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The dynamical Casimir effect (DCE) is the production of photons by the amplification of vacuum
fluctuations. In this paper we demonstrate new resonance conditions in DCE that potentially allow
the production of optical photons when the mechanical frequency is smaller than the lowest frequency
of the cavity field. We consider a cavity with one mirror fixed and the other allowed to oscillate. In
order to identify the region where production of photons takes place, we do a stability analysis of
the Heisenberg–Langevin equations of motion, and investigate the dynamic stability of the system
under small fluctuations. By using a numerical solution of the master equation, the time evolution
of the mean number of photons produced in the unstable region is studied.

I. INTRODUCTION

The dynamical Casimir effect (DCE) is the genera-
tion of photons from the quantum vacuum due to a
time-dependent boundary condition of the electromag-
netic field. Because of the structure of the vacuum, which
is different in a cavity than in free space, time-changing
boundary conditions change the field structure inside the
cavity and in some cases leads to the production of pho-
tons in the cavity. This was first analyzed by Moore [1].
A clear way to accomplish this is by changing the cav-
ity length [1, 2], as for instance when one of the mirrors
undergoes harmonic oscillations (see Fig. 1). The exper-
imental demonstration of DCE at microwave frequencies
was recently reported in [3, 4]. However, no optical fre-
quency photons produced by DCE have been seen yet.
A fundamental limitation is that the periodic modula-
tion of the cavity imposes a definite ratio of photon-to-
mechanical frequencies as a resonance condition for pho-
ton generation [5–7]: When the mechanical frequency Ω
of the moving mirror is twice the fundamental frequency
ω1 of the unperturbed cavity, the effect of parametric
resonance is the largest and the number of photons in a
perfect cavity grows exponentially with time [8]; this has
been the traditional resonance condition in the study of
DCE. This unfavorable frequency ratio makes it experi-
mentally extremely hard to see DCE in, for example, the
visible domain, i.e., production of optical photons would
require a massive mirror moving at relativistic frequen-
cies. It is the main goal of this work to uncover new reso-
nances that lift this stringent frequency condition and, in
principle, open the door for DCE in the higher frequency
domain. We only explicitly show the “instantaneous”
cavity photons, similar to the mechanism in [9], but with
cavity leakage a photon number measurement could be
feasible.

The simplest description of DCE can be pictured as a
cavity with one fixed and one oscillating mirror (Fig. 1),
which is equivalent to the simplest picture of optome-
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FIG. 1. Schematic representation of a cavity with a moving
mirror. Equilibrium length and photon frequency are L0 and
ω1(t), respectively. Both are periodically modified by small
oscillations q(t) of one of the mirrors.

chanical systems [3, 10, 11]. The coupling between the
photon and mechanical modes is comprised by the mod-
ulation of the cavity length by the mechanical motion;
the photon frequency thus depends on time through the
changing length of the resonator, via the Hamiltonian

Hphoton = ~ω(t)â†(t)â(t), (1)

where the photon frequency ω and photon operators â†

(â) become time dependent. The traditional perturba-
tive treatment is to assume that the maximum displace-
ment of the mirror xm ≡ qmax − L0 with respect to
the unperturbed cavity length L0 is a small parame-
ter (ε ≡ xm/L0 � 1). Thus the time–dependent pho-
ton frequency is typically expanded to lowest order in ε
[9, 12, 13]. (Quadratic orders of ε are necessary for the
“membrane-in-the-middle” optomechanical set-up [14].)
A multi-mode expansion for the photon operators and
expanding the photon frequency to first order in ε gives
then, e.g., the traditional DCE description, such as in
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[5, 6, 15], where the terms responsible for DCE are pro-

portional to (b̂ + b̂†)(â†2 + â2) with phonon operators

b̂+ b̂† ∝ xm, which accounts for the resonance at Ω ≈ 2ω.
In this work, we obtain higher order resonances that

