in the rest of the paper.

Critically, knowing T (ω) for a specific photo detector
also allows one to construct the positive-operator val-
ued measure (POVM), from which all standard figures of
merit can be obtained [38]. The POVM element corre-
sponding to a click after the photo detector has been left
on for a very long time (in particular, long compared to

the bandwidth τ � Γ̃−1; see Appendix A for a detailed
POVM construction) has the particularly simple form

Π̂ =

∫ ∞
0

dω |T (ω)|2 |ω〉 〈ω| . (6)

Π̂ is defined such that the probability of a photon
in a state ρ̂ being detected is given by the Born rule

Pr = Tr
(

Π̂ρ̂
)

. For example, any photon state ρ̂ =∑
i λi |ω′i〉 〈ω′i| where |T (ω′i)|2 = 1 and

∑
i λi = 1 will

be detected with unit probability. (The states the photo
detector can detect perfectly include both pure states
[when only one λi is non-zero] and mixed states com-
prised entirely of frequencies where |T (ω′i)|2 = 1.) Of
course, no photon is truly monochromatic (or discretely
polychromatic), but it can be effectively so if the wave-
packet envelope is long compared to the inverse spectral
bandwidth Γ̃−1.

III. SIMPLE EXAMPLE

The simplest quantum network consists of a single two-
level system with a ground state |g〉 and an excited state
|e〉, with the incoming photon coupling these states (Fig.
3). The two-level system is described by fermionic raising
and lowering operators σ+ = |e〉 〈g| and σ− = |g〉 〈e| (this
is also the simplest model of a photo detector, see [4]).
Physically, this excited state could be any discrete state
of a single absorber, e.g. the p-state of an atom which
then decays to a monitored flat continuum. (Indeed, sin-
gle absorbers such as atoms [39–43], single molecules [44],



FIG. 3: A simple network comprised of a single discrete
state described by an operator c (the bosonic
replacement for the two-level system fermionic lowering
operator σ−) and coupled to left and right continua a
and b at rates γ and Γ, respectively. That is, here the
black box of Fig. 2 contains just one two-level system.

NV-centers [45], and quantum emitters [46, 47] are known
to efficiently couple to and absorb single photons.)

In the Heisenberg picture, the evolution of these rais-
ing and lowering operators σ+ and σ− will determine
whether a photon makes it from one side of the network
to the other. By focusing our analysis on cases where at
most a single photon is in the network, we can use the
equivalence between the two-level system and the simple
harmonic oscillator to simplify our problem ab initio: we
replace the fermionic raising and lowering operators with
bosonic creation and annihilation operators c† and c [48].

We follow standard input-output theory here [32], sep-
arating the full evolution of both continua a and b into
input and output modes (Fig. 2). By formally solving
the Heisenberg evolution equations for the two input con-
tinuum mode annihilation operators bin and ain, we can
write the effective system Hamiltonian that governs the
evolution of the system operators c and c†

(7)

H = −h̄ω0c
†c−√γ(c†ain + ca†in)−

√
Γ(c†bin + cb†in)

where we have identified ω0 as the resonance frequency,
and γ and Γ as the left and right side couplings to two
continua a and b respectively [49]. In the Heisenberg pic-
ture, the time evolution of the discrete state annihilation
operator is given by

ċ = −iω0c−
γ + Γ

2
c−√γain −

√
Γbin. (8)

The input mode operators ain and bin and output mode
operators aout and bout are determined by open quantum
system evolution of the discrete state operator c in (8)
and the two boundary conditions

aout − ain = −√γc
bout − bin = −

√
Γc. (9)

It is easiest to solve the equations by taking the Fourier
transform. Unitarity implies the existence of a transfer
matrix relating in and out fields in the spectral domain

[
aout(ω)
bout(ω)

]
=

[
R(ω) T (ω)
T (ω) R(ω)

] [
ain(ω)
bin(ω)

]
(10)

where |T (ω)|2 + |R(ω)|2 = 1 (resulting from our assump-
tion there are no internal losses) [50]. Defining a detuning
∆ = ω−ω0, we can easily solve (8) in terms of the Fourier
transform of the discrete state annihilation operator

c(ω) =
−√γain(ω)−

√
Γbin(ω)

γ+Γ
2 − i∆

(11)

yielding a transmission function

T (ω) =

√
γΓ

γ+Γ
2 − i∆

. (12)

We can see from (13) that perfect transmission
(|T (ω)|2 = 1) occurs only when γ = Γ and ∆ = 0. These
are the well-known conditions of balanced mirrors and
on-resonance required for perfect transmission through a
Fabry-Perot cavity [51].

We can also calculate the frequency dependent group
delay from (13)

τg(ω) =
Γ+γ

2(
Γ+γ

2

)2

+ ∆2

. (13)

We see that like T (ω), the group delay is also a

Lorentzian with width Γ+γ
2 , and that frequencies close

to resonance spend the most time in the network with a
maximum group delay of 2

Γ+γ on resonance. We similarly

find the input-independent group delay-induced disper-
sion (5) to be Tg = 8γΓ

(γ+Γ)3 .

We can also use T (ω) to calculate a spectral band-
width (not to be confused with the channel bandwidth
discussed in [38])

Γ̃ = 1
π

∫∞
0

dω |T (ω)|2

= 2Γγ
Γ+γ (14)

which is a measure of the number of frequencies that can
be efficiently detected. For this simple case, we note that
τg(ω) = Γ̃−1|T (ω)|2 and thus

∫
dωτg(ω) = π. (This will

not be true for a general network, as we shall see shortly.)

IV. QUANTUM NETWORKS

We now set up the general problem of an arbitrary
network of discrete states connecting two continua. The
Hamiltonian is a straightforward generalization of (7)

H = −
∑
i

h̄ωic
†
i ci −

∑
ij

gij(cic
†
j + c†i cj) (15)

−
∑
i

√
γi(c

†
iain + cia

†
in)−

∑
i

√
Γi(c

†
i bin + cib

†
in)



where we’ve now defined a real coherent coupling between
discrete states gij (we define gii = 0 for each state). Some
states may not be coupled to one (or both) continuum,
in which case either

√
γi or

√
Γi (or both) will be zero.

We can similarly generalize the operator evolution in
(8) for an arbitrary network; moving to the spectral do-
main, we write the spectral dependence of the discrete
state operators

−i∆ici(ω) =−
∑
j

(√
γi γj+

√
Γi Γj

2 + igi j

)
cj(ω)−√γi ain(ω)−

√
Γi bin(ω). (16)

Similarly to (9), we can write boundary conditions for
the two continua with an arbitrary network

aout(ω)− ain(ω) = −
∑
i

√
γici(ω)

bout(ω)− bin(ω) = −
∑
i

√
Γici(ω). (17)

Now, going from (17) to the transfer matrix (10) in-
volves solving N systems of N coupled first-order dif-
ferential equations [52]. This complication occurs be-
cause each discrete state amplitude ci(ω) depends on ev-
ery other amplitude [53]. One can also use numerical
techniques to diagonalize the systems of equations and
find the transmission function numerically [54]. But this
rapidly gets harder with large systems, and masks the
analytic conditions for perfect transmission we are inter-
ested in identifying. Here, we will instead identify large
classes of systems that can be solved exactly with arbi-
trary couplings, decays, and resonant frequencies.

