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We analytically and numerically investigate the emission of high-harmonic radiation from model
solids by intense few-cycle mid-infrared laser pulses. In single-active-electron approximation, we
expand the active electron’s wavefunction in a basis of adiabatic Houston states and describe the
solid’s electronic band structure in terms of an adjustable Kronig-Penney model potential. For high-
harmonic generation (HHG) from MgO crystals, we examine spectra from two-band and converged
multi-band numerical calculations. We discuss the characteristics of intra- and interband contri-
butions to the HHG spectrum for computations including initial crystal momenta either from the
Γ−point at the center of the first Brioullin zone (BZ) only or from the entire first BZ, demonstrating
relevant contributions from the entire first BZ. From the numerically calculated spectra we derive
cutoff harmonic orders as a function of the laser peak intensity that compare favorably with our
analytical saddle-point-approximation predictions and published theoretical data.

PACS numbers: 42.65.Ky, 42.65.Re, 72.20.Ht

I. INTRODUCTION

Exposed to intense laser fields gases and solids emit
a spectrum of radiation that is strongly enhanced at
and near frequencies corresponding to multiples of the
driving laser frequency. Over the past two decades, this
high-order harmonic generation (HHG) process has been
carefully investigated in atomic gases, and the under-
lying generation mechanism - the emission of radiation
by laser-electric-field-driven rescattered electrons - is well
understood [1, 2]. While solids are being discussed theo-
retically for decades in view of their large electronic den-
sity possibly enabling the design of high-intensity sources
of harmonic radiation [3–6], HHG from solids has re-
mained a matter of debate [7–9]. Experimentally, it
was first carefully scrutinized less than a decade ago by
Ghimire et al. [7]. Understanding the mechanisms of
HHG in solids is an area of emerging research interest and
part of the ongoing diversification of attosecond science
from the study of atoms and molecules to more complex
nanoparticles [10–12] and solids [13–17]. This extension
of attosecond science holds promise for promoting the de-
velopment of novel table-top intense high-frequency radi-
ation sources and our understanding of the light-induced
electron dynamics in solids, a prerequisite for improved
ultrafast electron-optical switches [18, 19].

Compared to HHG in atomic gases, theoretical investi-
gations of solid HHG have indicated striking new effects,
such as multiple plateaus [8, 20] in HHG spectra and
a linear dependence of the HHG cutoff frequency on the
peak electric-field strengths of the driving laser [8, 21–23].
These characteristics have been revealed by numerically
solving either the time-dependent Schrödinger (TDSE)
in single-active-electron (SAE) approximation [8, 23–25]

∗Corresponding author: thumm@phys.ksu.edu

or semiconductor Bloch equations (SBEs) [9, 23, 26–
31]. SAE-TDSE-based numerical models have employed
basis-set expansions of the active electron’s wavefunction
using either static [32] or adiabatic [8, 33] Bloch states.

SAE solutions of the TDSE can be expressed in terms
of density matrices for convenient comparison with the
SBE approach that introduces a phenomenological de-
phasing time to account for relaxation processes [34]. An
advantage of working within the SAE-TDSE framework
is that the computational time for solving a system with
n electronic bands scales linearly with n, while it scales
as n(n− 1)/2 in SBE calculations [18]. For n > 20 this
leads to approximately one order of magnitude difference
in computation time (cf., Ref. [8], where 51 bands are
included for solving the TDSE within a static Bloch ba-
sis). This is of relevance at high intensities of the driving
laser, where calculations with a large number of bands
are required to reveal the multi-plateau structure of con-
verged HHG spectra [8]. SAE models have successfully
explained the main features of HHG in atomic gases [1, 2],
which has motivated their transfer to describing HHG in
solids [8, 20].

In this work we apply a numerical model for solving the
TDSE in SAE approximation employing a basis-set ex-
pansion of the electronic wavefunction in so-called “Hous-
ton states” that vary adiabatically with the instantaneous
driving-laser electromagnetic field [8, 33, 35]. The use of
an adiabatic basis is advantageous for gaining physical
insight into the underlying basic mechanisms for HHG
in solids, since it allows the identification of two distinct
processes, intra- and an interband emission, that operate
in different spectral regions. In calculating HHG spectra
from solids, we pay attention to the crystal momentum
of the initial state and scrutinize contributions from dif-
ferent crystal momenta in the entire first Brillouin zone
(BZ). In particular, we find that HHG spectra calcu-
lated by only including the initial crystal momentum at
the center of the BZ (the Γ−point) [8] noticeably differ
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from calculations that include initial crystal momenta in
the entire BZ [9], as previously pointed out by Floss et

al. [31]. It has been recently proposed that the range
of crystal momenta used in SAE calculations should be
used as an adjustable parameter for getting converged
numerical HHG spectra [23]. In the present work we re-
visit this suggestion and analytically determine, based on
a saddle-point approximation, the range of initial crystal
momenta needed for the computation of HHG spectra at
a given accuracy.

We organized this paper as follows. In Sec. II we
describe our theoretical framework. In particular, in
Sec. II A we solve the TDSE by expanding the active elec-
tron’s wavefunction in an adiabatic basis (Sec. II A 1),
compare our approach with a density-matrix formulation
of solid HHG (Sec. II A 2), and show how the observ-
ables of interest in this work, intra- and interband yields,
are retrieved from our numerical results (Sec. II A 3). In
Sec. II B we discuss solid HHG for a simplified two-band
system distinuishing intra- (Sec. II B 1) and interband
(Sec. II B 2) yields. In Sec. II C we analyze interband
HHG within a saddle-point approximation (Sec. II C 1),
which allows us to estimate the relevant range of crystal
momenta k (Sec. II C 2) that need to be included when
adding HHG contributions from different k in the first BZ
(Sec. II C 3). In Sec. III we present and discuss our nu-
merical results for HHG in a model MgO crystal. First,
based on simplified two-band calculations, we analyze in
Sec. III A k-resolved spectra for a specific field strength
of the driving-laser pulse (Sec. III A 1), field-strength-
dependent spectra (Sec. III A 2), and cut-off harmonic
orders as a function of the field strengths (Sec. III A 3).
Next, in Sec. III B, we analyze field-strength-dependent
HHG spectra (Sec. III B 1) and cutoff harmonic orders
(Sec. III B 2) for calculations that are converged in the
number of included electronic bands. In several appen-
dices, we add details of our theoretical analysis. We use
atomic units (qe = me = ~ = 1) throughout this work,
unless specified otherwise.

II. THEORY

A. Single-active-electron solution of the TDSE

We solve the TDSE,

[

1

2
(p̂+A(t))

2
+ V (x)

]

|ψ(t)〉 = i
∂

∂t
|ψ(t)〉 , (1)

subject to the interaction of the active electron with both,
a one-dimensional infinitely extended solid and an in-
frared (IR) external laser field E(t). We represent the
solid by a periodic potential V (x) = V (x + a), with lat-
tice constant a, and the laser field by a 10-cycle “flat-top”

vector potential:

A(t) = −
ˆ t

0

E (t′) dt′

=
A0

2T
sin(ω0t)







t , 0 ≤ t ≤ 2T
2T , 2T ≤ t ≤ 8T

(10T − t) , 8T ≤ t ≤ 10T
.

(2)

p̂ = −i ∂
∂x denotes the momentum operator and A0, ω0,

and T = 2π/ω0 the external vector-potential amplitude,
frequency, and period, respectively. Since in our numer-
ical simulation (Sec. III) the driving-laser wavelength is
three orders of magnitude larger than a and the classical
excursion range of the active electron in the laser field,
in solving Eq.(1) we can safely invoke the dipole approx-
imation, A(x, t) ≈ A(t).