allow the production of Casimir photons when the me-
chanical frequency of the moving mirror is smaller than
the lowest cavity frequency. We study the implications of
keeping higher orders of ε in the emergence of such res-
onances. While these terms can be very small, we show
that they can be important as they give rise to new reso-
nance conditions that could help to create experimentally
feasible frequency ratios for the demonstration of DCE
in the optical domain. In order to identify which pa-
rameter regime can lead to DCE at such frequencies, we
do a stability analysis of the Heisenberg–Langevin equa-
tions of motion. We then calculate the mean number
of photons produced in the stable and unstable regions
when resonant and non-resonant terms are included in
the numerical solution of the master equation. The orga-
nization of the paper is as follows: in Sec. II we discuss
the model. The method to find new resonance condi-
tions in DCE and set of parameters that lead to photon
growth is formulated in Sec. III. Full numerical solution
of the master equation in the presence of cavity losses is
discussed in Sec. IV. Conclusions and a comparison of
our results to traditional DCE treatments with current
experimental parameters is presented in Sec. V.

II. MODEL

In our model, the mirror’s motion is treated classically,
since we assume a strongly driven mechanical oscillator.
We use Law’s effective Hamiltonian [9] (dropping the op-
erator hats on the photon operators):

Heff =
∑
k

[
ωk(t)a†k(t)ak(t)− q̇(t)

q(t)
f(ak(t), a†k(t))

]
, (2)

where

f(ak(t), a†k(t)) =
i

4

[(
a†2k (t)− a2

k(t)
)
−2
∑
j(6=k)

gkj

√
ωk(t)

ωj(t)
×

×
(
a†k(t)a†j(t) + a†k(t)aj(t)− aj(t)ak(t)− a†j(t)ak(t)

)]
,

and gkj =

{
(−1)k+j 2kj

j2−k2 , k 6= j

0, k = j.

The effective Hamiltonian (2) contains terms character-

ized by a†kaj that are responsible for the scattering of
photons between modes.

A multimode expansion of the cavity field annihilation
operator in general is given by

a(t) =

∞∑
k=1

[
ck(t) ak + dk(t) a†k

]
,

where ck(t), dk(t) are c-numbers and ak (a†k) is the an-
nihilation (creation) operator of the kth mode of the
equilibrium-length cavity. An effective Hamiltonian thus
will contain this series expansion as well as extra terms,
due to the explicit time dependence of the cavity fre-
quency and mode coefficients [9, 16–18].

The exact form of the expansions now depends on the
mirror’s trajectory, chosen in what follows as nearly har-
monic [9, 19]

q(t) = L0 exp [ε sin Ωt] ,

such that q̇(t)/q(t) is simplified without introducing a
qualitative difference to a pure harmonic motion. Thus,
the photon frequency ωk(t) = kπc/q(t) of mode k, where
c is the speed of light, is expanded in a series in ε as

ωk(t) = ωk0

[
1− ε sin Ωt+

1

2
(ε sin Ωt)

2 − . . .
]
, (3)

where ωk0 denotes the photon frequency associated with
the unperturbed cavity length L0. Similarly, for the time-
dependent annihilation operator of mode k we get

ak(t) =
∑
` even

(ε sin Ωt)

2``!

`

ak0 −
∑
` odd

(ε sin Ωt)

2``!

`

a†k0, (4)

where we have used the typical expression of the anni-
hilation operator in terms of time–dependent cavity fre-
quency, and generalized cavity field position and momen-
tum operators. Note that the operator expansion above
does not mix other modes, and the time–dependent ex-
pansion coefficients depend on odd and even powers of
the expansion. We should point about that expansion (4)
preserves bosonic commutation relations between cavity
field operators at a considered order of the expansion. In
the rest of the article we will omit the subscript 0 in the
unperturbed photon frequency and field operators.

The equations of motion are then given by introduc-
ing Heisenberg-Langevin formalism, with noise operators
that account for cavity decay κk of mode k, and fluctu-
ations arising from the coupling of the photon modes
to an external bath at zero temperature. It is worth
mentioning that we start with zero photons in the cav-
ity, hence only photon vacuum fluctuations are initially
present. We are, in particular, interested in the regime
where the mechanical frequency is smaller than the opti-
cal frequency of the lowest cavity mode (Ω < ω1).

III. METHOD

A. Shifted photon frequency

The series expansion produces a shift in the photon
frequency ω̃k, that is determined by

ω̃k =
1

2

[
1 +

∞∑
l=0

(−2)lεl

l!