Parallel: each discrete state is directly coupled to both
continua (γi 6= 0 and Γi 6= 0 ∀i) but not to each other.
Thus there are multiple parallel paths to the same final
state and hence we’ll get interference. Physical photo de-
tection platforms described by parallel networks include
(i) single atoms with multiple p-states that then decay
directly to a continuum (similarly for trapped ions/atoms
due to Stark and Zeeman effects, see Ref. [55] for this in
generating single photons), (ii) quantum dots [56], (iii)
structured continua with multiple pseudomodes [57].

Series: each of the two continua are coupled to their
own discrete state, which are in turn coherently coupled
by a chain of intermediate single discrete states. There
is just one path from the input continuum to the out-
put continuum. This model describes (i) an atom in a
p-state that first decays to a d-state or metastable s-state
before decaying to a flat continuum (and analogously for
a molecule [1]), (ii) coherently coupled frequency filtering
in front of a photo detecting platform (for instance, us-
ing an antireflective coating [58] or optical cavities [59]),
(iii) atomic chains coupled through their p-states (which
could be mediated by, for example, a fiber mode [60]).

Hybrid: a combination of the above cases. For exam-
ple, two parallel paths of three steps each or, more gen-
erally, layered structured continua (a photon must pass
through one before the other). A physical system that

can be modeled with a hybrid network is a photosyn-
thetic light-harvesting (i.e. FennaMatthewsOlson) com-
plex with multiple paths for coherent transport [61–63].

In all cases, we will solve the systems of equations for
R(ω) directly and make use of the identities |T (ω)|2 =

1 − |R(ω)|2 and T 2(ω) = −R2(ω) |T (ω)|2
|R(ω)|2 when we calcu-

late the transmission efficiency, spectral bandwidth, and
group delay.

A. Parallel Networks

FIG. 4: A parallel network of N = 5 decoupled discrete
states, each described by an operator ci and coupled to
left (input) and right (output) continua a and b at rates
γi and Γi, respectively.

We now consider a parallel quantum network where
each discrete state is directly coupled to both continua
(Fig. 4). If the discrete states are directly coupled to
each other, it is helpful to first diagonalize the system in
the basis where they are decoupled. We then consider
the new modes to be the discrete states a photon can
occupy, each with a new resonance frequency and two
decay rates to the two continua. (In the strong coupling
limit, Rabi splitting comes into effect and these dressed
states are the more physical description anyways [64].)
This decoupled manifold of discrete states, each decaying
at a rate γi to the input continuum and a rate Γi to the
output continuum (Fig. 4), is the next simplest case to
analyze, and provides a simple model of a photo detector
with a simple band structure.



We find the frequency dependence of the discrete state
operators

−i∆ici(ω) = −
∑
j

√
γi γj+

√
Γi Γj

2 cj(ω)

−√γi ain(ω)−
√

Γi bin(ω). (18)

A salient feature of Eq. 18 is the decay terms produce
purely virtual coupling between discrete states coupled
to the same continua. These cannot be thought of as
coupling mediated by continua, as the continua are flat
(Markovian) and perfectly dissipative, and is instead a
purely information-theoretic phenomeona [65].

We use (10) to find R(ω) by considering an input on
only one side of the network (thus setting the expec-
tation value of the other input field operator to zero).
This yields an expression aout(ω) = R(ω)ain(ω) (or
bout(ω) = R(ω)bin(ω)), from which we reconstruct T (ω).
We analytically find the general form of R(ω)

R(ω) =

∏
i

(
Γi−γi

2 − i∆i

)
−X(N)

−∏
i

(
Γi+γi

2 − i∆i

)
−X(N)

+

(19)

where X
(N)
± is a polynomial of order N − 2 in the detun-

ings ∆i. (We find X
(1)
± = 0.) For N = 2, we can see that

X
(2)
± is symmetric (anti-symmetric) between Γi and γi

X
(2)
± =

(√
Γ1Γ2 ±

√
γ1γ2

2

)2

. (20)

This (anti-)symmetry is also present in higher-N co-
efficients. From (19) we can determine a key feature of
parallel quantum networks: if some subset of the discrete
states have balanced decay rates such that γi = Γi, for
large spacings between discrete states compared to the
other decay rates |ωi − ωj | � γj ,Γj , we find R(ωi) = 0;
input monochromatic photons with frequencies on reso-
nance with those discrete states are transmitted perfectly
through the network [66].

In general, finding the specific form of XN
± is a numer-

ical task, and we will focus on a simpler case where we
can utilize another salient feature of parallel networks:
the purely virtual coupling present in (18). Before we
consider a network that is uniformly coupled (all decays
are the same), we can consider a network with couplings
that are inhomogeneous but uniformly unbalanced such
that Γi = k γi ∀i. We can then write (18) in a simplified
form

(21)

i∆i√
γi
ci(ω)=

∑
j

√
γj(1 + k)

2
cj(ω) + ain(ω) +

√
k bin(ω)

so that we can identify strong correlations between dis-
crete state amplitudes

i∆i√
γi
ci(ω) = i∆i′√

γi′
ci′(ω). (22)

For non-degenerate states, Eq. 22 means that a photon
that is resonant with one state will only excite that state.
(For infinitely-narrow discrete states, these correlations
are satisfied trivially of course; ci′(ω) is only non-zero
at ωi′ .) Eq. 22 also indicates that the relative phase of
discrete state amplitudes is frequency dependent; when
ωi < ω < ωi′ , there is a relative phase of π between ci
and ci′ . (Outside of photo detection, this purely virtual
coupling provides a possible alternative explanation for
the destructive interference present in atoms along a fiber
[67, 68] and multi-mode Fabry-Perot cavities [69].) We
can see destructive interference directly from the form of
the reflection coefficient

R(ω) =

i− (k − 1)
∑
i

γi
2(∆i)

i− (k + 1)
∑
i

γi
2(∆i)

(23)

from which we can determine |T (ω)|2 and the other quan-
tities of interest.

We can further specialize to the case of homogenous
coupling where γi = γ and Γi = Γ. This case is of inter-
est for several reasons: most generally, this assumption
directly follows from the first Markov approximation if
the spacing between discrete states is small compared to
the decays. It also simplifies the form of the correlations

FIG. 5: Transmission probability for parallel networks
with N = 4 equally spaced discrete states, each with a
decay rate to the input continuum γi = γ1 ( 7

5 )i−1. The
decays to the monitored output continuum are
uniformly unbalanced (Γi

γi
= k ∀i), with k = 1

2 for the

blue (lower) curve and k = 1 for the red (upper) curve.
Frequency is measured w.r.t. the average resonance
frequency. The four resonance frequencies ωi have
maximum transmission probability |T (ωi)|2 = 4k

(k+1)2 .

The three frequencies of perfect reflection (i.e,
T (ωi) = 0) correspond to solutions of

∑
i
γi
∆i

= 0.



