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Time-resolved x-ray scattering (TRXS) measures internuclear separations in a molecule following
laser-induced photoexcitation [1]. The molecular dynamics induced by the excitation laser may
lie on one or several bound or dissociative electronic states [2]. TRXS from these states can be
difficult to isolate because they generally overlap in the angle-resolved x-ray scattering pattern
I(x, y, τ), where τ is the pump-probe delay and (x, y) are the physical pixel positions [3]. Here we
show how standard transform methods can isolate the dynamics from individual states. We form
the temporal Fourier transform, Ĩ(x, y, ω) =

∫ +∞
−∞ dτe−iωτI(x, y, τ). This frequency-resolved x-ray

scattering (FRXS) signal segregates the bound states according to their vibrational frequencies,
ωi [4], and also displays dissociative states along straight lines ω = vQ, where the slope v is the rate
of increase of the internuclear distance and Q is the momentum transfer between the incident and
scattered x-ray photon. We derive this relation and use FRXS to extract state-specific dynamics
from experimental TRXS from molecular iodine following a 520 nm pump. Dynamics observed
include one- and two-photon dissociation of the 1Πu and 1Σ+

g excited states, and vibrational wave

packets on the B (3Π+
0u) state.

I. INTRODUCTION

The ability to observe time-resolved motion of elec-
trons and nuclei in molecules is one of the principal goals
of femtochemistry [5]. Time-resolved x-ray scattering
(TRXS) and time-resolved electron scattering have en-
abled the observation of nuclear motion in molecules [6–
10] and has the potential to track electronic motion [11].
In this scheme, an x-ray probe pulse scatters off an en-
semble of optically photoexcited molecules, and this pro-
cess is repeated for a series of delays between the optical
excitation and the x-ray probe. One advantage of x-ray
scattering is that the x-rays scatter from all of the elec-
trons in the molecular system under study and, thus, em-
beds spatial information about the electronic charge dis-
tribution of a molecule. This has enabled the probing of
parallel and perpendicular transitions in N-methyl mor-
pholine [12], the direct observation of bound and dissocia-
tive motion in molecular iodine [7, 8], the resolving of var-
ious molecular trajectories in 1,3-cyclohexadiene [6], and
vibrational coherence following electronic relaxation [13].

TRXS, however, is not a direct probe of nuclear po-
sition. Since scattering takes place in momentum or,
rather, reciprocal-space, it is necessary to either fit the
data to a model [6, 9] or invert the data from reciprocal-
space to real-space to recover the nuclear dynamics [7, 8].
The inverse problem to obtain the nuclear dynamics, i.e.
the pair-distribution function, is difficult because the ob-

∗ mrware@stanford.edu

served momentum transfer ~Q = ~k0 − ~ks between the in-
coming and outgoing x-ray photon is limited to a few
Å−1 at an x-ray free-electron laser (FEL) [14]. For ex-
ample, the scattered x-rays in a typical experiment at
the LINAC Coherent Light Source (LCLS) are restricted
between Qmin = 0.1 − 1 Å−1 and Qmax = 2π/λ ≈
4.5 Å−1 [15]. This restricts the spatial resolution to
∆R = 2π/(Qmax − Qmin) > 1.4 Å. There is, however,
no comparable technical restriction on the pump-probe
delay, τ , which may range over a long time τR with fine
steps ∆τ . A temporal Fourier transform of the scatter-
ing pattern I(x, y, τ) forms the frequency-resolved x-ray

scattering signal (FRXS) Ĩ(x, y, ω), where the maximum
observable beat frequency is given by 2π/∆τ and the fre-
quency resolution is 2π/τR. The temporal Fourier trans-
form thus generates a high-resolution representation of
TRXS.

Temporal Fourier transform methods have been devel-
oped for Fourier Transform Inelastic X-ray Scattering
(FTIXS), to characterize phonon modes in crystals to
arbitrary frequency resolution [16]. Temporal transform
methods for TRXS from gases have been used to isolate
diatomic vibrations [4].