We model V (x) as a Kronig-Penney potential [36, 37],
which yields the dispersion relation

cos(ak) = cos(a
√
2εnk) +

V0√
2εnk

sin(a
√
2εnk) (3)

for the valence (n = v) and conduction bands (n = c).
The potential strength V0 is adjusted to match the elec-
tronic band structure of the solid. While Eq. (3) needs to
be solved numerically, the Kronig-Penney model poten-
tial provides a convenient basis set of 2-fold-degenerate
orthonormal eigenstates and allows us to calculate tran-
sition matrix elements in a closed analytical form (see
Sec. II A 1 below and Appendix A).

1. Expansion in Houston states

Expanding solutions of Eq. (1),

|ψk(t)〉 = e−iA(t)x
∑

n

Bnk(t)e
[−i
´ t
0
εnκ(t′)dt

′] ∣
∣φnκ(t)

〉

,

(4)
in terms of Houston states

∣

∣φnκ(t)
〉

, results in the set of
coupled equations

iḂnk(t) = −
∑

n′ 6=n

Bn′k(t)E(t)Dnn′

κ(t)

× exp

[

i

ˆ t

0

∆εnn
′

κ(t)dt
′
]

.

(5)

In Eq. (5) we define the energy difference between Hous-
ton states [8, 33] (also referred to as “band-gap energy”)
∆εnn

′

κ(t) = εnκ(t) − εn′κ(t) and the transition dipole mo-
ments (TDMs)

Dnn′

κ(t) =
i Pnn′

κ(t)

∆εnn
′

κ(t)

(n 6= n′)

Dnn
κ(t) = 0.

(6)
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The TDMs are given in terms of the momentum-operator
matrix elements [35]

Pnn′

κ(t) =
1

a

ˆ a

0

φ∗nκ(t)(x)
1

i

∂

∂x
φn′κ(t)(x) dx. (7)

The diagonal elements,

Pnn
κ(t) =

∂εnκ(t)

∂κ(t)
, (8)

are related to the band energy εnκ(t) and correspond to
the group velocity of an electron wave packet in band
n. Since the elements Pnn′

κ(t) are real, the TDMs satisfy

Dnn′

κ(t) = −Dn′n
κ(t) and

(

Dnn′

κ(t)

)∗
= Dn′n

κ(t) (Appendix A).

Houston states are adiabatic in the field-dressed time-
dependent crystal momentum

κ(t) = k + A(t) , (9)

and solve the Schrödinger equation

[

p̂2

2
+ V (x)

]

∣

∣φnκ(t)
〉

= εnκ(t)
∣

∣φnκ(t)
〉

. (10)

They can be viewed as adiabatic Bloch states, with κ(t)
replacing the Bloch-state crystal momentum k. κ(t) thus
parameterizes the field-driven electronic evolution under
the influence of the IR pulse out of an initial state with
crystal momentum k (Fig. 1). As for ordinary Bloch func-
tions [38], Houston states with different initial (field-free)
crystal momentum k or different band indices n are not
coupled by the Hamiltonian in Eq. (10), yet evolve differ-
ently. Since Houston states for different initial momenta
k explore the electronic band n distinctively, they will be
referred to as “k−channels” in this work.

2A0

κ(t)

-π /a 0 π /a

k

2A0

κ(t)

Val. band

Cond. band

-π /a 0 π /a 2π /a

0

5

10

k

ε
[e

V
]

FIG. 1: (Color online). The two lowest dispersion curves ac-
cording Eq. (3) for the Kronig-Penney model in the repeated-
zone scheme (left) and in the first BZ zone (right). The ver-
tical black dashed line indicates a particular k−channel. The
single-headed blue arrow shows the adiabatic momentum κ(t)
at time t, the double-headed arrow the maximum range (2A0)
covered by κ(t) within the first BZ.

2. Density-matrix formulation

The electronic evolution described in Eq. (5) can also
be expressed in terms of the density operator,

ρ̂(t) = |ψk(t)〉 〈ψk(t)| ,
in the pure state |ψk(t)〉 given by Eq. (4). The matrix
elements

ρnn
′

k (t) = Bnk(t)B
∗
n′k(t)

=
〈

φnκ(t)
∣

∣ ρ̂k
∣

∣φn′κ(t)

〉

ei
´ t
0
∆εnn′

κ(t′)dt′

represent band populations for n = n′. Their time evo-
lution is obtained by solving

iρ̇nn
′

k (t) = E(t)
∑

n′′

[Dn′′n
κ(t) e

i
´

t
0
∆εnn′′

κ(t′)dt
′

ρn
′′n′

k (t)

−Dn′n′′

κ(t) e
i
´ t
0
∆εn

′′n′

κ(t′) dt
′

ρnn
′′

k (t)]. (11)

3. Intra- and interband yield

The electronic current in each k−channel,

Jk(t) = Jra
k (t) + Jer

k (t),

consists of intra- and interband contributions,

Jra
k (t) = −

∑

n

ρnnk (t)Pnn
κ(t) (12)

and

Jer
k (t) = −

∑

n′>n

∑

n

ei
´

t
0
∆εnn′

κ(t′)dt
′

ρn
′n

k (t)Pnn′

κ(t) + c.c.,

(13)

respectively. It defines the spectral HHG yield from a
given k−channel,

Yk(ω) =

∣

∣

∣

∣

ˆ ∞

−∞
dt e−iωtJk(t)

∣

∣

∣

∣

2

≡
∣

∣

∣
Ĵk(ω)

∣

∣

∣

2

= Y ra
k (ω) + Y er

k (ω) + 2Ĵer
k (ω)Ĵra

k (ω),

(14)

which, in addition to the intra- [Y ra
k (ω)] and inter-

band [Y er
k (ω)] yields, includes the interference term

2Ĵer
k (ω)Ĵra

k (ω).
For the dielectric solid analyzed in this work, the Fermi

energy lies in the band gap between the highest occupied
band (the valence-band) and the lowest unoccupied band
(the first conduction band). Since the valence-band is
fully occupied, we obtain the total HHG yield as

Y (ω) =

∣

∣

∣

∣

ˆ ∞

−∞
dt e−iωt

ˆ

BZ

dk Jk(t)

∣

∣

∣

∣

2

, (15)

and corresponding expressions for the total intra-
[Y ra(ω)] and interband HHG yields [Y er(ω)], after in-
cluding current contributions from all k−channels, i.e. ,
from all crystal momenta k in the first BZ.
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B. HHG mechanism for a two-band system

In this subsection, we restrict the theory developed in
Sec. II A to two electronic bands: the valence and first
conduction band, even though more than two bands are
required and included in our converged numerical cal-
culations in Sec. III below. Designating the valence and
conduction bands with superscripts v and c, respectively,
the intra- and interband currents in Eqs. (12) and (13)
simplify to

Jra
k (t) = −ρvvk (t)P vv

κ(t) − ρcck (t)P cc
κ(t) (16)

Jer
k (t) = −e−iS(k, t)ρcvk (t)P vc

κ(t) + c.c. . (17)

As detailed in Appendix C, Eq. (17) can be written as

Jer
k (t) =

d

dt

[

ρcvk (t)Dvc
κ(t)e

−iS(k, t)
]

−∆Jer
k (t) + c.c.

= J̄er
k (t) + c.c., (18)

where we define

∆Jer
k (t) = ρcvk (t)Ḋvc

κ(t)e
−iS(k, t) , (19)

J̄er
k (t) =

d

dt

[

ρcvk (t)Dvc
κ(t)e

−iS(k, t)
]

−∆Jer
k (t) ,(20)

and the action

S(k, t) =

ˆ t

0

∆εcvκ(t′)dt
′.

Applying Eq. (11) to the two-band system, we obtain

iρ̇cvk (t) = eiS(k, t)∆ρvck (t)E(t)Dvc
κ(t), (21)

with the population difference

∆ρvck (t) = [ρvvk (t)− ρcck (t)] , (22)

and

iρ̇cck (t) = E(t)Dvc
κ(t)e

−iS(k, t)ρcv(t)− c.c. . (23)

Both, the SBE model for HHG in Refs. [9, 23, 29]
and the expansion of TSDE solutions in a Houston ba-
sis, use an adiabatic basis. Note that the SBE model
in Refs. [9, 23, 29] adds the damping term ρcvk (t)/T2 to
Eq. (21), with an adjustable damping time T2 for the in-
terband coupling [34]. In addition, it does not include the
term ∆Jer

k (t) in Eq. (18). Therefore, the SBE model [9]
and our SAE-TSDE cannot be expected to yield identical
HHG spectra, not even for T2 → ∞.

