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 Polarization dependent loss (PDL) is a serious problem that hinders the transfer of polarization 
qubits through quantum networks. Recently it has been shown that the detrimental effects of PDL 
on qubit fidelity can be compensated for with the introduction of an additional passive PDL 
element that rebalances the polarization modes of the transmitted qubit. This procedure works 
extremely well when the output of the system is postselected on photon detection. However, in 
cases where the qubit might be needed for further analysis this procedure introduces unwanted 
vacuum terms into the state. Here we present procedures for the compensation of the effects of 
PDL using noiseless amplification and attenuation. Each of these techniques introduces a 
heralding signal into the correction procedure that significantly reduces the vacuum terms in the 
final state. When detector inefficiency and dark counts are included in the analysis noiseless 
amplification remains superior, in terms of the fidelity of the final state, to both noiseless 
attenuation and passive PDL compensation for detector efficiencies greater than 40%. 
       

I.  INTRODUCTION 

 The two main decoherence mechanisms affecting 
polarization photonic qubits transmitted through fiber optic 
networks are polarization mode dispersion (PMD) and 
polarization dependent loss (PDL) [1-3].  PDL, which is the 
attenuation of light as a function of polarization, introduces 
unavoidable loss and therefore its impact on transmitted 
qubits cannot be entirely rectified.  While virtually 
nonexistent in modern optical fibers, PDL is present in 
nearly all network elements such as isolators, circulators, 
and amplifiers.  Significant effort has been directed at 
understanding the impact of PDL in classical 
communication systems [4-8].  Recently this analysis has 
been expanded to entangled quantum systems [9-11].  
These studies have mainly been concerned with 
understanding how the entanglement of a state is reduced 
by the presence of PDL [9-10], and with developing 
strategies for mitigating this [11].  
 In general, PDL reduces the overall probability that a 
state is transmitted through a channel, due to attenuation, as 
well as alters the states that are transmitted, due to its 
polarization dependence. Intuitively, PDL can be converted 
into pure loss through the introduction of additional PDL 
that is tuned such that the concatenation of the system PDL 
and the inserted PDL becomes polarization independent 
pure loss. While this strategy will recover the fidelity of the 
initial state upon postselection on photon detection, since 
there is no longer any polarization dependence in the 
system, postselection is not always desirable.  For example, 
violations of Bell’s inequality that rely on postselection are 
open to the detection loophole [12-13], and therefore 
cannot be used for device-independent quantum key 
distribution [14].  For these reasons, it is beneficial to 

understand when impairments due to transmission can be 
corrected for without further introducing vacuum modes.  
 In this paper we propose compensating for the effects of 
PDL on polarization encoded qubits by using noiseless 
amplification and attenuation and compare these with a 
previously proposed technique based on passive optical 
elements [10-11].  All three methods effectively convert the 
PDL of the system into a polarization independent net loss.  
The advantage of noiseless amplification and attenuation 
over additional passive PDL is that they, at least partially, 
herald that the correction has been successful.  This 
heralding allows for a correction of the polarization modes 
of a transmitted qubit with fewer additional vacuum terms 
than in the passive case.   
  

 
 

 FIG. 1. Our input polarization qubit experiences unavoidable PDL 
modeled as shown in the first box labeled PDL. For simplicity, we 
consider the case where only the horizontal polarization mode was initially 
attenuated by a factor ht . Following this PDL, we correct for it using 
either one of two possible attenuation schemes or an amplification scheme. 
These schemes are further detailed in Fig. 2. In the case of a correction 
using attenuation shown in the upper box, we attenuate the vertical mode 
to balance it with the horizontal mode. Similarly, in the case of 
amplification shown in the lower box, we amplify the horizontal mode to 
balance it with the vertical mode. 
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 Throughout this paper we will model the effects of PDL 
as outlined in the first box on the left of fig. 1. Since loss 
can be modeled as a beam splitter coupled to the 
environment we treat PDL as two different beam splitters 
acting separately on the horizontal and vertical polarization 
modes of the photon. These beam splitters would have 
transmission factors ht  and vt  for the horizontal and vertical 
modes respectively. For simplicity, we let 1,vt =  thus we 
only consider loss in the horizontal mode. 
 The consequences of PDL on polarization qubits is most 
directly seen by example. Consider the balanced input qubit 
 

  0
1| (| | ),
2

H Vψ 〉 = 〉+ 〉  (1) 

 
where | H 〉  and | V 〉  represent the horizontal and vertical 
modes of the photon respectively. After PDL, the output 
state becomes 
 