Here the expression for FRXS of a dissociating di-
atomic molecule is derived, and the frequency spectrum
is shown to isolate dissociative motion along lines in
reciprocal-space and reciprocal-time, Q and ω, despite
dissociation not being periodic in real-space, i.e. disso-
ciations follow a trajectory like R(τ) = R0 + vτ . The
analytical results are then confirmed through compari-
son to measured experimental data, where two dissocia-
tive states are observed: one parallel to the pump laser’s
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FIG. 1: Difference image on the x-ray detector
(CSPAD) for a delay of 120 fs after pumping with

520 nm light.

polarization and one perpendicular.

II. EXPERIMENT

The experimental apparatus to study the time-resolved
x-ray scattering of molecular iodine following photoexci-
tation by 520 nm light has been described elsewhere [4, 7,
15] and a short description and schematic is provided in
Reference [4]. An attempted real-space reconstruction
of the data was published previously [7]. In contrast,
the analysis in this paper using FRXS highlights a pre-
viously undescribed approach to isolate and characterize
dissociations measured using TRXS.

The specifics of the experiment are as follows. A 50 fs,
20 µJ, vertically polarized pulse of 520 nm light is focused
into a gas cell containing around 50 Torr of molecular io-
dine at 1̃00 oC. Following the optical pump, a 50 fs, 2 mJ,
horizontally polarized x-ray probe arrives at the scatter-
ing cell with variable delay. The resulting scattering is
measured in the forward direction by the Cornell-SLAC
Pixel Array Detector (CSPAD) [14]. Scattering is mea-
sured at each pump-probe delay, resulting in the differ-
ence image shown in Figure 1.

At 520 nm, one photon will excite molecular iodine to
the bound B 3Π+

0u state or the dissociative 1Πu state.
Two photons can access higher dissociative states, in-
cluding the 1Σ+

g state. The excitation begins near the

equilibrium position of the ground X (1Σ+
g ) state at

R0 = 2.666 Å. The corresponding potential energy curves
are shown in Figure 2 from Reference [17]. In the bound
B state, 520±5 nm light excites highly anharmonic vibra-
tions with periods between T = 520 to 650 fs and angular
frequencies between ω = 9.6 to 11.9 THz. In the disso-

ciative 1Πu state, the internuclear separation increases at
a rate of v = 16 Å/ps, and in the dissociative 1Σ+

g state,

v = 20 Å/ps. The beat frequencies and periods were de-
rived from [18] assuming a pump wavelength of 520 nm,
and velocities can be derived from the potential energy
curves from [17]. The initial position, R0, the above fre-
quency, ω, and velocities, v, are observed using FRXS,
which will now be described.

FIG. 2: Following photoexcitation by 520 nm light, a
single photon may excite high in the bound B state
(ω = 9.6 to 11.9 THz) or the dissociative 1Πu state
(v = 16 Å/ps). Two photons excite the dissociative
1Σ+

g , state which shares the same symmetry as the

ground X state (v = 20 Å/ps). These states are
identified in the frequency-resolved scattering in
Figures 3e and 4b. Potential energy curves from

Reference [17].

III. THEORY

As discussed in previous papers [1, 4, 19], time-
resolved x-ray scattering may be expressed as a product
of three factors

dI

dΩ
=
dσTh
dΩ

I0

〈
F ( ~Q, τ)

〉
, (1)

where dI
dΩ is the number of photons scattered into a solid

angle Ω, dσTh

dΩ is the Thomson scattering cross section,

and I0 is the incident x-ray intensity.
〈
F ( ~Q, τ)

〉
is a

time- and angle-dependent polarization-corrected scat-
tering probability given by〈

F ( ~Q, τ)
〉

= 2 |fA(Q)|2
(

1 + S( ~Q, τ)
)