1. Intraband yield

For a two-band system, norm preservation demands
ρvvk (t) = 1− ρcck (t), such that the intraband current in
Eq. (12) simplifies to

Jra
k (t) = −P vv

κ(t) + ρcck (t)∆P vc
κ(t), (24)

resulting in the intraband yield

Y ra
k (ω) =

∣

∣

∣

∣

ˆ ∞

−∞
dt e−iωt

[

P vv
κ(t) − ρcck (t)∆P vc

κ(t)

]

∣

∣

∣

∣

2

, (25)

where

∆P vc
κ(t) = P vv

κ(t) − P cc
κ(t). (26)

At low laser intensities, the conduction-band population
is very small (ρcck (t) ≪ 1), and, for every k−channel, the
by far dominant contribution to the intraband HHG spec-
trum is generated by the term P vv

κ(t) in the intraband cur-
rent. With increasing driving-field intensities, the second
term (∼ ρcck ) gains significance.

Upon integration over the first BZ, the first term in
Eq. (24) vanishes, due to symmetry, since P vv

k is an odd
function of k (Fig. 1). The integrated current is therefore
given by

Jra(t) =

ˆ

BZ

dk ρcck (t)∆P vc
κ(t) , (27)

leading to the intraband HHG yield for the two-band
system

Y ra(ω) =

∣

∣

∣

∣

ˆ ∞

−∞
dt e−iωt

ˆ

BZ

dk ρcck (t)∆P vc
κ(t)

∣

∣

∣

∣

2

. (28)

At low intensities, even though each k−channel defines
a significant intraband current, due to the symmetry-
related cancellation of contributions from crystal mo-
menta +k and −k, the integrated intraband HHG yield
is comparatively small.

2. Interband yield

Calculation of the HHG yield for a specific k-channel,
according to Eq. (14), requires the Fourier-transformed
current

ˆ̄Jer
k (ω) = iω

ˆ ∞

−∞
dt e−iωtρcvk (t)Dvc

κ(t)e
−iS(k, t)

−
ˆ ∞

−∞
dt e−iωt∆Jer

k (t) .

(29)

Replacing ρcvk (t), obtained by integrating Eq. (21), in
Eq. (18), the interband current and HHG yield for the
two-band system become

ˆ̄Jer
k (ω) = ω

ˆ ∞

−∞
dt e−iωtDvc

κ(t) e
−iS(k, t)

×
ˆ t

0

dt′ eiS(k, t′)∆ρvck (t′)E(t′)Dvc
κ(t′)

+

ˆ ∞

−∞
dt e−iωt∆Jer

k (t)

(30)

and

Y er
k (ω) =

∣

∣

∣
Ĵer
k (ω)

∣

∣

∣

2

=
∣

∣

∣

ˆ̄Jer
k (ω) + ˆ̄Jer

k (−ω)∗
∣

∣

∣

2

, (31)

respectively.
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C. Approximate evaluation of the interband yield

While the numerical HHG spectra discussed in Sec. III
below are calculated based on the theory outlined in
Secs. II A and II B, we apply in this subsection additional
approximations to the interband current in order to de-
rive analytical expressions that reveal additional physi-
cal properties of the interband HHG process in solids.
We restrict this analysis to vector-potential amplitudes
A0 < π/a, for which the range of κ(t) is limited by the
width, 2π/a, of one BZ (Fig. 1).

1. Saddle-point approximation

Setting the TDM in Eq. (30) equal to its value at
the band center (k = 0) [9, 21], Dvc

κ(t) ≈ Dvc
0 , remem-

bering that according to Eq. (6) (Dvc
0 )

2
= − |Dvc

0 |2,
and applying the frozen valence-band approximation
|∆ρvck (t)| ≈ 1 [39], Eq. (30) simplifies to

ˆ̄Jer
k (ω) ≈− ω |Dvc

0 |2
ˆ ∞

−∞
dt

ˆ t

0

dt′ eiσω(k, t, t′)E(t′) ,

(32)
where

σω(k, t, t
′) = −ωt−

ˆ t

t′
∆εcvκ(t′′)dt

′′ . (33)

Since eiσω(k, t, t′) rapidly oscillates as a function of t
and t′, the integrals in Eq. (32) are dominated by con-
tributions at times t = te and t′ = ts when the phase
σω(k, t, t

′) is stationary, i.e.,

∂σω(k, te, ts)

∂t
=
∂σω(k, te, ts)

∂t′
= 0 .

At these times we find

∆εcvκ(te) = ω (34)

∆εcvκ(ts) = 0 . (35)

Evaluating Eq. (32) in saddle-point approximation [9, 40,
41] now results in

ˆ̄Jer
k (ω) ≈ −ω |Dvc

0 |2
∑

te

∑

ts

(2πi)E(ts)e
iσω(k, te, ts)

|det [Hess σω(k, te, ts)]|1/2
,

(36)
with the Hessian matrix

[Hess σω(k, te, ts)]ij =
(

∂2σω(k, te, ts)

∂ti∂tj

)

ti,tj= te, ts

.

Equation (34) implies that for each k−channel the cutoff
frequency for interband HHG becomes

ωc(k, A0) =

{

∆εcv|k|+A0
, |k|+A0 < π/a

∆εcvπ/a , |k|+A0 ≥ π/a .
(37)

We use this expression in Sec. III A 1 below to analyze
crystal-momentum-resolved spectra for crystal momenta
in the entire BZ. In Secs. III A 3 and III B 2 it will help us
to scrutinize the crystal-momentum-resolved dependence
of the HHG cutoff frequency on the field-strength of the
driving laser pulses.

Equation (35) cannot be fulfilled in our Kronig-Penney
model for real-valued times and energies because the
bandgap is nonzero across the entire BZ. We designate
the maximal cutoff energy as ∆εcvmax. Complying with
Eq. (35) requests allowing for complex-valued times, en-
ergies, and crystal momenta k. Designating the com-
plex crystal momentum as K, we analytically continue
Eq. (35) and the transcendental Eq. (3) into the com-
plex K−plane. Even though complex roots Ks = K(ts)
of Eq. (35) can only be obtained numerically, we get fur-
ther insight into the interband HHG process by Taylor-
expanding about K = 0,

∆εcvK = ∆εcv0 +
d∆εcv0
dK

K +
1

2

d 2∆εcv0
dK2

K2 +O(K3) .

While the expansion coefficients are in general com-
plex, we show in Appendix B that d∆εcv0

dK = 0 and

ℑ
[

d
2∆εcv0
dK2

]

= 0, such that

∆εcvK = ∆εcv0 +
K2

2m∗
0

+O(K3) , (38)

where ℑ stands for “imaginary part of”. We evaluate the
real-valued reduced effective mass,

m∗
k =

m∗
vkm

∗
ck

m∗
vk −m∗

ck

,

at the band center,

m∗
0 = m∗

k|k=0 ,

in terms of the valence- and conduction-band effective
masses

1

m∗
nk

=
∂2εnk
∂k2

, n = v, c . (39)

Note that the derivatives in Eq. (39) are taken along
the real axis and εnk = ℜ[εnK ], where ℜ stands for “real
part of”. Since the first term and the coefficient of the
quadratic term in Eq. (38) are real, the roots Ks are
purely imaginary and correspond to interband transitions
at the Γ−point (k = 0).