(a) (b) (c)

FIG. 6: (a) Transmission probability, (b) group delay (in units of 1
γ

), and (c) transmission function phase (in units of 2π) for

a parallel network with N = 5 equally spaced discrete states with balanced decay rates to both continua (γ = Γ). Frequency is
measured w.r.t. the average resonance frequency. We observe the five resonance frequencies ωi each correspond to a perfectly
transmitted frequency. The four frequencies of perfect refection correspond to solutions of

∑
i

1
∆i

= 0. The group delay is

always largest for the highest and lowest frequency resonances (except in the large spacing limit, where they are of equal
magnitude). The total change in phase of the transmission function is directly proportional to the number of discrete states.

between discrete states ∆ici(ω) = ∆i′ci′(ω) [70], as well
as the form of the reflection coefficient

R(ω) =

i− Γ−γ
2

∑
i

1
∆i

i− Γ+γ
2

∑
i

1
∆i

. (24)

Perfect transmission.— From (23) and (24) we can see
that in both cases there are N frequencies of maximum
transmission corresponding to each resonant frequency
∆i = 0 with transmission probability |T (ωi)|2 = 4k

(k+1)2

and |T (ωi)|2 = 4γΓ
(γ+Γ)2 , respectively. We also see N − 1

frequencies of destructive interference corresponding to
the N − 1 solutions of

∑
i

γi
∆i

= 0 (Fig. 5) determined

solely by the decays and resonances (and notably not
by k). We similarly observe for the case of a network
with homogenous decay rates N − 1 frequencies of de-
structive interference corresponding to the solutions of∑
i

1
∆i

= 0 (Fig. 6a). One might think that, in principle,

a resonant frequency could coincide with a frequency of
perfect reflection when N > 2, in which they can annihi-
late. However, this only occurs when two discrete states
are energetically degenerate, and since they couple to the
same 1D continuum, this is forbidden by unitarity; as we
decrease the spacing between states, we see a resonant
frequency and a frequency of destructive interference an-
nihilate as a discrete state is forced to decouple from the
system when the degeneracy becomes exact.

In general, the condition for perfect transmission
through a parallel network is that all the couplings be
balanced (γ = Γ or in the inhomogeneous uniformly un-
balanced case, k = 1). As we saw in the case for a
completely arbitrary parallel network, we see that per-
fect transmission at some discrete state frequency ωi not

only requires balanced coupling γi = Γi, but also that all
the other discrete states either be far away in frequency
compared to the their decay rates (|ωi − ωj | � γj ,Γj),
or also be balanced (γj = Γj), or a mix of the two.

Spectral Bandwidth.— Once we have the reflection co-
efficient, we can calculate the three quantities of interest.
For all three cases we’ve discussed, we find that the spec-
tral bandwidth is purely additive Γ̃ =

∑
i

2γiΓi
γi+Γi

and is

completely independent of the spacing between discrete
states [71].

Group Delay.— We note that, unlike the simple model,
the sharp peaks in the group delay (Fig. 6b) correspond
to frequencies of destructive interference and are great-
est for the outermost frequencies of destructive inter-
ference despite all the frequencies of note in (Fig. 6a)
being completely destructive or constructive. We also
observe that the relationship between the three quan-
tities of interest discussed for the simple model is not
present: here τ(ωi) > Γ̃−1|T (ωi)|2 for each resonant fre-
quency. We find that the phase of T (ω) increases by π
with each resonant frequency (6c). This provides a novel
application for single-photon interferometry for resolv-
ing tightly-structured resonance structures and explains
why, whereas the spectral bandwidth Γ̃ is independent
of discrete state spacing, the group delay increases with
close spacing; the same change in phase is occurring in
a smaller spectral range so the magnitude of the group

delay |τg(ω)| = |dφ(ω)
dω | increases.

B. Series Networks

In general, we cannot diagonalize a completely arbi-
trary network in terms of a single set of parallel states;
there may be a causal relationship embedded in the net-
work structure; for example, for an atom in an s-state



FIG. 7: A series network of three coherently coupled
discrete states, each described by an operator ci and
coupled to each other at rates gij . The first and last
states are incoherently coupled to left (input) and right
(output) continua a and b at rates γ and Γ, respectively.

coupled via a photon to one or many p-states which sub-
sequently decay to multiple d-states, we would have to
diagonalize the p-states and d-states separately. A class
of such systems are series quantum networks (Fig. 7),
where only one state is coupled to each continuum, with
the other states forming a chain between the two outer
ones (γi>1 = 0, Γi<N = 0, and gij = 0 for j 6= i±1). This
provides a natural (and especially simple) model for en-
ergy transport and repeated spectral filtering (a series of
Fabry-Perot cavities). Furthermore, we can analytically
determine the transmission function for arbitrary series
networks, as we will now proceed to do.

Since each state is only coupled to the two adja-
cent states, the system of N equations of the form of
(16) describing evolution of the system is solvable in a
stepladder-type approach. Setting the expectation value
of the second input continuum to zero, we solve for the
Nth state in terms of the N − 1th. As we step up the
ladder, we find that the expression for the reflection co-
efficient has the form of a generalized continued fraction

FIG. 8: Wallis-Euler coefficients for N > 1 discrete
states in series. For a network with arbitrarily high-N ,
these can be used to generate transmission functions
(that correctly encode the causal structure that is
inherent to the network outside of the strong-coupling
limit) using the Wallis-Euler recursion relations (26).

R(ω) = 1−
γ

γ
2 − i∆1 +

g2
12

−i∆2 +
g2

23

· · ·+
g2
N−1N

Γ
2 − i∆N

(25)

(we have dropped the subscripts on γ1 and ΓN ). This
equation looks difficult to analyze, but can be greatly
simplified using the Wallis-Euler recursion relations for
continued fractions. We define two function An and Bn
given by the following recurrence relations

B−1 = 0, B0 = 1, A−1 = 1, A0 = b0

An = bnAn−1 + anAn−2 (n ≥ 1)

Bn = bnBn−1 + anBn−2 (n ≥ 1) (26)

with coefficients an and bn given in Fig. 8. The reflec-
tion coefficient is then given R(ω) = AN

BN
for N discrete

states. (For n < N , the functions An and Bn have no
clear physical meaning.) From this, we easily solve for
conditions where R(ω) = 0 (perfect transmission).

Perfect transmission.— We begin by considering the
unphysical but illuminating case of an infinite series of
identical discrete states (gi i+1 = g ∀i and ∆i = ∆∀i)
analytically. We find that the limit limN→∞R(ω) only
converges on-resonance for the special “critical” case

g =

√
γ Γ

2
. (27)

Furthermore, the limit only converges to zero on res-
onance (perfect transmission) when we also have γ = Γ.
This first condition corresponds to a series of discrete
states coupled through their decays (e.g. Fabry-Perot
cavities coupled through their evanescent fields), and the
second condition corresponds to the same requirement of
balanced decays we saw for parallel quantum networks.

While infinite series networks of discrete states are not
realistic, these two conditions play different but impor-
tant roles in all finite series networks where the discrete
states are identical (though introducing relative detuning
will change the critical values of g and Γ/γ, as we will
see). That there are two conditions can be explained
thus; since R(ω) is in general complex, the condition
R(ω) = 0 gives two constraint equations on the real and
imaginary parts of R(ω). When N is even [odd], the
real part is an order N [N − 1] polynomial in the detun-
ings ∆i, while the imaginary part is order N − 1 [N ].
In general, this means there are conditions for a mini-
mum of N −1 frequencies of perfect transmission and we
may find N frequencies of perfect transmission only if the
lower-order equation is satisfied trivially for all frequen-
cies. When considering finite series networks of identical
discrete states, these same two conditions appear in the
constraint equations for perfect transmission [72].