(2)

for a homonuclear diatomic molecule. In Equation (2),

fA(Q) is the atomic form factor and S( ~Q, τ) is the molec-
ular scattering factor, which encodes the internuclear sep-
arations. This expression is correct in the limit where
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FIG. 3: (a) Theoretical time-resolved x-ray scattering following photoabsorption of two 520 nm photons onto the
dissociative 1Σ+

g state, using v = 20 Å/ps and R0 = 2.666 Å. (b) Power spectrum under similar conditions generated
using Equation 9. (c) Real part of the frequency spectrum of (b). White lines run parallel to ω = vQ, and the circles
identify the nodes at ωR0

v = nπ
2 , where n = 3 and 5. Note that a phase shift was applied to Equation 8 such that (c)

reproduces (f). (d) Experimental time-resolved x-ray scattering following photoabsorption of 520 nm light. This is
the component of the data projected onto the second order Legendre polynomial, P2(cos θ). (e) Power spectrum of

(d). The v = 19.9± 0.2 Å/ps dissociation is observed, and the bound B state motion peaked at ω = 11.6± 1.1 THz.
(f) Real component of the frequency spectrum.

the independent atom approximation holds, i.e. heavy
atoms and insufficient time-resolution to observe coher-
ent effects between electronic states [19–22]. Within this

approximation S( ~Q, τ) may be considered for each elec-
tronic state independently and may be expressed as

S( ~Q, τ) =

∫
d~Rρ(~R, τ) cos( ~Q · ~R) (3)

where ρ(~R, τ) is the internuclear probability density on
some electronic state [1, 23].

Turning to FRXS, consider a perfectly aligned classical
diatomic molecule, which dissociates along a trajectory
~R(τ) = (R0 + vτ) êz for τ > 0. For this special case, the
molecular scattering factor from Equation 3 evaluates to

S(Qz, τ) = cosQzRz(τ). (4)

Now, FRXS is defined as

S̃( ~Q, ω) =

∫ +∞

−∞
dτe−iωτS( ~Q, τ). (5)

Therefore, for the above special case in Equation (4), the
FRXS signal is

S̃(Qz, ω) =
1

2

(
eiωR0/vδ(ω − vQz) + ...

e−iωR0/vδ(ω + vQz)
)
.

(6)

The above equation has two important properties: (1)
the maxima of the FRXS lies along ω = vQ and (2) the
phase evolves like φ = ωR0/v.
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(a) (b)

FIG. 4: (a) Experimental time-resolved x-ray scattering following photoabsorption of 520 nm light. This is the
isotropic component of the data found by projecting the CSPAD image at each time delay onto the zeroth order

Legendre polynomial, P0(cos θ). (b) Power spectrum of (a). There are two dissociations evident in the data:
v = 19.9± 0.2 Å/ps and v = 16.4± 0.2 Å/ps. There is also the bound B state motion peaked at ω = 11.6± 1.1 THz.

The rate of increase of internuclear separation in a dis-
sociation may then be obtained by fitting the position
of the maxima to a line, and the initial position of the
dissociation may be obtained by fitting the phase along
those maxima to another line, as will be demonstrated in
the discussion section.

Before turning to the experimental analysis, the phys-
ical alignment of a diatomic will now be considered. Fol-
lowing excitation by a polarized laser pulse, the angular
distributions will go as cos2n θ for parallel transitions or
sin2n θ for perpendicular transitions, where n indicates
the number of photons absorbed and θ is the angle with
respect to the laser polarization axis. These distributions
may be expressed as a linear combination of Legendre
polynomials, Pl(cos θ), such that the molecular scatter-
ing factor from Equation (3) may be rewritten as

S( ~Q, τ) =
∑
l

Pl(cos θ)Sl(Q, τ), (7)

where

Sl(Q, τ) =

∫
dRR2ρl(R, τ)jl(QR), (8)

ρl(R, τ) is the projection of the nuclear probability func-
tion onto a given Legendre polynomial, and jl(QR) are
the spherical Bessel functions. Now the FRXS may
be considered for a given Legendre order S̃l(Q,ω) =∫ +∞
−∞ dτe−iωτSl(Q, τ). As shown in Appendix A, the

FRXS for a dissociating diatomic is approximately given

by

S̃l(Q,ω) ≈ eiωR0/v

2iQv
[E1(−i(QR0 − ωR0/v))−

E1(i(QR0 + ωR0/v))]

(9)

for each Legendre order, where E1(z) =
∫∞
z
dte−t/t is an

exponential integral. To show that Equation (9) shares
the same important features as the first derivation in
Equation (6), the result is shown in Figures 3b and 3c,
which demonstrate that (1) the maxima of the FRXS lies
along ω = vQ and (2) the phase evolves like φ = ωR0/v.