〈
sinl Ωt

〉]
ωk =

1

2

[
1 +

∞∑
p=0

ε2p

(p!)
2

]
ωk,

(5)
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where 〈. . . 〉 is the average value of a function and k is
the mode number. Eq. (5) can be resolved to

ω̃k =
1

2

[
1 + I0(2ε)

]
ωk,

where I0(2ε) is the modified Bessel function of the first
kind. Since ε � 1, a series expansion of I0(2ε) produces
a small shift on the photon frequency. This renormaliza-
tion is due to higher orders of ε, which can be analytically
added up.

B. General equations of motion

Using the effective Hamiltonian (2) for k modes of the
field and expanding up to terms in εn, we get Heisenberg-
Langevin equations of motion for the operators in a frame
rotating at frequency ω̃k, e.g., for the annihilation oper-
ator we get

dãk
dt

=
i

2

[
1−

n∑
l=0

l∑
m=0

(−1)l+m
εl

il l!

(
l

m

)
e−iΩt(2m−l)

]
ωkã

†
ke

2iω̃kt − 1

2
Ωε cos Ωt ã†ke

2iω̃kt −

− Ωε cos Ωt
∑
j=1
k 6=j

(−1)k+j

[ √
ωkωj

ωj + ωk
ã†je

2iω̃jt −
√
ωkωj

ωj − ωk
ãje
−2iω̃jt

]
− κk

2
ãk + fãk(t), (6)

where κk is the damping rate of mode k of the cavity
field, and fãk(t) is noise operator that satisfies〈

fã(t)f†ã(t′)
〉

R
= κδ (t− t′) ,

〈
f†ã(t)fã(t′)

〉
R

= 0,

where 〈. . . 〉R is the average over the reservoir. Such equa-
tions of motion take into account all resonant and non-
resonant terms, including counter-rotating terms which
are responsible for DCE.

C. Resonance conditions

Resonances in Eq. (6) are determined by

Ω =
2 ω̃k

2m− l
,

where l > 0 and m ∈ N are fixed values such that m ≤ l.
The shifted photon frequency of mode k is given by mode
number times the shifted frequency of the fundamental
mode (ω̃k = k ω̃1). Note that when m = l, then our
regime of interest in terms of the resonance condition
is minimized, and the minimum order of the expansion
that one has to take to satisfy Ω < ω̃1 is l = 3. As an
example, we choose the initial mode number (k = 1),
hence, the minimum order of the expansion that one has
to take to satisfy such condition is l = 3, which occurs
in the term of third order in the expansion parameter ε,
thus Ω = 2 ω̃1/3 is a new resonance condition for DCE. In
general, we can choose as resonant any pair of frequencies
that are given by

Ω =
2

n
ω̃1, (7)

which occurs in the term of nth order in the expansion
parameter ε, therefore for Ω < ω̃1 we take orders higher

than 2. Thus, for consistency, for the general resonance
in expression (7), we need to at least carry orders in
ε up to nth order, and along with that, an expansion
to the nth cavity mode. Note that in an experiment
this resonance would be chosen by selecting the correct
photon and mechanical frequency ratios.

D. Stability analysis

A trivial steady-state solution of this system of equa-
tions is the situation when no photons are present in the

cavity, i.e., 〈a†kak〉 = 0, for all mode numbers k. When
this steady-state solution is stable it means that small
perturbations (i.e., photon fluctuations) decay in time
and hence no photons are produced. Opposite, when
this “zero-solution” is dynamically unstable, any noise
(e.g., vacuum fluctuations) drives the system away from
steady-state resulting in photon build-up. To determine
the region where photon production takes place, we do a
stability analysis.