  
1| ( | | 1 | 0 ),
2 h ht H V tψ 〉 = 〉+ 〉 + − 〉  (2) 

 
where | 0〉  is the vacuum state corresponding to a photon 
being lost to the environment and we have neglected the 
ancillary beam splitter output mode. We see from eq. (2) 
that PDL has two corrupting effects on transmitted 
polarization qubits, the first is that the ratio of the 
polarization modes has changed, and the second is the 
introduction of vacuum terms.  Therefore, we need a way to 
correct for PDL which can mitigate each of these sources of 
error. 
  This paper is structured as follows. In sec. II we discuss 
several different correction schemes and present the output 
state fidelity as compared to the input state and probability 
of success for each method. This will be done in the 
idealized case of perfect detectors. In sec. III we present a 
model for an imperfect detector and compute the fidelity of 
the output state as compared to the input state as a function 
of detector efficiency for each correction scheme. A 
summary and conclusion are presented in sec. IV. 
 

II. CORRECTING FOR PDL 

 Broadly speaking we will consider two different 
categories of methods for converting PDL into a 
polarization independent loss.  The first is to insert 
additional attenuation into the system which is oriented 
orthogonal to the original such that the polarization 
dependence cancels.  In our scenario pictured in fig. 1, 
where the horizontal mode is initially attenuated, this 
means further attenuating the vertical mode by an 
equivalent amount.  We will consider both passive and 
noiseless attenuation.  The second method of correction we 

will consider is to amplify the horizontal mode back to the 
point that the polarization dependence once again 
disappears.  This is pictured as the scenario in fig. 1 labeled 
as ‘Amplification.’  
 The use of passive attenuation as a method for correcting 
for the detrimental effects of PDL was recently explored, 
and even experimentally demonstrated, in several papers 
[10, 11, 15]. An example of a passive corrective element is 
pictured in the upper left box in fig. 2. To see how this 
works in our scenario consider the state in eq. (2) which has 
already been transmitted through a PDL element. By 
adding a passive attenuator that only acts on the vertical 
polarization mode with transmission ,T  the polarization 
modes of the state become 
 

  
1| ( | | ),
2 ht H T Vψ ′〉 = 〉 + 〉  (3) 

 
where we have neglected normalization. By tuning ,T  
such that hT t=  we have 
 

  | (| | ),
2
ht H Vψ ′〉 = 〉+ 〉  (4) 

 
which is the desired polarization qubit of eq. (1). 
 While passive attenuation successfully recovers the 
polarization qubit it requires either postselection on 
detection or involves the addition of vacuum terms into the 
state, which we have neglected in eqs. (3) and (4).  This is 
problematic when subsequent quantum operations are 
technologically expensive and it is essential to maximize 
the probability of success of each gate. In fact, as we will 
see this correction scheme will actually lower the fidelity of 
the output state, when vacuum states are considered, more 
so than if we had not corrected at all.  
 The unwanted vacuum terms in the passive attenuation 
case are our motivation for considering both noiseless 
attenuation and amplification.  Though these two 
techniques require additional elements, such as 
beamsplitters, detectors, or ancilla sources, they also allow 
for some amount of heralding on success and hence are 
able to reduce the vacuum term in the final state without 
postselection on a final detection. 
 In the case of noiseless attenuation, we again pass the 
vertical mode through a beam splitter with transmission ,T  
however we now postselect on having no photons in the 
ancillary output mode. This form of attenuation was first 
introduced in ref. [16] and, as we will see, will give a better 
fidelity than that of the passive attenuation. The process of 
noiseless attenuation is shown in the lower-left box of fig. 
2. 
 Finally, the process of noiseless amplification is outlined 
in the right box of fig. 2. This device is a component piece 
of the larger noiseless amplifier first introduced by T. C. 
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Ralph and A. P. Lund [17], and subsequently realized in 
several experiments [18-20]. When included in the 
polarization interferometer pictured in the ‘Amplification’ 
box of fig. 1 it is analogous to the polarization-qubit 
amplifier of ref. [21] with the exception that it only 
amplifies the horizontal mode and not the vertical mode. 
Noiseless amplification works using unbalanced 
teleportation and successfully amplifies the mode labeled 
‘in’ in the ‘Noiseless amplification’ box of fig. 2 with the 
amplified state exiting the mode labeled ‘out’. The 
entangled state of the teleportation process is created by 
passing a single ancilla photon labeled as | 1〉  into the lower 
beam splitter in the ‘Noiseless amplification’ box of fig. 1 
which has transmission .T  One of the outputs of this beam 
splitter is then combined with the input state to be 
amplified at the 50-50 beam splitter pictured at the top of 
the ‘Noiseless amplification’ box in fig. 2. Finally, the 
process is successfully heralded when the states 0 |〈  and 
1 |〈  are detected in the output modes of the 50-50 beam 

splitter.  
 