IV. DISCUSSION

To validate the theory derived above, a comparison to
the experimental data is now made. For each pump-
probe delay of the TRXS as shown in Figure 1, the
Thomson cross-section and atomic form factors are di-
vided out, I(x, y, τ) → S(x, y, τ), and the pixel coor-
dinates (x, y) are mapped onto the scattering coordi-
nates (Q, θ) using the method described in Appendix B,
S(x, y, τ) → S(Q, θ, τ). Following the coordinate map-
ping, S(Q, θ, τ) is projected onto the zeroth through
tenth Legendre polynomials to obtain Sl(Q, τ). S0(Q, τ)
and S2(Q, τ) are shown in Figures 3d and 4a respectively.

These Legendre projections are then used to gener-
ate the FRXS, S̃0(Q,ω) and S̃2(Q,ω), through a dis-
crete Fourier transform (DFT). The power spectrum fol-
lowing the DFT is shown in Figures 3e and 4b. The
power spectrum allows for the identification of the bound
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state and two dissociations. The bound state is peaked
at ω = 11.6 ± 1.1 THz, the first dissociation has a final
velocity of 16.4 ± 0.2 Å/ps, and the second dissociation
has a final velocity of 19.9 ± 0.2 Å/ps. These results
align with the inferred values for the B, 1Πu, and 1Σ+

g

states respectively, as derived from Reference [17]. For
information on why the bound state appears at its beat
frequency in the power spectrum, please see [4] for details
on characterizing bound state motion using FRXS.

The dissociations can also be observed in the original
images on the detector following the temporal Fourier
transform, Ĩ(x, y, ω). The dissociations present them-
selves as outward moving crescents on the detector image
in reciprocal-space and reciprocal-time. The slower dis-
sociation appears first on the detector perpendicular to
the pump polarization as ω is increased, where the per-
pendicular alignment has been seen elsewhere [24, 25].
The faster dissociation then appears moving parallel to
the pump polarization. This effect is shown in Fig-
ures 5a and 5b as well as the GIF included in the sup-
plementary materials.

The faster dissociation as seen in the second order Leg-
endre projection in Figure 3e will be used to demonstrate
that FRXS can characterize the dissociation velocity and
initial position. To obtain the dissociation velocity, the
position of the maximum at each momentum transfer, Q,
is extracted from the power spectrum in Figure 3e. The
positions of the maxima, (Q,ω), are then used to fit the
line ω = vQ as shown in Figure 6a. This method ob-
tains a velocity of v = 19.9 ± 0.2 Å/ps as compared to
the predicted 20 Å/ps from the dissociative 1Σ+

g state.
Now using the measured velocity, the phase along the
line ω = vQ is extracted to find the initial position, R0.
The phase as a function of the angular frequency is fit to
φ = (ωR0)/v+φ0 to obtain the initial position as shown
in Figure 6b. (For reference the real part of the frequency
spectrum is shown in Figure 3f). This method obtains an
initial position of R0 = 2.3 ± 0.4 Å as compared to the
known value of 2.666 Å.

V. CONCLUSION

An analysis method for leveraging FRXS to character-
ize dissociative motion has been derived and applied to
experimental data. The obtained values for initial po-
sition and dissociation velocities align with the expecta-
tions for the 1Πu and 1Σ+

g states of molecular iodine. The
novel aspect of this approach is that an interpretable and
compact representation of the experimental measurement
may be obtained in reciprocal-space and reciprocal-time
without the difficulty of inverting the measurement to the
traditional space and time representation. Thus, FRXS
presents an alternative to traditional analyses of TRXS.
The traditional approach is limited by the range of mo-
mentum transfer, Q, that is accessible at FELs. FRXS
does not suffer this limitation, and in fact, FRXS lever-
ages the strengths of FELs, namely fine time resolution

(a)

(b)