In Appendix D we show that, for a continuous-
wave driving field of the form A0 sin(ω0t) and for
ω0

√

2∆εcv0 m
∗
0 < E0, the interband HHG yield is given
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by

Y er
k (ω) ≈ exp

[

−
√
2∆εcv0

E0 |Dvc
0 |
√

1− (k/A0)2

]

× 2 (πω |Dvc
0 |)2

(

E0 |Dvc
0 |
√

1− (k/A0)2√
2∆εcv0

)

×

∣

∣

∣

∣

∣

∣

∣

∑

te

e−iωte
[

ei{ℜ[S(k, ts)]+S(k, te)+
π
2 } + c.c.

]

∣

∣

∣
E(te)∆P vc

κ(te)

∣

∣

∣

1/2

∣

∣

∣

∣

∣

∣

∣

2

.

(40)
As expected, the interband HHG yield increases with de-
creasing band gap ∆εcv0 and increasing TDM |Dvc

0 |.

2. Relevant k-range for the interband HHG

The repeated-zone scheme in Fig. 1 shows that, for
k > A0 or k < −A0, 0 < |κ(t)| < 2π/a. Hence, |κ(t)|
does not reach the limits 0 and 2π/a, Eq. (35) cannot be
satisfied, and contributions to HHG are restricted to the
interval k ∈ (−A0, A0) within the first BZ. For the sym-
metrical dispersion relation of the Kronig-Penney model
(Fig. 1), the interband HHG yield in Eq. (40) is largest
at the Γ−point.

With the upper limit for the integrated interband yield

Y er(ω) =

∣

∣

∣

∣

ˆ

BZ

dk Ĵer
k (ω)

∣

∣

∣

∣

2

≤
(
ˆ

BZ

dk
∣

∣

∣
Ĵer
k (ω)

∣

∣

∣

)2

and since
[

1− (k/A0)
2
]1/2 ≤ 1 in Eq. (40), we find the

contribution of each k-channel to the interband yield to
be limited by

∣

∣

∣
Ĵer
k (ω)

∣

∣

∣
=
√

Y er
k (ω)

∝ exp

[

− ∆εcv0√
2E0 |Dvc

0 |
√

1− (k/A0)2

]

.

We can now estimate the range kmax(A0) of initial-

state crystal momenta k ∈
(

−kmax(A0)
2 , kmax(A0)

2

)

that

yield relative contributions larger than 10−N times the
maximal yield Y er

0 (ω),

Y er
k (ω) ≥ 10−NY er

0 (ω),

as

kmax(A0) ≈
2E0

ω0

×

√

√

√

√

√

√

√

1−









∆εcv0
√
2E0 |Dvc

0 |
(

N
2 ln 10 +

√
2∆εcv0

E0|Dvc
0 |

)









2

.

(41)

This expression allows us to quantify the loss of precision
in the calculated interband yield that is induced by re-
stricting the range of crystal momenta to the subinterval
[−kmax(A0), kmax(A0)] of the first BZ.

3. Integrated interband yield

In this subsection we examine the net contribution to
the interband current from all k-channels in the first
BZ to obtain the observable integrated interband yield
Y er(ω). For numerical applications, the numerical effort
can possibly be reduced by limiting the integration range
to kmax(A0), as determined in the previous subsection.
Whether this is possible depends on the specific laser pa-
rameters and solid electronic structure.

Equation (29) leads to the interband current, inte-
grated over the whole BZ,

ˆ̄Jer(t) =

ˆ

BZ

dk

[

ω

ˆ ∞

−∞
dt e−iωtρcvk (t)Dvc

κ(t)e
−iS(k, t)

−
ˆ ∞

−∞
dt e−iωt∆Jer

k (t)

]

.

(42)
For constant TDMs and a frozen valence-band popula-
tion, we arrive at the saddle-point conditions

∂σω(kr, ts, te)

∂k
=
∂σω(kr, ts, te)

∂t
=
∂σω(kr, ts, te)

∂t′
= 0 ,

with σω(k, t
′, t) defined in Eq. (33). These conditions

imply

∆εcvκr(ts)
= 0 (43)

ˆ te

ts

∆P vc
κr(t)

dt = 0 (44)

∆εcvκr(te)
= ω, (45)

where κr(t) = kr +A(t), and allow us to determine the
roots kr, ts, and te numerically.

Equations (43) and (45) are equivalent to Eqs. (35)
and (34). Condition (44) arises due to the integration
over the BZ. It expresses the requirement of the excited
photoelectron wave packet, moving with group velocity
P cc
kr+A(t), and the residual hole wave packet, propagating

with group velocity P vv
kr+A(t), to recombine at time te

after their birth at time ts, while emitting a photon with
energy ∆εcvκr(te)

. We show in Appendix F that, since

ℑ[ts] ∝ ω0

√

2∆εcv0 m
∗
0 and the matrix elements Pnn

k are
odd functions of k, Eq. (44) can be approximated as

ˆ te

t0

∆P vc
κr(t)

dt ≈ 0 . (46)

We employ this expression in Sec. III A 3 below for de-
riving the field-strength dependence of the HHG cutoff
frequency of the BZ-integrated spectra. Even though
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within the Kronig-Penney model the band-gap energy
∆εcvk grows continuously from the center to the edge of
the first BZ, the k−channel at k = kcr with the largest
frequency,

ωc
BZ(A0) = εkc

r+A(te) , (47)

lies in the range kr ∈ (−A0, A0), as seen in Sec. II C 2,
and needs to be determined numerically (see Sec. III B 1
for a specific numerical example). In Appendix E we use
the saddle-point method to derive an approximate ana-
lytical expression for the BZ-integrated interband yield.

III. NUMERICAL RESULTS

For our numerical applications of the theoretical
model described in Sec. II, we adopt the laser wave-
length (3250 nm) and pulse duration (10 optical cy-
cles) of the experiment by Ghimire et al. [7] and the
temporal pulse profile given by Eq. (2). We model
the electronic structure of MgO based on the Kronig-
Penney model potential [Eq. (A1)] with an interlayer
spacing of a = 8 a.u. [42] and adjust the potential
strength to V0 = 22.345 eV in order to reproduce the
bandgap energy between the valence and conduction
band at the Γ−point, 4.19 eV, obtained by Xu and
Ching [42] from a full-dimensionality orthogonalized-
linear-combination-of-atomic-orbitals (OLCAO) calcula-
tion within the framework of density-functional theory
(DFT) in local density approximation (LDA). These val-
ues of the Kronig-Penney potential parameters result in
a local bandgap at the BZ edge (at k = ±π/a) of 13.6 eV,
in very good agreement with the local bandgap at the X
point of 13 eV computed by Xu and Ching (Fig. 2).

Δ
[e
V

]
ε

kc
v

-0.4 -0.2 0. 0.2 0.4

4

6

8

10

12

14

k[a.u.]

Kronig-Penney

Xu and Ching (DFT-LDA)

FIG. 2: (Color online). Bandgap energies in the first BZ
between the valence and lowest conduction band of MgO ob-
tained within the Kronig-Penny model with interlayer spac-
ing of 8 a.u. and potential strength 22.345 eV (black solid
line) and adapted from the OLCAO-LDA DFT calculation of
Ref. [42] along the Γ−X direction (dashed red line).

In this section, we perform a systematic numerical
study of the contributions to the HHG spectrum from
different k channels within the entire first BZ. We first
discuss results obtained by restricting the external-field-
driven electron dynamics to the valence and conduction

band in Sec. III A, before presenting converged HHG
spectra obtained by including up to 13 electronic bands
of MgO in Sec. III B. For all calculations we employed a
fourth-order Runge-Kutta algorithm to numerically solve
Eq. (5) at 400 equally spaced k−points in the first BZ.

A. HHG spectra in two-band approximation

In order to understand the basic mechanisms of intra-
and interband HHG in solids, we complement our theo-
retical analysis of HHG by a two-band system in Sec. II B
above, with the numerical solution of Eq. (5), restricted
to the lowest (highest) conduction (valence) band of
MgO. While this approach can only provide accept-
able results at moderate intensities of the driving field
(A0 < π/a), it fails at higher field strengths, for which
the inclusion of more bands is mandatory (Sec. III B).