 
  
 FIG. 2. A more detailed description of the three possible correction 
schemes. In passive attenuation the input state experiences loss where the 
ancillary mode is lost to the environment. In noiseless attenuation [16] the 
same situation occurs except we instead postselect on vacuum in the 
ancillary mode. In noiseless amplification [17] an input state undergoes 
unbalanced teleportation by postselecting on the states specified at the 
detectors. As we will see, noiseless amplification provides for the best 
fidelity at the expense of transmission rate.  

 We will now calculate the output state of each of these 
three scenarios analytically. We do this for the general 
input qubit 0|ψ 〉  given as 
 
  0 1 2| | | ,c H c Vψ 〉 = 〉 + 〉  (5) 

 
where 1c  and 2c  are in general complex numbers 
satisfying 
 
  2 2

1 2| | | | 1.c c+ =  (6) 
 
This state corresponds to the input density operator 0ρ  as  
 

  
2 *

0 1 2 1
* 2
1 2 2

| | | | | | | |

| | | | | | .

c H H c c H V

c c V H c V V

ρ ψ ψ= 〉〈 = 〉〈 + 〉〈

+ 〉〈 + 〉〈
 (7) 

 
 We treat the evolution in figs. 1 and 2 using the unitary 
evolution operator for the beam splitter given as 
 

  ( )( )† †exp arccos ( ) ,U i T a b ab= +  (8) 

 
where T  is the transmission of the beam splitter and a  is 
the annihilation operator for one mode of the beam splitter, 
while b  is the annihilation operator for the other [22]. 
When postselecting, we apply an appropriate projection 
operator and any mode which is sent into the environment 
is traced out.  
 To begin, we calculate the state ρ  after undergoing an 
initial PDL, pictured in the left most box of fig. (1), which 
only attenuates the horizontal mode 
 

  

2 2
1 1

* *
2 1 1 2

2
2

| | (1 ) | 0 0 | | | | |

| | | |

| | | | .

h h

h h

c t c t H H

c c t H V c c t V H

c V V

ρ = − 〉〈 + 〉〈

+ 〉〈 + 〉〈

+ 〉〈

 (9) 

 
Inspection of eq. (9) reveals that there is now a vacuum 
term and even if we postselect on having a photon we still 
do not have the desired polarization state of equation (7).  
 We now consider the output state after correcting with 
additional PDL which has a transmission factor of .T  The 
full density operator after tracing over the ancillary mode of 
the initial PDL and the unbalanced passive attenuation is 

1ρ  given as 
 

  

2
1 1

* *
2 1 1 2

2
2

(1 ) | 0 0 | (| | | |

| | | |

| | | |) ,

h ht t c H H

c c H V c c V H

c V V

ρ ⎡= − 〉〈 + 〉〈⎣

+ 〉〈 + 〉〈

⎤+ 〉〈 ⎦

 (10) 

 
where we have again let hT t=  as was done in eq. (4). Note 
that if we postselect this state on detection [10-11] this 
would reduce to eq. (7) as expected. 
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 The full output state for noiseless attenuation 2 ,ρ  after 
postselecting on no photons at the detector shown in fig. 2, 
is given as 
 

  

2
2 1

2 *
1 2 1

* 2
1 2 2

| | (1 ) | 0 0 |

(| | | | | |

| | | | | |) .

h

h h

h

c t

c t H H c c t T H V

c c t T V H c T V V

ρ ⎡= − 〉〈⎣

+ 〉〈 + 〉〈

⎤+ 〉〈 + 〉〈 ⎦

 (11) 

 
If we let hT t=  as we did before the state of eq. (11) 
becomes 
 

  

2
2 1

2 *
1 2 1

* 2
1 2 2

| | (1 ) | 0 0 |

(| | | | | |

| | | | | |) .

h

h

c t

t c H H c c H V

c c V H c V V

ρ ⎡= − 〉〈⎣

+ 〉〈 + 〉〈

⎤+ 〉〈 + 〉〈 ⎦

 (12) 