(a) (b)
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FIG. 9: Transmission probabilities for networks with N = 5 (a,b) and N = 4 (c,d) discrete states in series with no relative
detuning and with either balanced decay rates γ = Γ (a,d) or unbalanced decay rates 2γ = Γ (b,c) for the special case of

homogenous critical coupling gij → g =
√
γ Γ
2

. For comparison with the actual transmission probability (blue curve), we also
plot a fictitious transmission probability (red bounding box) that is unity for −2g ≤ ω ≤ 2g and zero elsewhere. Frequencies
are measured w.r.t. resonance. Transmission functions for networks with both balanced decays and unbalanced decays are
plotted. Meeting both the balanced decay and critical coupling conditions ensures that the on-resonance transmission is both
unity and maximally broadened, but are not necessary conditions for perfect transmission to occur at some frequency.

We now explore in detail the effects of these two condi-
tions on series networks of identical discrete states with
uniform coupling; first, consider fixing the coupling g to

be critical (g =
√
γΓ
2 ). For odd N , we find that when

the decays are balanced (γ = Γ), this ensures N frequen-
cies of perfect transmission (Fig. 9a) with the resonance
frequency at a local maxima of unity, and when the de-
cays are unbalanced (γ 6= Γ), N−1 frequencies of perfect
transmission (Fig. 9b) with the resonant frequency at a

local minima. For even N , letting g =
√
γΓ
2 always re-

sults in N−1 frequencies of perfect transmission (Fig. 9c)
with the on-resonant frequency at a local maxima. Here,
having balanced decays broadens the the on-resonance
maxima (Fig. 9d), which will be desirable for detection
of non-monochromatic photons (wave packets).

Now we instead consider balanced decays (γ = Γ) and
observe a switch in the on-resonance behavior; whereas
above we found that for even N the critical coupling con-
dition was sufficient for on-resonance transmission to be

at a local maxima, we now find that, for odd N that
the balanced decay condition results in N peaks of unity
transmission (Fig. 10a) with on-resonance transmission
at a local maxima. Here three peaks become degenerate
to give N − 2 frequencies of perfect transmission when

g <∼
√
γΓ
2 (Fig. 10b). (This inequality rapidly becomes

exact [g <
√
γΓ
2 ] with increasing N .) Similarly, for even

N we find the behavior of T (ω) depends strongly on the
coupling, flipping between N frequencies of perfect trans-
mission with on-resonance transmission at a local minima
for g >

√
γΓ
2 (Fig. 10c) and N − 2 frequencies of perfect

transmission with on-resonance transmission at a non-
unity local maxima for g <

√
γΓ
2 (Fig. 10d).

For both even and odd N , the width is increasingly
determined by g with increasing N , with the half-width
asymptotically approaching 2g. In the large-N limit, we
observe that the transmission function is asymptotically
bounded between a circle and a square when both con-
ditions for perfect transmission are met (Fig. 11). We



(a) (b)

(c) (d)

FIG. 10: Transmission probabilities for networks with N = 5 (a,b) and N = 4 (c,d) discrete states in series with no relative
detuning for the special case of homogenous balanced decays γ = Γ (blue curve). For comparison, we plot a fictitious
transmission probability (red bounding box) that is unity for −2g ≤ ω ≤ 2g and zero elsewhere. Frequencies are measured

w.r.t. resonance. Transmission functions for networks with both over-coupling g = 6
5

√
γΓ
2

(a,c) and under-coupling g = 4
5

√
γΓ
2

(b,d) are plotted. A balanced over-coupled network will always have more peaks of perfect transmission than an
under-coupled or critically-coupled one, though on-resonance transmission may not be a local maxima.

also observe that increasing g past
√
γ Γ
2 while maintain-

ing γ = Γ induces Rabi splitting, with the N or N − 1
frequencies of perfect transmission spreading outwards
(for odd and even N , respectively). For the special case
of N = 2, the presence of a second coupled discrete state
resulting in a splitting and shift of the resonant frequency
is in agreement with the effect seen in Ref. [58] for an an-
tireflective coating; perfect transmission is still possible
provided γ = Γ but the frequency that is perfectly trans-
mitted is split in to two.

In the strong coupling (high-g) limit, a frequency-comb
structure emerges (Fig. 12), with dips approaching per-
fect reflection. This is due to the asymptotic irrelevance
of the causal ordering: the network becomes approxi-
mately diagonalizable as parallel modes with purely vir-
tual coupling and the N − 1 frequencies of perfect reflec-
tion from (23) manifest.

We now consider the effects of introducing relative de-
tunings between discrete states as, generally, a quan-
tum network will not be comprised of identical states.

Still there are sufficient degrees of freedom in (25) such
that, by tuning the parameters, perfect transmission
at some frequencies is always possible. This is even
true when γ 6= Γ (for N > 1): considering only two
discrete states in series, we find that perfect transmis-
sion occurs at a frequency ω = ω1+ω2

2 + Γω1−γω2

Γ−γ when

g12 =

√
γΓ
4 +

(
Γω1−γω2

Γ−γ

)2

−
(
ω1−ω2

2

)2
(Fig. 13). For

two detuned discrete states in series with balanced de-
cays (γ = Γ), perfect transmission is impossible as the
critical value of g is infinite; the transmission efficiency
asymptotically becomes perfect in the strong-coupling
limit. However, this a special case and is not true for
larger numbers (N > 2) discrete states. Critically, given
a series network of N discrete states with arbitrary rel-
ative detunings, we can always find at least one set of
parameters (couplings and decay rates) such that N − 1
frequencies are perfectly transmitted.

Spectral Bandwidth.— Once we have the form of the
transmission function, we can calculate the spectral



FIG. 11: Transmission probability for a series network
with N = 70 identical discrete states (ωi = ωj) with
both balanced decays (γ = Γ) and uniform critical

coupling (g =
√
γΓ
2 ) conditions met. This results in a

maximally-broadened on-resonance transmission. In the
large-N limit, the amplitude of this ideal (perfect and
broadened) transmission function |T (ω)| is bounded
below by a circle (parabola for |T (ω)|2) and above by a
square (both red) with widths 2g and maxima of unity.

bandwidth for these systems. The spectral bandwidth
decreases with additional discrete states and is strictly
bounded above by the single discrete state bandwidth
Γ̃ ≤ 2γΓ

γ+Γ . For discrete states without detuning, equality

is reached in the strong-coupling limit of g �
√
γΓ
2 but

independently of whether γ = Γ (Fig. 14). Introducing
detuning between discrete states lowers the bandwidth,
but equality with the upper limit still occurs for suffi-
ciently strong coupling (Fig. 15); the strong coupling
is able to better mask the discrepancy between discrete

FIG. 12: Transmission probability for a series network
with N = 70 identical discrete states with balanced
decays (γ = Γ) yielding perfect transmission in the

strong-and-uniform coupling limit (g �
√
γΓ
2 ). The

result is a frequency-comb structure with 70 frequencies
of unity transmission between −2g and 2g, separated by
69 regions of near-perfect reflection.