1. Lattice-momentum-resolved contributions to HHG

To reveal the characteristics of HHG spectra, including
all k-channels in the first BZ, we performed a calculation
at a field strength of 0.13V/Å. Figures 3 (a) - 3 (c) dis-
play two-band HHG spectra as a function of the lattice
momentum k. While, according to Eq. (14), the total
yield is not equal to the sum of the intra- and interband
yield, it is instructive to examine intra- and interband
spectra separately. The comparison of Figs. 3(a) and 3(b)
shows that intraband harmonics dominate HHG at har-
monic photon energies below the band gap, ∆εcv0 ≈ 11ω0,
while above this threshold mainly interband harmonics
contribute to the total HHG yield in Fig. 3(c). The ob-
servation that the band gap establishes a threshold be-
tween intra- and interband HHG is consistent with energy
conservation, requiring electronic probability density to
cross the local band gap, ∆εcvκ(t), before contributing to
the interband current and thus to the interband HHG.

In view of Eq. (24) and the semiclassical interpreta-
tion of P vv

κ(t) as the photoelectron group velocity in the
valence band, at low electric-field strengths we expect the
intraband yield [Eq. (25)] to be dominated by the Fourier
transform of P vv

κ(t) (Fig. 4). Indeed, below the interband-
gap threshold (11th harmonic), the yields in Figs. 3(a)
and 4 very closely resemble each other and are identi-
cal with respect to their zeros along the k-axis for every
given harmonic order: both spectra exhibit even and odd
harmonics that vary over the first BZ. At the Γ−point
and edge of the first BZ both spectra only include odd
harmonics.

Below the interband-gap threshold, the interband spec-
trum in Fig. 3(b) bears some similarity with the intra-
band yield in Fig. 3(a), but has significantly lower yields
and a different distribution of yield nodes along the k-
axis, at all harmonic orders. Above the interband-gap
threshold, the interband yield has a rich k-dependent
structure of even and odd harmonics. According to
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FIG. 3: (Color online). HHG in MgO driven by a 10-cycle
3250 nm pulse with a peak electric-field strength of 0.13V/Å
(corresponding to a peak intensity of 2.24 × 1011 W/cm2).
Thin vertical lines mark odd harmonics. The vertical black
dashed line indicates the harmonic order (∆εcv0 /ω0 = 11) cor-
responding to the minimum band-gap energy ∆εcv0 at k = 0.
(a) Intraband HHG spectrum. (b) Interband HHG spectrum.
The horizontal dashed black lines indicate ±kmax(A0)/2 for
N = 5 as given by Eq. (41). The V-shaped black line shows
the maximal band-gap energy ωc(k, A0) as given by Eq. (37).
(c) Total HHG spectrum. The yields in (a-c) are given as
functions of the lattice momentum k over the entire first BZ
and on the same logarithmic scale. (d) Total HHG yield, inte-
grated over the first BZ. Above harmonic order 29, the yield
drops exponentially, determining the cutoff energy indicated
by the vertical blue dashed line.

Eq. (37), the spectral range of interband high-order har-
monics above the interband-gap threshold at the 11th
harmonic is limited by ωc(k, A0) . This k-dependent up-
per limit is indicated in Fig. 3(b) by the V-shaped solid
black line. According to Eq. (41), contributions to the in-
terband yield from k-channels that are N orders of mag-
nitude smaller than the maximal yield at the Gamma-
point lie in the range ±kmax(A0)/2. The V-shaped solid
black line shows their onset for N = 5.

We note that our numerical yields in Fig. 3, including
contributions to HHG for k-channels within the entire
first BZ, are incompatible with the assumption in previ-
ous studies [8, 43] that only a small part of the first BZ
near the Γ−point contributes to HHG in solids. Even
though for the one-dimensional model solid investigated

FIG. 4: (Color online). Time Fourier transformation of the
valence-band group velocity P vv

κ(t) for a 10-cycle 3250 nm laser
pulse of 0.13V/Å peak field strength.

here computing time is not an issue, the limit imposed by
Eq. (41), and its numerical validation in Fig. 3, in addi-
tion to providing physical insight into the HHG process,
is relevant for reducing the computational effort in multi-
band HHG calculations based on a three-dimensional rep-
resentation of the solid.

While the k-channel-resolved HHG spectrum in
Fig. 3(c) includes even and odd high-order harmonics and
depends in a rather complex way on the harmonic photon
energy and lattice momentum k, including contributions
to HHG from the entire first BZ according to Eq. (15),
results in the comparatively simple total HHG spectrum
shown in Fig. 3(d). As expected due to the inversion
symmetry about the Γ−point of the Kronig-Penney band
structure (Fig. 1), the total HHG spectrum in Fig. 3(d)
is strongly dominated by odd harmonics.

2. Field-strength dependence of HHG spectra

Figure 5 shows the total HHG yield (including
intra- and interband HHG) for the k = 0 chan-
nel, i.e., only including the Γ−point at the center
of the first BZ, for peak electric-field strengths
0.05V/Å < E0 < 0.3V/Å. This field-strength
range corresponds to the laser-peak-intensity range
3.3× 1010 W/cm2 < I0 < 1.19× 1012 W/cm2. We
chose the upper limit of this interval to slightly exceed
the field strength (π/a)ω−1

0 ≈ 0.283V/Å. At this field
strength, the vector-potential amplitude is A0 = π/a,
such that the field-dressed time-dependent crystal
momentum κ(t) = k +A(t) = A(t) defined in Eq. (9)
explores the entire first BZ (Fig. 1) within one optical
cycle in the plateau of the laser pulse and, thus, the
entire range of local band gaps. We selected the lower
limit of the field strength in view of the approximations
made in Sec. II B, which are based on a series expansion
in the parameter γ = ω0

√

2∆εcv0 m
∗
0/E0. Requesting

γ < 1, implies for MgO E0 > 0.1V/Å, slightly above the
lower limit of the assumed range of field strengths.

The comparison of the intra- and interband yields in
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FIG. 5: (Color online). HHG in MgO driven by a 10-
cycle 3250 nm pulse as a function of peak laser-electric-field
strength. Contributions to the HHG yield from the k = 0
channel (Γ−point) only. (a) Intraband, (b) interband, and
(c) total spectra. Thin vertical lines mark odd harmonics.
The vertical black dashed lines correspond to the minimal
and maximal local band-gap energies ∆εcv0 and ∆εcvmax in the
first BZ. The white line in (b,c) indicates the cutoff harmonic
order.

Figs. 5(a) and 5(b) shows that the intraband emission
dominates the total yield in Fig. 5(c) below and inter-
band emission above the band-gap threshold near the
11th harmonic, for the entire considered range of electric-
field strengths. The HHG cutoff is thus determined by
interband emission and displayed as superimposed white
lines in Figs. 5(b) and 5(c). We analyze the HHG cut-
off behavior in more detail in Sec. III A 3 below. Over
the range of displayed electric-field strengths the intra-
and interband spectra are dominated by odd harmonics,
with slim traces of even harmonics. Small even and non-
integer HHG yields were also noticed in an SBE-based
calculation by Li et al. [23] and explained in terms of
the combined effect of the external-field and time depen-
dence of the TDM Dvc

κ(t). We speculate that this effect
may be enhanced due to our inclusion of the term defined
by Eq. (19) in Eq. (18). This term is absent in the SBE
model.

Relaxing the k = 0-channel (Γ-point) emission restric-
tion, Fig. 6 shows yields obtained after integrating k over
the first BZ. As for the Γ-point-only yield in Fig. 5, the
comparison of the intra-, interband, and total yields in
Figs. 6(a), 6(b), and 6(c), respectively, reveals for the
entire shown laser-peak-intensity range that below the
lowest band-gap threshold, near the 11th harmonic, the
yields are dominated by intraband emission, while above

this threshold practically only interband emission occurs.
Even though the spectra include traces of even and non-
integer harmonics (as they do for Γ−point-only emis-
sion), the contrast between odd and even harmonic yields
is larger than for Γ-point-only emission.