 
Eq. (12) is not normalized because noiseless attenuation is 
a heralded process. The trace of eq. (12) gives the 
probability of success 2P  of the noiseless attenuation as 
 
  2

2 1| | (1 ).h hP t c t= + −  (13) 
 
Normalizing this probability of success away gives the 
output state conditioned on a success event as 
 

  

2
2 12

1
2 *

1 2 1

* 2
1 2 2

1 | | (1 ) | 0 0 |
| | (1 )

(| | | | | |

| | | | | |) ,

h
h h

h

c t
t c t

t c H H c c H V

c c V H c V V

ρ ⎡= − 〉〈⎣+ −

+ 〉〈 + 〉〈

⎤+ 〉〈 + 〉〈 ⎦

 (14) 

 
which we see has a smaller vacuum state term than eq. (10).  
 Finally, for the noiseless amplifier the output state 3ρ  
becomes 
 

  

2
1

2 *
1

3

1

2 1
*

2
2

2

1 | | (1 )(1 ) | 0 0 |

(| | | | (1 ) | |

(1 ) | |

| | (1 ) | |) .

2 h

h h

h

c t T

c Tt H H c c t T T H V

c c t T T V H

c T V V

ρ ⎡= − − 〉〈⎣

+ 〉〈 + − 〉〈

+ − 〉〈

⎤+ − 〉〈 ⎦

 (15) 

 
Since we are free to choose the parameter ,T  if we let 
 

  1 ,
1 h

T
t

=
+

 (16) 

 

then equation (15) becomes 
 

  

2
1

2 *
1 2 1

* 2
1 2 2

3 | | (1 | 0 0 |

(| | | | | |

| | | | | |)

)
2(

.

1 )
h

h
h

t
c t

c H H c c H V

c c V H c V V

t
ρ ⎡= − 〉〈⎣

+ 〉〈 + 〉〈

⎤+ 〉〈 + 〉〈 ⎦

+

 (17) 

    
From eq. (17), we see this choice of T  balances the qubit. 
Again, since noiseless amplification is a heralded process 
with probability of success 3P  given as 
 

  2
3 12(1

1 | | ( ,
)

1 )h
h

h

t
P c t

t
⎡ −

+
⎤= +⎣ ⎦  (18) 

 
the output state given a success event would be 
 

  

2
12

1
2 *

1 2 1
* 2
1 2

3

2

1 | | (1 ) | 0 0 |
1 | | (1 )

| | | | | |

| | | | | | .

h
h

c t
c t

c H H c c H V

c c V H c V V

ρ ⎡= − 〉〈⎣+ −

+ 〉〈 + 〉〈

⎤+ 〉〈 + 〉〈 ⎦

 (19) 

 
 We can define the acceptance rate of any of the three 
PDL correction methods as the fraction of input states 
which are considered to be successfully prepared. For 
noiseless attenuation and amplification the acceptance rate 
is equivalent to the heralding probability.  For passive 
attenuation the acceptance rate is unity since no 
information is given by the correction process about 
whether or not it was successful and hence there is no way 
to discriminate the output states. In fig. 3 we plot the 
acceptance rate of each process as a function of the 
magnitude of the initial PDL for an initial qubit with 

1 2 1 / 2c c= = .  The PDL is expressed in decibels as [1] 
 

  max
10

min
PDL [ dB ] 10log ,

t
t

⎛ ⎞
≡ ⎜ ⎟

⎝ ⎠
 (20) 

 
where, for the example considered here, max 1t =  and 

min .ht t=  From fig. 3 we see noiseless amplification always 
has the lowest acceptance rate. As we will see this is the 
tradeoff needed to reduce the vacuum terms in the final 
state. 
 We now compare the acceptance rate to how close the 
output state is to the desired state. With the appropriate 
output states of eqs. (10), (14) and (19), we quantify the 
performance of each correction scheme by computing the 
fidelity given as [23] 
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 FIG. 3. Plot of the acceptance rate or probability of success of each of 
the possible correction schemes as a function of the PDL defined in eq. 
(20) in dB. Since passive attenuation is deterministic we will always 
accept the output state. From this figure we see that noiseless 
amplification will have a smaller acceptance rate than the other 
compensation schemes. In the noiseless amplification considered here we 
only accept one possible Bell state outcome. The acceptance rate for 
noiseless amplification might be able to be improved by accepting other 
Bell state outcomes and other techniques. 