state frequencies as the dressed states become the more
physical description and as the system more strongly re-
sembles a parallel network. (In this limit, each dressed
state is coupled to the continua at reduced decays so that
the total bandwidth is still bounded by Γ̃ ≤ 2γΓ

γ+Γ with γ

and Γ the two original decay rates for the series network.)
Group Delay.— Lastly, we consider the group-delay for

series networks, which increases with both g and N but
for different reasons. As g increases, the peaks of the
transmission function sharpen so that the phase changes
more rapidly. This results in an increased group delay
(Fig. 16a-d). As N increase, we observe (as we did for
parallel networks) that the peaks in the group delay are
not of uniform magnitude, even when the transmission
function itself is rather flat (Fig. 17a). Instead, the fre-
quencies of maximum delay are those closest to ±2g (Fig.
17c) increase the most with N . This is because the oscil-
lations in the transmission function are most dense here,
resulting in a rapid change in transmission function phase
and thus a larger group delay. On the contrary, the group
delay is relatively flat in the center of the transmission
window (Fig. 17c) so that a spectrally-narrow (compared
to g) input photon pulse will not be significantly dis-
persed. (That is, the maximum dispersion-induced jitter
Tg from (5) will be very small.)

We can also consider the effect of detunings on the
frequency-dependent group delay. We observe the group
delay can be negative for series networks with detuning
(Fig. 17d), with an asymmetric structure that depends
on the ordering of the detunings (except in the strongly
coupled limit). Again, the magnitude of the group delay
depends on the spacing of discrete states, increasing when
the resonant frequencies are closely spaced.

FIG. 13: Transmission probabilities for series networks
with N = 2 discrete states with no relative detuning
(blue with a single maxima), and with non-zero relative
detuning ω2−ω1

γ = 3
4 (red with two maxima). In both

cases, the decays are not balanced (Γ
γ = 2) but the

couplings are chosen such that perfect transmission at
some frequency is achieved nonetheless.
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FIG. 14: Normalized spectral bandwidth Γ̃/Γ̃max for a
series network with N = 2 discrete states and no
relative detuning. Here the maximum bandwidth, given
by that of a single discrete state Γ̃max = 2γΓ

γ+Γ , is reach in

the strong coupling limit. The balanced decay condition
does not effect bandwidth as an increase in decay rates

just scales the strong coupling limit regime (g �
√
γΓ
2 ).
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FIG. 15: Normalized spectral bandwidth Γ̃/Γ̃max for a
series network with N = 2 discrete states with relative
detuning ω2 − ω1. We still observe Γ̃/Γ̃max = 1, but at a
higher coupling strength g for greater detunings.

(a) (b)

(c) (d)

FIG. 16: Transmission probabilities (a,b) and group delays (c,d) for both over-coupled g = 18
√
γΓ
2

(b,d) and critically

coupled g =
√
γΓ
2

(a,c) series networks of N = 2 discrete states with balanced decay rates (γ = Γ) and no relative detuning. A
small change in the sharpness of the transmission function’s peaks can have a large effect on the magnitude of the group delay
(which we measure in units of 1

γ
).



(a) (b)

(c) (d)

FIG. 17: Transmission probabilities (a,b) and group delays (c,d) for series networks with N = 20 discrete states, balanced
decay rates, critical coupling, and either no relative detuning (a,c) or relative detuning ωi − ωi+1 = 1

50
γ (b,d). Again, the

group delay is of the largest magnitude near the edge of the transmission function (±2g in the high N limit). A relative
detuning may result in a negative group delay.

C. Hybrid Networks

FIG. 18: A hybrid network of two manifolds, each with

Nk discrete states described by operators c
(k)
i (ω). The

discrete states are coherently coupled at rates g
(1,2)
ij and

incoherently coupled to left (input) and right (output)

continua a and b with decay rates γ
(1)
i and Γ

(2)
j ,

respectively.

We now begin to approach the case of a general two-
sided quantum network. The fully general problem is
intractable analytically, but luckily there are several sim-
plifications we can make that correspond to the network
representing realistic photo detecting systems. To illus-
trate, consider the case of two parallel networks in series:

each discrete state connected to each discrete state in
the other manifold (but not necessarily at the same rate)
with each of the two manifolds of purely virtually cou-
pled discrete states coupled to their own continuum. One
could imagine generating different networks from this one
by removing a coupling gij between discrete states, per-
muting which discrete states are disconnected, removing
an additional coupling, permuting, and so on. However,
this is unphysical: two discrete states in parallel cannot
be prevented from coupling to the same discrete state
except by selection rules. But the discrete states are
also coupled to the same continuum (which has been al-
ready made 1D in effect), so they must satisfy the same
selection rules. The same argument applies in reverse:
no discrete state within a manifold can individually stop
being coupled to a continuum without the rest of the dis-
crete states doing so as well. And we can similarly apply
it to manifolds embedded in a larger network away from
a continuum: the requirement that all states satisfy the
same selection rules is strong. This means we can ignore
partially connected networks. It also gives us a helpful
way to organize discrete states: into manifolds of discrete



states (which are purely virtually coupled to each other
after diagonalization) that are all coupled to the same set
of discrete or continuum states.

We can now focus on a very large class of quantum
networks, hybrid systems consisting of manifolds in se-
ries (Fig. 18). It will be helpful to denote couplings

between discrete states i and j or manifolds k and ` as

g
(k,`)
ij , and denote decay rates and discrete states within a

manifold with a superscript (γ
(k)
i , Γ

(k)
i , and c

(k)
i (ω), with

γ
(k)
i = 0 for k > 1 and Γ

(k)
i = 0 for k < M , where M is

the number of manifolds). This allows us to rewrite the
general equation (16) in a more explicit form

(28)

−i∆ic
(k)
i (ω) =−

Nk∑
j=1

√
γ

(k)
i γ

(k)
j +

√
Γ

(k)
i Γ

(k)
j

2 c
(k)
j (ω)− i

Nk−1∑
j=1

g
(k−1,k)
ij c

(k−1)
j − i

Nk+1∑
j=1

g
(k,k+1)
ij c

(k+1)
j −

√
γ

(k)
i ain(ω)−

√
Γ

(k)
i bin(ω)

where the superscripts denote labels of manifolds and

we’ve implicitly defined g
(0,1)
ij = g

(N,N+1)
ij = 0 ∀i, j. We

denote the number of discrete states in each manifold

Nk such that
M∑
k=1

Nk = N . In general (28) is still only

numerically solvable but we can now note two cases that
yield analytic solutions.

The first is the case of critical coupling between mem-
bers of each adjacent manifold and, additionally, uni-
formly unbalanced decays: we first define an effective
decay rate for internal couplings within the system so

that g
(k,`)
ij =

√
γ

(k)
i Γ

(`)
j

2 (effectively specializing to the crit-

ical coupling case for series networks), and then consider

the special case of Γ
(k)
i /γ

(k)
i = k(k) ∀i, k (inhomogeneous

decays that are uniformly unbalanced within each mani-
fold). This leads to a reflection coefficient of the form

(29)

R(ω) = 1−
2h(1)

h(1) − i+
k(1)h(1)h(2)

−i+
k(2)h(2)h(3)

· · ·+
k(N−1)h(N−1)h(N)

√
k(N)h(N) − i

where we have defined a new function h(k) =
Nk∑
i=1

γ
(k)
i

2∆
(k)
i

.