As discussed in the preceding Sec. III A 1, intraband
emission at the Γ−point is directly related to the valence-
band group velocity. It yields intense odd and even har-
monics, as seen in Figs. 3 and 4. On the other hand,
as given by Eq. (27), upon integration over the first BZ
the valence-band term in Eq. (25) cancels (by symme-
try), and high-yield emission requires the laser-electric
field to be strong enough to effectively promote electrons
to the conduction band. This explains the low yield at
low intensities in Figs. 6(b) and 6(c), as compared to the
corresponding Γ−point-only yields in Fig. 5. The exper-
imental investigation of HHG below the lowest band-gap
threshold and for low to moderate peak intensities might
thus resolve the range kmax(A0) of carriers involved in
HHG for a specific substrate. However, it remains to be
explored to what extent experimental focal-volume ef-
fects, i.e., averaging of the laser intensity profile, prevent
the accurate determination of kmax(A0).
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FIG. 6: (Color online). As Fig. 5, but integrated over initial
k-channels from the entire first BZ.

3. Field-strength dependence of the HHG cutoff

In this subsection we analyze the field-strength depen-
dence of the HHG cutoff frequency obtained including
both, Γ−point-only emission and k-channels from the
entire first BZ. As the comparison of interband and to-
tal yields in Figs. 5 and 6 reveals, inclusion of the en-
tire first BZ increases the highest generated frequencies,
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as compared to Γ−point-only emission. For each given
peak electric-field strength, we visually determine the
cutoff as the HHG order at which the yield starts to de-
cline exponentially (as indicated in Fig. 3(d)), for both
Γ−point-only and BZ-integrated yields. This leads to
the intensity-dependent cutoff shown by the markers in
Fig. 7. For the shown range of harmonic orders, inclusion
of all k-channels results in cutoffs (indicated as triangular
markers) in good agreement with our saddle-point pre-
diction (green dotted line) that lie 8 - 10 harmonic or-
ders above the cutoff for Γ−point-only emission (square
markers). The cutoff orders predicted for the Γ-point-
only emission by our 2-band TDSE calculations and our
saddle-point analysis (red dashed line) are in fair agree-
ment with the 2-band TDSE results of Wu et al. [8]
(solid blue blue line), which we adapted from Fig. 3(b)
in Ref. [8]. In agreement with Wu et al. , we find that the
cutoff increases approximately linearly with laser peak-
electric-field strength over the displayed range of har-
monic orders, albeit with a noticeably smaller slope.
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FIG. 7: (Color online). Dependence of HHG-cutoff order
on the laser peak-electric-field strength (left vertical axis)
or intensity (right vertical axis) in two-band approximation.
Square markers show HHG cutoffs for Γ−point-only (k = 0)
emission. Triangular markers indicate HHG cutoffs includ-
ing k-channels from the entire first BZ. The red dashed and
green solid line show approximate cutoffs obtained from the
saddle-point equations in Secs. IIC 1 and IIC 3 for Γ−point-
only emission and k-channels from the entire first BZ, respec-
tively. The dashed red line, in particular, is given by Eq. (37).
The solid blue line shows 2-band TDSE results adapted from
Fig. 3(b) in Wu et al. [8] for Γ−point-only emission.

To better understand the field-strength dependence of
the HHG cutoff, we resort to the saddle-point analysis of
the HHG process in the 2-band approximation discussed
in Secs. II C 1 and II C 3. Referring to HHG including
all k-channels in the first BZ, we numerically solve the
saddle-point Eq. (46) for te and subsequently Eq. (45)
for each kr. This yields the frequency curve ∆εcvκr(te)

,
from which we get the maximal frequency ωc

BZ and cut-

off harmonic order ωc
BZ/ω0. The red line in Fig. 8, shows

the harmonic energy ∆εcvκr(te)
as a function of values

for kr that contribute to the BZ-integrated interband
yield for a peak field strength of the driving laser of
0.13V/Å. As discussed in Sec. II C 3, |kr| < A0 (indi-
cated by vertical thin blue lines). The maximum har-
monic energy is obtained at crystal momenta ±kcr indi-
cated by the dotted green lines. k-channels with k = ±kcr
thus yield the maximum cutoff energy at the given laser
field strength. The V-shaped black solid line in Fig. 8
shows the maximum energy ωc(k,A0), i.e., the electron-
hole-pair-recombination energy in each k−channel given
by Eq. (37) [cf., Fig. 3(b)]. This energy depends on the
maximum local band gap in each channel and exceeds
the cutoff energy in the BZ-integrated yield ∆εcvκr(te)

(red
line). Since ωc(kr, A0) ≈ ∆εcvκr(te)

the k = ±kcr channels
have the largest contribution the HHG yield.
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FIG. 8: (Color online). Determination of the cutoff HHG or-
der for a driving-laser peak intensity of 0.13V/Å and a model
MgO crystal with interlayer spacing a = 8 a.u.. The black
solid line shows the maximum local vertical band-gap energy
at the field-dressed crystal momentum κ(t) = k + A(t) during
one optical cycle of the driving laser as a function of the field-
free crystal momentum k ∈ [−π/a = −0.39, π/a = 0.39] a.u..
The vertical thin blue lines indicate crystal momenta ±kr,
determined in saddle-point approximation, that maximize the
interband HHG yield Y er(ω) given in Eq. (E4). The red line
shows the interband HHG cutoff in each k channel. The ver-
tical green dotted lines indicate the highest cutoff energies
reached at crystal momenta kc

r that do not need to coincide
with the maximum vertical band gap at the first BZ edge
(k = π/a).

B. Multiband spectra

1. Field-strength dependence of HHG spectra

Figures 9 and 10 show multi-band HHG spectra for
both the Γ-point-only and BZ-integrated calculations, re-
spectively. Including the lowest 13 bands of the Kronig-
Penney model MgO crystal, we find these spectra to have
converged. The convergence of the results was deter-
mined from the evaluation, in the k = 0 channel, of
the population ρMM

0 (t) in each new band M we added
to the calculation. Based on our convergence criterium
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ρMM
0 (t) < 10−12ρvv0 (0), we find M = 13 for a maximum

peak field strength of E0 = 0.3V/Å. We included the
same number (13) of bands for calculations at lower field
strengths and for k 6= 0. Comparison with the two-band
yields of Figs. 5 and 6 shows that the spectral region
below the first band-gap threshold is dominated by the
electron dynamics in the lowest two bands. For harmonic
orders below ≈ 35, the shape of the multi-band spectra
and their laser-electric-field dependence largely resemble
the two-band spectra. Our numerical tests showed that
the inclusion of more than two bands gradually improves
the agreement with fully converged spectra in the shown
spectral range.
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FIG. 9: (Color online). Total HHG spectrum from MgO
driven by a 10-cycle 3250 nm laser. The spectral yield in-
cludes intra- and interband contributions from the k = 0 chan-
nel (Γ−point) only. Thin vertical lines mark odd harmonics.
(a) Harmonic orders 50 and below. The white line indicates
the cutoff energy. (b) Harmonic orders 51 to 129. The vertical
black dashed lines correspond to the minimal local band-gap
energy, ∆εcv0 ≈ 11ω0, and maximal local band-gap energies,
∆εcvmax ≈ 35ω0 and ≈ 123ω0, between the valence band and
lowest and third conduction band, respectively.
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FIG. 10: (Color online). As Fig. 9, but integrated over initial
k-channels from the entire first BZ.

Above the ≈ 35th harmonic and at the highest field
strengths shown in Figs. 9 and 10, a new plateau emerges,
which we attribute to contributions from the second and
third conduction band. If only the k = 0 channel is

included, the second plateau emerges at a higher field
strength, E0 > πω0/a, than in calculations including
the entire first BZ. This field strength corresponds to
the vector potential for which the cutoff frequency ac-
quires its maximum value ωc(0, E0/ω0) = ∆εvcmax given
by Eq. (37).