 

  ( ) 2

0Tr ,F ρ ρ ρ⎡ ⎤= ⎢ ⎥⎣ ⎦
 (21) 

 
where ρ  is the relevant output density matrix and 0ρ  is 
the density matrix of the desire state given in eq. (7). Since 
the form of the polarization terms can be recovered by all 
three of the correction schemes considered here, the fidelity 
essentially indicates the magnitude of the introduced 
vacuum modes. The fidelity of the output states of each 
compensation scheme are plotted in fig. 4., for the case 
when 1 2 1 / 2.c c= =  Also in fig. 4 we plot the fidelity of 
the state after the initial PDL but before being corrected, 
given by eq. (9), for comparison.   
 Surprisingly, fig. 4 reveals that not correcting the state at 
all results in a better final state fidelity than either 
attenuation technique.  This means that the vacuum terms 
added by the additional attenuation degrade the state 
fidelity more than it is improved by rebalancing the 
polarization modes. On the other hand, we see that 
noiseless amplification will always be the superior 
correction technique when output fidelity is the only 
concern. Comparing figs. 3 and 4 we see that there exists a 
tradeoff for noiseless amplification in that we can achieve a 
higher fidelity state after correction but at the expense of a 
low acceptance rate.   
 

III. CORRECTION WITH IMPERFECT 
DETECTORS 

 So far, we have only considered the case of ideal 
detectors. Since noiseless attenuation and noiseless 

amplification are heralded processes their performance may 
strongly depend on the efficiency of the detectors used. For 
this reason, we now examine how our calculations from 
section II change when detectors that are both inefficient 
and subject to dark counts are considered. 
 We model imperfect detectors as outlined in fig. 5 [24]. 
In this case the input state that we are attempting to detect 
is mixed with a thermal state Tρ  at a beam splitter with 
transmission corresponding exactly to the detector 
efficiency .η  We can define the thermal state Tρ  as [25] 
 

  
0

1 | |,
1 1

n

T
n

n nνρ
ν ν

∞

=

⎛ ⎞= 〉〈⎜ ⎟+ +⎝ ⎠∑  (22) 

 
where ν  is the average number of photons in the thermal 
state. Using eq. (22) and vacuum input, ν  can be related to 
the probability of measuring a dark-count photon per time 
step dP  as [26] 
 

  .
(1 )(1 )

d

d

P
P

ν
η

=
− −

 (23) 

 

  
 FIG. 4. Plot of the fidelity as a function of the PDL defined in eq. (21) 
in dB. As we can see, the fidelity will always be better in the case of 
noiseless amplification than for noiseless or passive attenuation. As 
mentioned in the text, this is due to the reduction in the probability 
amplitude of the vacuum term. This plot was generated for the ideal case 
of no detector noise. 
 
 

 
 

 FIG. 5. Model used to simulate imperfect detectors with dark counts. 
An input state is mixed with a thermal state Tρ  using an unbalanced 
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beam splitter with transmission equal to the detector efficiency .η  The 
temperature of the thermal state is chosen to be function of η  to guarantee 
a constant probability of finding a dark count photon per time step. 

 
 We again compute the new output states of all three 
corrective processes analytically. In the case of imperfect 
detectors, the output states are much more complicated and 
since inspection of the expressions themselves offers little 
physical insight we have moved them to the appendix. The 
results of a calculation of the fidelity are plotted in fig. 6 as 
a function of the detector efficiency η  for a constant PDL 

of 3dB and 54 10dP −= ×  photons per time step to coincide 
with the dark-count rate of the detectors of reference [27]. 
For reference, we have also included vertical lines in fig. 6 
which indicate the efficiencies of real detectors. From fig. 6 
we see that noiseless amplification remains superior for 
detector efficiencies greater than 40%. 
 

  
 
 FIG. 6. Plot of the fidelity in the case of imperfect detectors as a 
function of detector efficiency .η  We are modeling an imperfect detector 
according to the diagram in fig. 5. This plot was generated with an initial 
3dB of PDL and a dark count rate of 4×10-5 photons per timestep. We see 
that in this case, noiseless amplification still does better for larger detector 
efficiencies. The vertical lines correspond to values for realistic detector 
efficiencies. The line at 20% represents Indium Gallium Arsenide 
(InGaAs) single photon detectors [27] and the line at 85% represents 
superconducting nanowire single-photon detectors (SNSPDs) [28]. 