(The appearance of a lone
√
k(N) at the end of (29) is

due to the final purely virtual coupling to the output
continuum, since we’ve absorbed the rest of the decay
rate into the function h(k).) This function encodes the
zeroes and singularities we found for parallel networks,
which previously gave rise to frequencies of constructive
interference and completely destructive interference.

While (29) is tractable, it is of limited applicability
to real systems. More relevant is the second solvable
case of homogenous coupling and decays within mani-

folds: g
(k,`)
ij = g(k,`), γ

(k)
i = γ(k), and Γ

(k)
i = Γ(k). This

leads to a reflection coefficient of the form

(a)

(b)

FIG. 19: (a) Transmission probability and (b) group delay
for a hybrid network consisting of 3 manifolds in series, each
with 3 discrete states in series with balanced decays and
uniform critical coupling. Within each manifold, the discrete
states have frequency spacing by 2.5γ. Using the same
special conditions as for series network, perfect transmission
is achieved for 9 frequencies, with the multi-layered
structure of |T (ω)|2 encoding the manifold structure.



(30)

R(ω) = 1−
γf (1)

γ
2 f

(1) − i+
(g(1,2))2f (1)f (2)

−i+
(g(2,3))2f (2)f (3)

· · ·+
(g(N−1,N))2f (N−1)f (N)

Γ
2 f

(N) − i

where again we have defined a new function f (k) =
Nk∑
i=1

1

∆
(k)
i

. This provides a nice model for multi-mode sys-

tems in series (for instance, a linear network of identical
multimode optical cavities; in this case, the critical cou-

pling strength g =
√
γΓ
2 corresponds to optical cavities

perfectly coupled through their decays).
We see in both (29) and (30) a combination of the

structures we observed in (23) and (24) for parallel net-
works and (25) for series networks: correlations in am-
plitudes between discrete states within a given manifold
manifest via a function h(k) or f (k) with Nk poles and
Nk − 1 zeroes (potentially perfectly transmitted and re-
flected frequencies, depending on the hybrid network’s
resonance structure and couplings), and causal ordering
of the manifolds manifests in a continued fraction struc-
ture. This latter property makes them easily analyzable
using the Wallis-Euler recurrence relations, allowing us to
find R(ω) and from there T (ω) and the other quantities
of interest.

Perfect transmission.— Focusing on the case of ho-
mogenous coupling, we can use the same trick of ex-
amining the convergence of an infinite series of identical
manifolds around one of resonant frequencies ωi to find
the two critical conditions as we did for series networks,

which again are γ = Γ and g =
√
γΓ
2 . We also observe

that the form of T (ω) for hybrid systems exhibits a com-
bination of features of series and parallel networks (Fig.
19a and 20a). This results in layers of structure, with
the small dips and peaks corresponding to intra-manifold
structure layered on top of the larger dips and peaks of
the inter-manifold structure.

When at least one discrete state from each of the
manifolds have the same resonance frequency, letting

γ = Γ and g =
√
γΓ
2 ensures perfect transmission at

M frequencies. For a general hybrid network, the num-
ber of peaks of unity (perfect transmission) of T (ω) are
bounded above by MMin{Nk} ≤ N , with M the num-
ber of manifolds and Nk the number of discrete states
in each manifold. Here the latter equality is reached for
networks that are completely in parallel or completely in
series, with critical parameters in either case [73].

Spectral Bandwidth.— For hybrid networks where the
first and last manifold have the same number of discrete
states N1 = NM , the spectral bandwidth is bounded
above by the parallel network bandwidth for that number
of discrete states Γ̃ ≤ N12γΓ

γ+Γ with equality reached in the

(a)

(b)

FIG. 20: (a) Transmission probability and (b) group delay
for a hybrid network consisting of 3 manifolds in series, the
first with 2 discrete states and the second and third with 3
discrete states, with balanced decays and uniform coupling

g =
√
γΓ
2

(the critical value for networks without detuning).
Within the first manifold, the discrete states have frequency
spacing 5γ. Within the second and third manifolds, the
discrete states are detuned by 5

2
γ, resulting in relative

detuning between the manifolds. Since the couplings are no
longer tuned to the critical parameters for a detuned system,
perfect transmission is only achieved at 6 frequencies.

strong coupling limit. (When the first and last manifold
have different number of discrete states N1 6= NM , the
bandwidth is bounded above by 2γΓ

γ+Γ (Min{N1, NM}+X)

for a homogeneously decaying network with X a network-
dependent number that is always less than 1/2.)

Group Delay.— We observe the same structural prop-
erties of the group delay (Fig. 19b) as we did for other
networks; the frequencies with the largest delays are
those where oscillations in the transmission function are
most dense. We find that networks with non-identical
manifolds can give rise to group delays that are not
strictly positive (Fig. 20b).



(a)

(b)

FIG. 21: (a) Transmission probability and (b) group delay
for a hybrid network consisting of 3 manifolds in series, the
first two with 2 discrete states and the third with 3 discrete
states, with balanced decays γ = Γ and uniform coupling
g =
√
γΓ. Within the first and second manifolds, the

discrete states are spaced by 5
2
γ. Within the third manifold,

the discrete states are spaced by 7γ. Now no frequencies are
perfectly transmitted, and finding couplings such that
perfect transmission is achieved becomes less trivial.

V. OTHER NETWORKS

A. General Two-Sided Networks

We now begin to extrapolate from the above analyses
to a larger class of two-sided networks. Both the series
networks and hybrid networks we’ve discussed have the
key property of asymptotic irrelevance of the causal or-
dering of discrete states in the strong coupling limit. This
means that the asymptotically strong-coupling behavior
of these networks is entirely determined by the prop-
erties of fully parallel networks (19), and we can make
several statements that will apply to any network that
has the same behavior (that is, a network that resembles

(19) in the strong coupling limit). From the structure
of (19) alone, we can bound the total number of peaks
and troughs of |T (ω)|2; we find there are at most 2N − 1
peaks and 2N − 2 troughs in the strong coupling limit
and since the number of maxima never decreases with
increasing g, we can extrapolate these bounds to weakly
coupled systems as well. In transitioning from 2N − 1
peaks or constructive interference to N peaks of perfect
transmission, we observe a pair-wise merging of peaks
(with one extra peak leftover when N is odd). We also
find that the number of dips of zero transmission (per-

fect reflection) is at most
M∑
k=1

(Nk−1) ≤ N −1 where the

latter equality is only reached for a completely parallel
network or in the strong coupling limit.

We suspect that the above argument for upper bounds
applies more generally than just to the specific networks
consisting of manifolds in series; that is, there is a large
class of networks that reduce to a parallel description in
the strong coupling limit [74]. However, it is unproven!
We cannot generalize from the above analysis to a fully
arbitrary two-sided network as there also are networks
with different topologies; for instance, we can consider
networks with loops of discrete states that exist outside
the main chain of manifolds that connect the two con-
tinua. Since it is not necessary for a photon to pass
through the loop of discrete states to make it through the
network, these networks behave differently in the strong
coupling limit. We can make a further distinction be-
tween disconnected loops (dead-ends where photons have
to back track) and connected loops (chains of manifolds
that provide an alternate route to the output continua).
It is possible that connected loop networks behave more
like the loop-free networks discussed above in the strong-
coupling limit, but with their specific loop-structure en-
coded in T (ω) in unexpected ways.