The first step is to find the approximate boundary be-
tween stable and unstable region. The second is the
stability analysis. A system is dynamically stable if
Re (λ) < 0 for all eigenvalues λ of the system. For a
simple estimate of the border and to easily identify the
parameters where photon growth could occur, we neglect
all non-resonant terms for a chosen resonance condition
in this step. With this approximation, the remaining
equations of motion simplify significantly

dãk
dt

=
i

2
fnk(ε, k)ωk ã

†
k −

1

2
κkãk + fãk(t),

and

dã†k
dt

= − i
2
f ∗nk(ε, k)ωk ãk −

1

2
κkã

†
k + f†ãk(t),
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where

fnk(ε, k) =


inkInk(2ε), when nk = odd

(−1)
nk
2 +1Ink(2ε), when nk = even,

and Ink(2ε) is the modified Bessel function of the first
kind. For a series expansion with n > 2, the eigenvalue
with the largest real part is given by

λmax =
1

2
In1(2ε)ω1 −

1

2
κ1, (8)

where κ1 is the damping rate of the fundamental mode of
the cavity field. The general eigenvalue condition Eq. (8)
follows from the characteristic equation of the resonant
equations of motion for a chosen resonant condition.
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FIG. 2. (Color online) Dimensionless frequency vs. coupling
parameter ε. The estimated stability boundary of the vac-
uum state is determined by the maximum eigenvalue λmax for
3 modes (orange/lower solid line) and 6 modes (blue/upper
solid line) when the resonance condition is Ω = 2 ω̃1/3 and
Ω = 2 ω̃1/6, respectively.

As an example, consider three modes of the cavity
field and n = 3 in Eq. (7); the lowest order where the
mechanical oscillation frequency is lower than the pho-
ton frequency, thus leading to the resonant condition
Ω = 2 ω̃1/3. In order to determine the region of oper-
ation for DCE, we first find the boundary where λmax

in Eq. (8) goes through zero, in the parameter space of
ω1/κ1 vs. ε, see Fig. 2. (In this figure, we also plot the
boundary for six modes of the cavity field and n = 6.)

IV. FULL NUMERICAL SOLUTION

Having approximately identified the region of opera-
tion of our model, we then determine the exact pho-
ton generation, where all the resonant and non-resonant
terms are included. We solve numerically the master
equation using the effective Hamiltonian Eq. (2) for 3
(6) modes of the field, and expanding up to terms in ε3
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FIG. 3. Time evolution of the mean photon number 〈n1〉
in the fundamental cavity mode vs dimensionless time when
expanding up to third order in ε and with the resonance con-
dition Ω = 2 ω̃1/3. With ω1/κ1 = 1 × 102 and ε = 0.05 the
system operates in the stable region resulting in no photon
growth.

(ε6), respectively. By inspecting the equations of motion
and using the general resonant condition Eq. (7), we note
that the contribution of the terms for order higher than
3 (6) in ε is small and thus neglected.

We investigate the full time evolution of the mean num-
ber of photons for n = 3 in Eq. (7). With ω1/κ1 = 1×102

and ε = 0.05, the phase diagram in Fig. 2 corresponds
to the stable region with such parameters, and thus no
photons are produced in the long-term (see Fig. 3). In
Fig. 4 we plot the time evolution of the average number
of resonant photons 〈nk〉 in the unstable region for the
first three modes k of the cavity field, for the same res-
onant condition Ω = 2 ω̃1/3, with ω1/κ1 = 5 × 102 and
ε = 0.45. The number of photons in all modes considered
is resonantly excited. The number of Casimir photons in
the fundamental cavity mode 〈n1〉 is stronger and satu-
rates due to the presence of cavity decay. The number of
scattered photons from mode 1 to 2 and from mode 1 to
3 grow at a slower rate and also saturate.

In Fig. 5 we show the time evolution for 6 modes and
n = 6 in the general resonant condition Eq. (7). Taking
ω1/κ1 = 1 × 105 and ε = 0.75, which correspond to the
unstable region in Fig. 2 (blue/upper solid line), thus
DCE at optical frequencies takes place when Ω < ω̃1. In
order to guide the eye we plotted a time–average over a
number of cycles (orange dotted line), and one can see
that the mean number of photons tends to saturate due
to the presence of cavity damping.