2. Field-strength dependence of the HHG cutoff

Figure 11 shows the field-strength dependence of the
HHG cutoff we obtained from 13-band TDSE calcula-
tions by either including Γ−point-only emission (square
markers) or k-channels from the entire first BZ (triangu-
lar markers), in comparison with the multi-band calcu-
lations from the literature. The solid blue line shows 51-
band TDSE results for emission from the Γ−point-only,
adapted from Fig. 3(a) in Ref. [8]. The orange dashed
line shows HHG cutoff orders obtained by the direct prop-
agation of the one-dimensional TDSE for Γ−point-only
emission by Li et al. [23]. The black dash-dotted line
is adapted from the 6-band SBE calculation, including
k-channels from the entire first BZ, of Li et al. .

For Γ−point only emission yields our saddle-point ap-
proximation results in Fig. 11 (red dashed line) com-
pare well with our 13-band calculations (square mark-
ers). Both are in reasonable agreement with the 51-band
TDSE calculation of Wu et al. [8] (blue line). The cutoff
harmonic orders we obtain in saddle-point approxima-
tion are red-shifted by about three harmonic orders rel-
ative to the results of Li et al. [23] (orange dashed line),
but approximately match the slope of the field-strength-
dependent cutoff increase found by Li et al. . The cut-
off harmonic orders predicted by our BZ-integrated 13-
band calculation (triangular markers) agree well with
our analytical saddle-point approximation (green dotted
line) and the 6-band SBE calculation of Li et al. (black
dashed-dotted line). We note that the calculation of Li et

al. includes a heuristic dephasing time, in contrast to
our approach, where, apart from the adjusted potential
strenghth of the Kronig-Penney model potential, no ad

hoc parameters are introduced.

IV. SUMMARY AND CONCLUSIONS

We investigated intra- and interband HHG from a solid
in SAE approximation, by adjusting a one-dimensional
Kronig-Penney model potential to a DFT-LDA calcula-
tion [42] of the MgO electronic-structure. We expanded
the active electron wavefunction in a basis of adiabati-
cally field-dressed Bloch states (Houston states) to solve
the TDSE. For numerical applications, we first carried
out two-band calculations and evaluated contributions
to the HHG yield from specific initial-state crystal mo-
menta k in the first BZ. This revealed essential contribu-
tions to the HHG yield from non-zero crystal momenta
in the first BZ, in agreement with the theoretical work of
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FIG. 11: (Color online). Dependence of HHG-cutoff order
on the peak laser-electric-field strength (left vertical axis)
or intensity (right vertical axis) from calculation including
more than two bands. Square markers show HHG cutoffs for
Γ−point-only (k = 0) emission. Triangular markers indicate
HHG cutoffs including k-channels from the entire first BZ.
The blue solid line shows 51-band TDSE results for emission
from the Γ−point-only, adapted from Fig. 3(a) in Ref. [8].
The black dotted and orange dashes lines are adapted from
the BZ-integrated 4-band SBE calculation and the numerical
TDSE solution for Γ−point-only emission by Li et al. . To
facilitate the comparison with the 2-band cutoff calculations,
we reproduce the saddle-point-approximation results of Fig. 7
(red dashed and green solid line).

Floss et al. [31]. We find significant HHG yields at even
high-order harmonic orders for k 6= 0 (off the Γ−point).
Even harmonics are particularly prominent for the lowest
intraband harmonics. As observed experimentally and
expected due to the symmetric dispersion of the model
MgO crystal with respect to the BZ-zone center, our BZ-
integrated yields predominantly contain odd harmonics.
Next, we examined analytical properties of k−resolved
HHG yields and cutoff frequencies within a saddle-point
approximation. This allowed us, for example, to esti-
mate the loss of accuracy in calculating HHG yields that
are induced by restricting k to a small interval near the
Γ−point in the first BZ, as compared to BZ-integrated
yields.

We studied complementary contributions to the HHG
yield from intra- and interband emission. As expected
[8, 9], while intraband emission dominates below the
threshold for interband excitation, interband emission al-
most exclusively determines the HHG yield above this
threshold. We revealed that intra- and interband BZ-
integrated HHG spectra are qualitatively different com-
pared to Γ−point-only calculations. For the intraband
contribution to the HHG yield, this difference can be
deduced from our expressions for quantum-mechanically
calculated currents. For the interband contribution, we
confirm the well-known [7] linear increase of the cut-

off frequency with the peak electric-field strength of the
driving laser in both fully quantum-mechanical calcula-
tions and in simplified saddle-point-approximation calcu-
lations. These analytical predictions and numerical cal-
culations are in very good agreement with each other.
They are also in qualitative and fair quantitative agree-
ment with different numerical calculations from other au-
thors.

Finally, by performing multi-band TDSE numerical
calculations, we studied a second plateau which emerges
above the maximum cutoff HHG order we determined
in two-band calculations. Because the field-strength
dependence is different in BZ-integrated and Γ−point-
only yields, this second plateau emerges at different field
strengths in both cases.

Appendix A: Kronig-Penney basis functions

The band structure of the Kronig-Penney model for
periodic delta potentials,

V (x) = V0
∑

j

δ(x− ja) , (A1)

is given by Eq. (3) of the main text and the eigenfunctions

φnk(x) = |Ank|
[

eiαnk(x−a
2 )

− 1− eia(αnk−k)

1− e−ia(αnk+k)
e−iαnk(x+ a

2 )
]

,

with the normalization factor

|Ank|2 =
sin2 [a(αnk + k)/2]

1− sin(2aαnk)
2aαnk

− cos(ak)
[

cos(aαnk)− sin(aαnk)
aαnk

]

and corresponding eigenenergies

εnk =
α2
nk

2
. (A2)

In Fig. 12, we show the four lowest bands included in our
numerical calculations of Sec. III. For crystal momenta
k = 0 and even n, and for k = π/a and odd n, we have
αnk = nπ/a.

We adjust the global phase of the eigenfunctions to
yield real matrix elements in Eq. (7) of the main text,

Pnn′

k =
2|Ank||An′k|αnkαn′k [cos(aαn′k)− cos(aαnk)]

a sin
[

a
2 (αnk + k)

]

sin
[

a
2 (αn′k + k)

]

(α2
nk − α2

n′k)

for n 6= n′, and real diagonal matrix elements

Pnn
k =

αnk sin(aαnk) sin(ak)

1− sin(2aαnk)
2aαnk

− cos(ak)
[

cos(aαnk)− sin(aαnk)
aαnk

] .
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FIG. 12: Four lowest bands included in our numerical calcu-
lations.

Appendix B: Analytical continuation of the
Kronig-Penney basis

In our analysis of the interband current, we extend the
energies in Eq. (A2) to the complex K−plane, defining
K = k + iki, where ki is the imaginary part of the com-
plex crystal momentum, and request

lim
ki→0

αnK = αnk , lim
ki→0

εnK = εnk .

Equation (3) and its K-derivative at K = 0yield

1 = cos(aαn0) +
V0
αn0

sin(aαn0)

0 =

[

a V0 cos(aαn0)

αn0
−
(

a+
V0
α2
n0

)

sin(aαn0)

]

dαn0

dK
.

After eliminating V0 in these two equations, we see that
the term in square brackets of the second equation cannot
be zero, since 2π ≤ aαn0 < 3π for n = v , c. This implies

dαnK

dK

∣

∣

∣

∣

K=0

= 0 , n = v, c (B1)

and shows that

d (∆εcvK )

dK

∣

∣

∣

∣

K=0

= 0 . (B2)

From the second derivative of Eq. (3) with respect to
K and Eq. (B1), we obtain

−a2 =

[

a V0 cos(aαn0)

αn0
−
(

a+
V0
α2
n0

)

sin(aαn0)

]

d2αn0

dK2
.