B. Additional Continua

FIG. 22: Input-output field operators for a black box
network with one additional side channel. This will give
rise to losses that make perfect transmission impossible,
as well as dark counts if the side channel contains
excitations (i.e. thermal).

We have thus far only considered quantum networks
with two continnua, and have shown that perfect trans-
mission through a general network structure is possible.
We will briefly analyze more general multi-port quantum



networks (Fig. 22) to illustrate how they lead to ineffi-
ciencies and dark counts.

Introducing a third continuum coupled to our network
of discrete states at rates µi, we rewrite (16) in the form

−i∆ici(ω) = −
∑
j

(√
γi γj +

√
Γi Γj +

√
µi µj

2
+ igi j

)
cj(ω)−√γi bin(ω)−

√
Γi ain(ω)−√µimin(ω), (31)

where we have introduced a new input field annihilation
operator min(ω) for the additional continuum (satisfy-
ing the canonical commutation relations), satisfying the
same form of input-output relations as in (17)

mout(ω) = min(ω) +
∑
i

√
µi ci(ω). (32)

When there are side channels and all decay rates in the
system are homogenous (µi = µ, γi = γ, and Γi = Γ), it
is impossible to achieve perfect transmission at any input
frequency without adding additional excitations (active
filtering). To see this, consider taking expectation val-
ues and imposing min(ω)→ 0 over all frequencies. Flux
conservation requires that, for a perfectly transmitted
frequency ω′, we also have mout(ω

′)→ 0. From (32), we
see the only way to achieve this is for

∑
i ci(ω

′)→ 0 but
from (17), we see that this results in aout(ω

′) = ain(ω′)
and bout(ω

′) = bin(ω′)—the frequency ω′ is instead per-
fectly reflected by the system.

It is still possible that side channels with inhomoge-
neous coupling µi could yield a system that perfectly
transmit some light at a frequency ω′ satisfying both
conditions aout(ω

′) = ain(ω′) −
∑
i

√
γici(ω

′) = 0 and∑
i

√
µici(ω

′) = 0. After all, the ci(ω
′) with reso-

nant frequencies above and below ω′ generically differ
in phase by π and could in principle cancel out. How-
ever, this would require incredible fine-tuning of the sys-
tem. For a uniformly inhomogeneous parallel network
such as (23) with a side channel, we can easily see that
this approach fails even in the low-loss limit near res-
onance (where it would be most likely to succeed): we

find mout(ωj) ≈ 2µj
γj+Γj

ain(ωj). In general, output chan-

nels outside your control lead to loss.
Similarly, we can determine from (31) and (32) that, in

general, input channels outside your control lead to extra
dark counts; photons that are in initially populated side
channel can end up in the monitored continuum. If the
side channel is at a finite temperature, there will be ther-
mal photons that could populate the system. The proba-
bility of this vanishes for kbT � h̄ωi ∀i, but will generally
be non-negligible for high-temperature systems. The spe-
cific contribution depends on the specific form of the full
transfer matrix, which now will include a function Dm(ω)
that governs the probability of thermal excitations in the
side channel to end up in the monitored continuum.

Of course, the internal mode bin may be occupied by
thermal excitations as well, but the contribution to dark

counts by these will depend strongly on the amplification
mechanism. Furthermore, if only frequencies such that
|T (ωi)| = 1 are amplified, we find that thermal excita-
tions bin do not contribute at all to dark counts as they
always leak out of the system, ending up in the contin-
uum mode aout populated by reflected input photons.

VI. CONCLUSIONS

We have studied the behavior of coherent quantum
networks and have found that they provide a diverse
structure of transmission functions for modeling the first
stage of single photon detectors (transmission of a single
excitation from the input continuum, through the sys-
tem, to a monitored output continuum). Inefficiencies
and dark counts can be modeled through the incorpo-
ration of additional continua (side channels). While we
do not find fundamental limits to transmission efficiency,
spectral bandwidth, or frequency-dependent group delay
across all the studied networks (series, parallel, and hy-
brid), we do find that some networks are better suited to
certain applications than others, as we will now discuss.

Perfect Transmission.— Often the most important
metric for a photo detector is photo detection efficiency,
which for a quantum network is tantamount to ensuring
|T (ωi)| = 1 is achieved for some frequency or frequencies
ωi. The main conclusions of this paper are as follows:

(i) Ensuring the decay rates to the input and output
continua are balanced (γ = Γ) guarantees perfect
transmission for at least one frequency in almost
all quantum networks without loops, side channels,
and detunings [including all not covered by (ii)].

(ii) Ensuring the couplings between manifolds are uni-

form and critical (g =
√
γΓ
2 ) guarantees perfect

transmission for at least one frequency in almost
all quantum networks without loops, side channels,
and detunings [including all not covered by (i)].

(iii) For an arbitrarily detuned quantum network with-
out loops and side channels, we are always able to
find conditions for the couplings and decay rates
such that perfect transmission occurs for at least
one frequency.

That finding conditions such that perfect transmission
|T (ωi)| = 1 is always possible indicates that perfect photo
detection is possible in a wide variety of physical systems.



If one additionally wants a broadened transmis-
sion spectrum at a particular perfectly transmitted
frequency—so that a broad range of frequencies is de-
tected almost perfectly—we similarly find a variety of
ways to accomplish it. One way is to use a parallel net-
work distributed over a small range of states. However,
this will result in a number of dark states which will not
be detected at all (spectral hole-burning). Instead, it is
better to use a series network that meets both the criti-
cal coupling and balanced decay conditions, resulting in
a maximally broadened on resonance transmission func-
tion as seen in Fig. 11.

Spectral Bandwidth.— We do not find fundamental
limits to the minimum or maximum bandwidth of a net-
work Γ̃ (or, conversely, to the interaction time between

a network and incident light Γ̃−1), but that it is gener-
ally proportional to the decay rates to both the input
and monitored continua (Γ̃ ∝ γΓ

γ+Γ , here assumed to be

homogenous across states). We also find that some net-
work structures are more suited to high-bandwidth appli-
cations than others; for networks with equivalent decay
rates, we generally find that Γ̃series ≤ Γ̃simple ≤ Γ̃parallel.
For a series network, equality with the upper limit of
Γ̃simple = 2γΓ

γ+Γ is reached only in the strong-coupling

limit, and the lower limit (Γ̃ = 0) corresponds to a com-
pletely de-coupled or infinitely-detuned network (so that
a photon can never pass through). For a parallel network,

the bandwidth is always given Γ̃parallel =
∑
i = 2γiΓi

γi+Γi
regardless of detuning, so the lower limit simply corre-
sponds to a single discrete state (reproducing the sim-
ple model). Unlike both series and hybrid networks
where the spectral bandwidth decreases with detuning,
the spectral bandwidth of a parallel network is indepen-
dent of detuning. This makes parallel networks the better
candidate for implementation of broadband single photon
detection where the frequencies that need to be detected
are distinct (so that spectral hole-burning is a non-issue).