 In the limit as detector efficiency goes to unity the curves 
in fig. 6 approach the values reported in fig. 4 at 3dB. This 
makes sense as fig. 4 represents the case of ideal detectors. 
In the limit as detector efficiency goes to zero however we 
see that the fidelity due to the noiseless attenuation scheme 

approaches that of the passive attenuation scheme. This is 
because noiseless attenuation would be identical to passive 
attenuation in the absence of a detector. Finally, in the same 
limit the noiseless amplification scheme approaches a 
resulting fidelity of zero due to how heavily noiseless 
amplification is dependent on heralding. 

IV. SUMMARY AND CONCLUSIONS 

 We have considered the effects of polarization dependent 
loss under conditions where the removal of vacuum modes 
via postselection is undesirable, as might be the case in a 
device independent QKD protocol, for example. 
Polarization dependent loss and its passive compensation 
can reduce the overall fidelity under those conditions, since 
it introduces some probability amplitude for the vacuum 
state.  Our results show that noiseless amplification gives a 
higher fidelity than either passive or noiseless attenuation 
under those conditions.  Of course, there are situations in 
which the output is only accepted if the signal contains a 
photon, in which case passive attenuation [10-11] gives a 
higher acceptance rate than noiseless amplification. 
 We have seen in previous work that information lost to 
the environment can create a significant amount of 
decoherence in macroscopic quantum optical systems [29]. 
This is due to the introduction of which-path information. 
In the situation considered here, we see a similar 
phenomenon where losing information to the environment 
in the form of PDL can reduce the fidelity of single-
photonic systems when the output must always be accepted. 
The fidelity can be improved using a noiseless amplifier, 
which does not leave any which-path information in the 
environment [30]. 
 Although polarization dependent loss tends to be small in 
optical fibers, it can have a major effect in optical 
components such as isolators, circulators, and amplifiers.  
As a result, the techniques discussed here should be of 
practical importance in quantum communications systems. 

ACKNOWLEDGEMENTS 

 This work was supported in part by a Graduate 
Assistance in Areas of National Need (GAANN) 
Fellowship from the US Department of Education (Grant 
No. P200A150003) and by the NSF under Grant No. 
1402708. 

 
APPENDIX 

 In this appendix we express the output density operators in the case of nonideal detectors. We do this for the noiseless 
attenuation and noiseless amplification schemes only as they are the only cases dependent on detector efficiency. For the 
case of noiseless attenuation, the unnormalized output density operator would be given as 
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( )

2 2
2 1 12

1 2
2 * *

2 2 1

(2 (1 ) (1 )
| | | 0 0 | | | | |

1(1 )

| | | | | | | | ,
1 1

)h h

h

T t T t
c c H H

tT c V V c c H V c c V H
T

ν ην ηρ
ν ηνν ην

ν ην ν ην

− − + − − −
= 〉〈 + 〉〈

+ −+ −

+ 〉〈 + 〉〈 + 〉〈
+ − + −

 (A1) 

 
where η  is the efficiency of the detector and ν  is the average number of photons in the thermal state used to model dark 
counts given by eq. (22) of the main text. The parameter ν  can be related to the probability of detecting a dark count 
photon using eq. (23). From eq. (A1) we see a choice of hT t=  will rebalance the state. Note that this is the same choice for 
T  as the ideal case of noiseless attenuation. Using this choice of T  gives the output state as 
 

  
2 2 *

2 1 1 2 12

* 2
1 2 2

(1 2 2 )
| | | 0 0 | (| | | | | |

1(1 )

| | |

(

|

)

|

2

|).

h ht t
c c H H c c H V

c c V H c V V

ν νη ηρ
ν ηνν ην

− + − −
= 〉〈 + 〉〈 + 〉〈

+ −+ −

+ 〉〈 + 〉〈

 (A2) 

 
Normalizing equation (A2) and inserting it into eq. (21) of the main text gives the resulting state fidelity after the noiseless 
attenuation scheme with nonideal detectors. This fidelity is plotted as the green dotted curve in fig. 6 for the case of 3dB of 
initial PDL. 
 In the case of noiseless amplification, the output state using two identical detectors with efficiency η  and average number 
ν  would be 
 

  

2
2

3 2 3 2

2 2
2
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 (A3) 

 
where the state | 2〉  corresponds to the amplifier having erroneously added an extra horizontally polarized photon giving a 
state with one horizontal and one vertical photon. While not as obvious as the case of noiseless attenuation, we can still set 
the | |H V〉〈  and | |V H〉〈  terms equal to one other to find the optimal value for .T  Using this optimal value for T  in eq. 
(A3) and normalizing we could then insert this state into eq. (21) of the main text to get the state fidelity. This state fidelity 
is plotted as the blue dashed line in fig. 6. 
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