Here, we have, to a large degree, adopted the theoreti-
cal methodology of Law’s original paper [9]. One impor-
tant point in his paper concerns the caveat of “instan-
taneous” vs. “measurable” photons, i.e., photons that
should be at any instant inside the cavity but cannot be
measured without interrupting the process. Our treat-
ment/figures also indicate just the instantaneous photon
number in Figs. 3–5. We do assume, however, cavity
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FIG. 4. Time evolution of the mean photon number 〈n〉 in
modes 1, 2 and 3 vs. dimensionless time for three modes
and expanding up to third order. With ω1/κ1 = 5× 102 and
ε = 0.45 the system operates in the unstable region resulting
in photon build-up. The fundamental cavity mode 〈n1〉 is
stronger. The number of photons in the scattered modes 2
and 3 also grow at a slower rate.
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FIG. 5. Time evolution of the mean photon number (blue
solid line) in the fundamental mode and time–average over
a number of cycles (orange dotted line) vs. dimensionless
time for six modes and expanding up to sixth order. With
ω1/κ1 = 1 × 105 and ε = 0.75, the system operates in the
unstable region and DCE at optical frequencies takes place.
The mean number of photons saturates due to the presence
of cavity damping

leakage. The obvious measurable quantity in this con-
text would thus be the number of photons leaked from
the cavity, which saturates the photon build-up process
inside the cavity. The steady-state value reached by the
mean photon number in mode 1 inside the cavity at op-
tical frequencies is 〈n1〉ss ≈ 0.2 (see in Fig. 5), thus a
stedy-state output photon flux of Φ = κ1 〈n1〉ss can be
measured.

V. CONCLUSIONS

To conclude, we have shown that the presence of higher
orders of the small parameter ε in the expansions of the
photon frequency and field operators, gives rise to reso-
nances in DCE that have not been explored before. This
constitutes novel frequency ratios of DCE with the poten-
tial for the situation where the mechanical frequency of
the moving mirror is smaller than the photon frequency.
While we here have only discussed photon production by
the traditional method of a moving cavity mirror, other
means of creating time-changing cavity modes could be
employed, e.g., by absorptive or dispersive properties of
the cavity reached through placing radiators inside, such
as shown in [20–23].

The small parameter ε is related to the single-photon
coupling strength g0 for opto-mechanical setups allow-
ing a linear coupling (cavity with a moving mirror) as

g
(1)
0 = ε ω1, and for quadratic coupling as g

(2)
0 = ε2 ω1/2;

experiments exhibiting this type of coupling include:
“membrane-in-the-middle” systems [14, 24, 25], trapped
cold atoms [26], trapped microspheres [27] or double-disk
structures [28]. The upper limit of the small parameter ε
can be determined as follows: since the maximum ampli-
tude of the mirror’s motion is determined by xm = vm/Ω,
where vm is the maximum speed of the mirror, and for
the fundamental cavity mode the unperturbed photon
frequency is ω1 = πc/L0, then ε = vm

c
ω1

πΩ . This quan-
tity can be compared to the number of photons n1 pro-
duced in the more traditional context of DCE, e.g., in

one-dimensional free space [29] of n1 = ΩT
6π

(
vm
c

)2
, where

T is the period of a mechanical oscillation (for 3-D cavi-
ties see [15, 30, 31]): Eq. (8) gives the approximate pho-
ton growth rate in our case. With the approximation

of In(2ε) ≈ 1
n!ε

n, then the rate is π
n!

(
vm
c

)n ( ω1

πΩ

)n+1
Ω;

we get a comparable value, but for n > 2. When in-
cluding cavity damping, we get a photon growing rate
similar to [32]. For experimental parameters, like in [22],
with a cavity length L0 = 110 mm, mechanical frequency
Ω/2π = 2.5 GHz and effective mechanical displacement
xm = 0.3 mm, this gives εmax ≈ 0.003. However our
resonance condition Ω = 2 ω̃1/n in Eq. (7) gives a max-
imum value εmax = nvm/c, which for a series expansion
up to n = 6, gives εmax ≈ 0.02, hence the maximum value
of the small parameter can be increased by considering
higher orders of ε in the expansions. For a situation with
much weaker mechanical diving field, this motion should
be quantized into phonons [33, 34].

As an outlook to improve the effective coupling quan-
tity ε further, one could envision “coupling amplification”
using additional sources, e.g, like in [35], i.e., introducing
a strongly detuned parametric drive to the mechanics.
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