Considering hybrid networks, we find that their band-
widths are bounded above and below by parallel and se-
ries networks, respectively; given a series network with
the same coupling strengths and manifold-number, and a
parralel network with the same manifold resonance struc-
ture and decay rates, the bandwidth of a Hybrid network
is bounded Γ̃series ≤ Γ̃hybrid ≤ Γ̃parallel. The upper limit
for a hybrid network is approached only in the limit of
strong coupling, and the lower limit is approached when
there is only a single discrete state in each manifold.

Group Delay.— The maximum magnitude of
frequency-dependent group delay τ(ω) increases
with both the couplings between discrete states and
the density of oscillations in the transmission function
T (ω). In particular, the bounded-box structure of a
uniformly coupled series networks yields large delays
near ω = ±2g. We observe that a negative group delay
may occur for series networks with relative detuning
between the discrete states. (For more on negative
group delay, see Ref. [75].) For general networks, the

group delay can vary immensely over the range of
frequencies where |T (ω)|2 is non-negligible, with the
effect being strongest for hybrid networks (where the
resonance structures can be most dense). This means
we can expect dispersion effects to be substantial in
many photo detection platforms. For applications such
as frequency discriminating delay-lines, we may expect
hybrid networks to be the best performing candidate as
they allow for the finest control of group delay structure.

Tradeoffs.— For an arbitrary series or hybrid network
with arbitrary decay rates, perfect transmission requires
a particular choice of the couplings. This critical value is

generically of order
√

γΓ
2 . However, the spectral band-

width is maximized when g �
√

γΓ
2 . Furthermore, the

magnitude and location of the maximum group delays de-
pends strongly on the coupling g (and especially so in the
high-N limit). So for series and hybrid networks, there
is a clear tradeoff between efficient transmission and the
spectral bandwidth (which saturates in the high-g limit)
[76], with the group delay changing as well. We contrast
this with the case of parallel networks where the three
quantities are completely independent: perfect detection
requires balanced decays (γ = Γ), the bandwidth can
be directly scaled by scaling both decay rates together,
and the frequency-dependent group delay τ(ω) alone de-
pends on the detuning between discrete states, which is
an independent quantity. So for photo detectors where
all three quantities must be determinable independently,
parallel networks form the clear contenders. The excep-
tion to this are situations where a negative group delay
is required, which parallel networks never exhibit. Then
the use of a hybrid or series network is unavoidable, as
are their accompanying tradeoffs.

Final Remarks.— We have studied a variety of quan-
tum networks to uncover tradeoffs and limits fundamen-
tal to single photon detection that may arise in the first
step of photo detection (filtering). The spectral band-
width is the only main quantity of interest where there
appear to be fundamental limits for particular classes of
networks (parallel, series, and hybrid), but even these
scale with the relevant decay rates for the networks.
Given the freedom to adjust coupling strengths and de-
cay rates, arbitrary group delay, transmission efficiency,
and spectral bandwidth are attainable for any network
so long as they are attained individually (together there
may be tradeoffs for series and hybrid networks).

We do not find fundamental limitations to dark counts
and losses in this analysis: in general uncontrolled input
channels lead to dark counts and uncontrolled output
channels lead to loss. These can always be mitigated by
cooling the system (kbT � h̄ωi ∀i) and reducing coupling
to side channels (µi, νi � γi + Γi ∀i).

Other sources of noise, such as from signal amplifica-
tion (for more on this specifically, see Ref. [12]), classical
parameter fluctuations, as well as the noise inherent in
a non-ideal quantum measurement (as described by an
arbitrary photo detection POVM) can also be included



in our model to give a fully quantum description of the
entire single photon detection process [77].
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Appendix A: Photo detection POVM

In this paper, we have not yet discussed in detail what
happens to the excitation after it ends up in the out-
put mode bout, except that it gives rise to a macroscopic
photo detector click. Following Ref. [34], we can con-
struct the full POVM describing a photo detector from
which all standard figures of merit can be obtained [38].
Assume that we finalize the photo detection process by
simply ascertaining at some time t whether the excitation
is indeed in bout and also that the amplification is ideal
and lossless so that, if a photon makes it to the mon-
itored continuum, it will be detected (this assumption
is revisited in more depth in [12]). We can then define
normalized filtered photon states

|T φt〉 =
1√
π Γ̃

∫ ∞
0

dω T ∗(ω) ei ω t â†(ω) |vac〉 . (A1)

From the quantum jump method [30, 79], we know that
a quantum jump from the last manifold of discrete states
to the monitored continuum will occur in an infinitesimal
time dt with condition probability Γ̃ dt

2 . We can then infer
the POVM element for detecting a photon at a particular
time t after the photo detector has been on for a time dt

Π̂t =
Γ̃ dt

2
|T φt〉 〈T φt| . (A2)

(To reiterate, here t refers to the time of detection,
not the time evolution of the input state.) The probabil-
ity of getting a click for a normalized input photon ρ̂ is

Tr
(

Π̂tρ̂
)
≤ 1. So the input state that will be detected

with maximum probability is ρ̂ = |T φt〉 〈T φt|, yielding

an infinitesimal probability of detection of Γ̃ dt
2 . This is

because this assumes that the detection events at times
separated by a time dt correspond to different measure-
ment outcomes which is highly idealized; any realistic
photo detection outcome corresponds to detection within
an integrated time-window (see again footnote [23]).

To take a finite time-window into account, we consider
a time-integrated POVM element Π̂τ , where a click cor-
responds to a detection event sometime between t = 0
and t = −τ . Then the time-integrated POVM element is

Π̂τ =

∫ 0

−τ
dt

Γ̃

2
|T φt〉 〈T φt|

≈
∫ ∞
−∞

dω |T (ω)|2 |ω〉 〈ω| (τ � Γ̃−1) (A3)

where, for τ → ∞, the projectors |ω〉 〈ω| are truly
monochromatic because no timing information is ob-
tained. With the time-integrated form in (A3), we can
see that the conditions for perfect transmission discussed
above correspond to perfect detection in the limit of
τ � Γ̃−1 as we used previously in (6). Physically, a non-
infinitesimal integration time τ means a photon incident
on the photo detector at a time t = −τ has had sufficient
time to propagate through the network before we end the
integration at time t = 0 and check whether there has
been a click. This is in agreement with our observation
that, for the simple model in (8), τg(ω0) = Γ̃−1: simply,
we must at least allow enough time for an on-resonance
photon to travel through the network (interact with the
device) to achieve perfect detection of a monochromatic
on-resonance photon. (A3) is also illustrative of what
the POVM element represents: the information a detec-
tor click reveals about what led up to it.

We can also use (A3) to construct the POVM element
for not getting a click in the finite time τ , which is simply
Π̂0 = 1̂ − Π̂τ , such that the full POVM {Π̂0, Π̂τ} forms
a partition of unity for the relevant Hilbert space; that
is, the Hilbert space spanned by single photon states and
the vacuum. (See Ref. [38] for inclusion of general photon
Fock states in the photo detection POVM.) This POVM
corresponds to a photo detector that is reset after each
integration time τ . Similarly, one can divide up the the
full detection window into N time intervals τi without
resetting the device in between so that the full POVM
is {Π̂0, Π̂τi}i=1...N . In this case, the measurement out-
comes are not orthogonal [34]; even if we know a photon
is incident at a definite time t′ we cannot predict with
certainty when it will be detected.