FIG. 5: Power spectrum, Ĩ(x, y, ω), of the time binned
detector images, I(x, y, τ). (a) The power spectrum is

shown at ω = 20.9 THz across all pixels. Parallel to the
laser field (y-axis), we observe the two-photon 20 Å/ps
dissociation beginning to emerge from the beam block.
Perpendicular to the laser field (x-axis) we observe the
one-photon 16 Å/ps dissociation. (b, ω = 27.9 THz)

The two-photon dissociation has moved outward on the
detector as the frequency was increased, and the

one-photon dissociation is no longer visible. In the
supplemental information, a GIF is included showing

the two dissociations propagating outward as frequency
is increased.
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(a)

(b)

FIG. 6: (a) Position of the maxima at each momentum
transfer, Q, along the dissociation line in Figure 3e
shown in red. The fit to ω = vQ is shown in black,

which finds v = 19.9± 0.2 Å/ps, enabling the
identification of dissociation along the 1Σ+

g state. Error
bars are the bin size in Q from Figure 3e, and error bars
in ω are determined by the scan range. (b) Phase along
the dissociation line in Figure 3f shown in red. The fit
to φ = (ωR0)/v + φ0 is shown in black, which recovers

the initial position before dissociation as
R0 = 2.3± 0.4 Å. Error bars are the standard deviation

of the phase.

and fast data accumulation. This enables a long range
of pump-probe delays to be measured in an experiment,
thereby improving the frequency resolution of an experi-
ment, while maintaining sufficient temporal resolution to
measure high beat frequencies. These advantages have
been leveraged to obtain compact representations of dis-
sociations along lines in reciprocal-space and reciprocal-
time, demonstrating an alternative to traditional analy-
ses of time-resolved x-ray scattering for gas-phase photo-
chemistry.
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VII. APPENDICES

A. FRXS of an aligned distribution

To reproduce the exact structure of the FRXS given
by a dissociation, the alignment of the molecule needs
to be considered. For example, an isotropic distribu-
tion will project onto the zeroth order Legendre and have
a molecular scattering distribution given by S0(Q, τ) =∫
dRR2ρ(R, τ)j0(QR), where j0(QR) is the zeroth or-

der spherical Bessel function. A cos2 θ distribution will
project onto both the zeroth and second order Legen-
dre polynomials and have a molecular scattering dis-
tribution with both the S0(Q, τ) component as well as
S2(Q, τ) =

∫
dRR2ρ(R, τ)j2(QR), where j2(QR) is the

second order spherical Bessel function.

For simplicity, consider an aligned distribution of
molecules with R2ρ(R, ) = δ(R−R(τ)), then Sl(Q, τ) =
jl(QR(τ)) for τ > 0. The frequency resolved scattering
is accordingly

S̃l(Q,ω) =

∫ ∞
0

dτe−iωτ jl(QR(τ)). (10)

Each even spherical Bessel function contains a sinx/x
term, which by observation makes the largest contribu-
tion to this integral. Focusing the derivation to this term,
the approximate solution can be found by taking

S̃2l ≈
∫ ∞

0

dτe−iωτ
sinQR(τ)

QR(τ)
. (11)

Dissociation is the focus here, so R(τ) = R0 + vτ . Then
taking u = QR(τ) and expanding sine as a difference of
exponentials, the integral becomes

S̃2l(Q,ω) =
eiωR0/v

2iQv

[∫ ∞
QR0

eiu(1−ω/Qv)

u
− ...∫ ∞

QR0

e−iu(1+ω/Qv)

u

]
.

(12)

This may be identified as the difference of exponential
integrals after taking two additional u-substitutions with
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FIG. 7: For a linearly polarized pump pulse, the

momentum transfer, ~Q, is decomposed into its
projection onto the êy axis and the êx − êz plane. The
large circle depicts the Ewalds sphere, which represents

all possible ~Q for an elastic scattering experiment.

a = u(1− ω/Qv) and b = u(1 + ω/Qv) such that

S̃2l(Q,ω) =
eiωR0/v

2iQv

[∫ ∞
QR0−ωR0/v

da
eia

a
− ...

∫ ∞
QR0+ωR0/v

db
e−ib

b

]

=
eiωR0/v

2iQv
[E1(−i(QR0 − ωR0/v))− ...

E1(i(QR0 + ωR0/v))] ,
(13)

where E1(z) =
∫∞
z
dte−t/t is an exponential integral.

The above equation shares the same features described
in the simplified derivation in the text for perfectly
aligned diatomics: (1) the maxima of the FRXS lies along
ω = Qv and (2) the phase evolves like φ = ωR0/v.

B. Coordinate mapping

For a diatomic excited along a polarized laser pulse, the
relevant angular decomposition (θ, φ) is shown in Refer-
ence [4]. To map from the detector image I(x, y) set
a distance L away from the scattering center onto the
molecular frame I(Q, θ), as sketched in Figure 7, is a
simple geometry problem. First, the momenta transfer
must be decomposed in the directions parallel to the field,
êy, and perpendicular to the field, the êx− êz plane. The

parallel decomposition is given by Qy = k0y√
R2+L2

, where

R =
√
x2 + y2 is the distance from the center of the de-

tector, and the perpendicular decomposition is given by

Q⊥ = k0

√
x2+L2

R2+L2 + 1− 2L√
R2+L2

. With that decomposi-

tion in hand, (Q, θ) is determined by Q2 = Q2
y +Q2

⊥ and
tan θ = Q⊥/Qy.

C. Error propagation and data analysis

For each shot the pump-probe delay, τ ′i , is measured
and then binned into some time bin, τj±∆τ . This allows
for the generation of the mean scattered intensity at each
time delay

I(x, y, τj) =
1

Nj

∑
i

I(x, y, τ ′i), (14)

where (x, y) indicate each pixel on the CSPAD detector.
From these images, the unpumped signal is subtracted to
find the difference scattering, ∆I(x, y, τj) = I(x, y, τj)−
Iu(x, y).

The difference images are then divided by the Thomp-
son cross-section dσ

dΩ [26], iodines atomic form factor

|fI(Q)|2 [23], and the correction factor for attenuation
in the scattering cell [15]. This results in the difference
molecular scattering factor, ∆S(x, y, τj), up to an overall
factor of the x-ray intensity. Now the variation at each
pixel position is generated by

σ2(x, y, τj) = V ar (∆S(x, y, τj))

=
1

Nj

∑
i

|∆S(x, y, τ ′i)−∆S(x, y, τj)|
2
.

(15)

The variation is then propagated through the analysis as
follows.

For the projection of ∆S(x, y, τ ′i) onto Legendre poly-
nomials, the coordinates are first mapped from (x, y) onto
(Q, θ) as described in Appendix VII B. Then, mapping
∆S(Q, θ, τ) onto the Legendre coefficients, ∆Sl(Q, τ), is
achieved through a χ2-minimization. The χ2 model is
defined by

χ2 =
∑
i

(pi − si)2

σ2
i

, (16)

where pi is the fitted function, si is the data, and σ2
i is the

variance. For a linear model, the fitted function may be
expressed as pi =

∑
j xjfj(Qi), where xj are the model

coefficients. Then the solution to the χ2-minimization is

xk =
∑
i

Akisi/σ
2
i , (17)

where A = (fTσ−2f)−1f . The associated error for the
solution, xk, is then

σk =

√∑
j

(Akjσ
−1
j )2, (18)
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as shown in [27]. For the Legendre projection of
∆S(Q, θ, τ) onto ∆Sl(Q, τ), the fitted function is
fj(θi) = Pj(cos θi), where j = 0, 2, , 10 are used.

For the temporal Fourier transform of the Legendre co-
efficients, ∆Sl(Q, τ), a discrete Fourier transform is used.
As the Fourier transform is a unitary transform, the stan-
dard deviation for each frequency element is simply the
sum in quadrature of the errors, σl(Q, τj), where

σl(Q,ωj) =

√∑
j

σ2
l (Q, τj) (19)

VIII. SUPPLEMENTAL

GIF of frequency-resolved scattering on the time
binned CSPAD images.
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