As noted in the main text, the coefficients in front of
the second derivative are real. They do not vanish, since
2π ≤ aαn0 < 3π for n = v , c. From this we conclude that

ℑ
[

d2αnK

dK2

∣

∣

∣

∣

K=0

]

= 0 , n = v, c

and, consequently,

ℑ
[

d2 (∆εcvK )

dK2

∣

∣

∣

∣

K=0

]

= 0 .

Appendix C: Alternative expression for the
interband current

We here derive the interband current in Eq. (18) of in
the main text. Defining the function

ηerk = ρcvk (t)Dvc
κ(t)e

−iS(k, t) , (C1)

we employ Eq. (6) to obtain its derivative

η̇erk = ρ̇cvk (t)Dvc
κ(t)e

−iS(k, t)

+ ρcvk (t)Ḋvc
κ(t)e

−iS(k, t)

− P vc
κ(t)ρ

cv
k (t) e−iS(k, t) .

Using
(

Dvc
κ(t)

)2

= −
∣

∣

∣
Dvc

κ(t)

∣

∣

∣

2

and substitution of ρ̇cvk (t)

from Eq. (21) results in

−ρcvk (t)P vc
κ(t)e

−iS(k, t) =η̇erk − i∆ρvck (t)E(t)
∣

∣

∣
Dvc

κ(t)

∣

∣

∣

2

−ρcvk (t)Ḋvc
κ(t)e

−iS(k, t) .

Since the second term in this equation is purely imagi-
nary, after replacing the ηerk (t) from Eq. (C1), Eq. (17)
can be written as

Jer
k (t) =

d

dt

[

ρcvk (t)Dvc
κ(t)e

−iS(k, t)
]

− ρcvk (t)Ḋvc
κ(t)e

−iS(k, t) + c.c. .
(C2)

Appendix D: Saddle-point approximation for the
k-channel interband yield

We evaluate the action in Eq. (36) by splitting its in-
tegral representation into two parts,

S(k, ts) =

ˆ t0

0

∆εcvK(t)dt+

ˆ ts

t0

∆εcvK(t)dt , (D1)

with t0 = ℜ[ts]. Along the integration path illustrated in
Fig. 13, the first integral is real.

To evaluate the second integral, we need to calculate
ts. For this purpose, we consider the continuum-wave
vector potential A0 sin(ω0t), for which we find

ts =
1

ω0
arcsin [−k/A0 ± iγ] , (D2)

with

γ =
ω0

√

2∆εcv0 m
∗
0

E0

and E0 = A0 ω0. For γ < 1 and k < A0 < π/a, Taylor
expansion of Eq. (D2) results in

ℑ[ts] = ± γ

ω0

√

1− (k/A0)2
+O(γ3) , (D3)
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FIG. 13: Contour integration for the action evaluation. (a) In-
tegration path in the complex crystal-momentum (K−)plane,
starting at K = k (green dot), moving along the real K−axis
to K(t0), and arriving at the root of the analytic continuation
of the band-gap energy ∆εcvK , K(ts). (b) Corresponding path
in the complex temporal plane, starting at time t = 0 (green
dot) and arriving at ts (blue dot).

which will be a fair approximation if
√

1− (k/A0)2 < γ.
We can now carry out the integrations in Eq. (D1) and

obtain

S(k, ts) = ℜ[S(k, ts)] + i∆εcv0 ℑ[ts]

+
A2

8m∗
0

{2ℑ[ts]− sinh {2ω0ℑ[ts]} /ω0}

+
k2

2m∗
0

{ℑ[ts]− tanh [ω0ℑ[ts]} /ω0} ,

(D4)

where

ℜ[S(k, ts)] =
ˆ t0

0

∆εcvK(t)dt+ ℜ
[
ˆ ts

t0

∆εcvK(t)dt

]

.

To find the pre-exponential factor in Eq. (36), we first
point out that the cross derivatives ∂2σω(k, t, t′)/∂t∂t′

and ∂2σω(k, t, t′)/∂t′∂t vanish, such that

|det Hess| =
∣

∣

∣

∣

∂2σω(k, te, ts)

∂t′ 2
∂2σω(k, te, ts)

∂t2

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

E(ts)

√

2∆εcv0
m∗

0

E(te)
(

P cc
κ(te)

− P vv
κ(te)

)

∣

∣

∣

∣

∣

.

Following [40, 44], only keeping the regular solution in
Eq. (D3), ℑ[ts] > 0, we obtain

ˆ̄Jer
k (ω) ≈ − (2πω) |Dvc

0 |2 e−ℑ[S(k, ts)]

×
∑

te

i E(ts)e
−iωteeiℜ[S(k, ts)]eiS(k, te)

∣

∣

∣
E(ts)

√

2∆εcv0
m∗

0
E(te)

(

P cc
κ(te)

− P vv
κ(te)

)∣

∣

∣

1/2
.

The interband HHG yield is thus given by

Y er
k (ω) ≈ (2πω)2 e−2ℑ[S(k, ts)] |Dvc

0 |4E(ts)

√

m∗
0

2∆εcv0

×

∣

∣

∣

∣

∣

∣

∣

∑

te

e−iωte
[

ei{ℜ[S(k, ts)]+S(k, te)+
π
2 } + c.c.

]

∣

∣

∣
E(te)

(

P cc
κ(te)

− P vv
κ(te)

)∣

∣

∣

1/2

∣

∣

∣

∣

∣

∣

∣

2

.

In order to get a more explicit equation in terms of the
band and laser field parameters, we approximate E(ts)
to first order in γ,

E(ts) ≈ E0

√

1− (k/A0)2 +O(γ2) , (D5)

and apply the approximations used to derive ℑ[S(k, ts)]
in Eq. (D4). This leads to the interband yield

Y er
k (ω) ≈ exp

[

− 2
√

2m∗
0 ∆ε

cv
0

3/2

E0

√

1− (k/A0)2

]

× (2πω)
2 |Dvc

0 |4E0

√

1− (k/A0)2

√

m∗
0

2∆εcv0

×

∣

∣

∣

∣

∣

∣

∣

∑

te

e−iωte
[

ei{ℜ[S(k, ts)]+S(k, te)+
π
2 } + c.c.

]

∣

∣

∣
E(te)

(

P cc
κ(te)

− P vv
κ(te)

)∣

∣

∣

1/2

∣

∣

∣

∣

∣

∣

∣

2

.

(D6)
Applying the effective mass theorem [38],

1

m∗
nk

= 1 + 2
∑

n′ 6=n

(Pnn′

k )2

∆εnn
′

k

,

we obtain

m∗
0 ≈ 1

4∆εcv0 |Dvc
0 |2

. (D7)

This allows us to rewrite Eq. (D6) as

Y er
k (ω) ≈ exp

[

−
√
2∆εcv0

E0 |Dvc
0 |
√

1− (k/A0)2

]

× 2 (πω |Dvc
0 |)2

(

E0 |Dvc
0 |
√

1− (k/A0)2√
2∆εcv0

)

×

∣

∣

∣

∣

∣

∣

∣

∑

te

e−iωte
[

ei{ℜ[S(k, ts)]+S(k, te)+
π
2 } + c.c.

]

∣

∣

∣
E(te)

(

P cc
κ(te)

− P vv
κ(te)

)
∣

∣

∣

1/2

∣

∣

∣

∣

∣

∣

∣

2

.

Appendix E: Saddle-point approximation of the
BZ-integrated interband yield

In analogy to Eq. (36), we obtain the Fourier-
transformed net interband current as

ˆ̄Jer(ω) ≈ −ω |Dvc
0 |2 (2πi)

3/2

×
∑

|kr|<A0

∑

te

∑

ts

E(ts)e
iσω(kr , te, ts)

|det [Hess σω(kr, te, ts)]|1/2
.

(E1)
This expression is equivalent to

ˆ̄Jer(ω) ≈ −ω |Dvc
0 |2 (2πi)3/2

×
∑

|kr |<A0

∑

te

∑

ts

E(ts)e
iσω(kr , te, ts)

× ycvκr
(te, ts) ,

(E2)
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where

ycvκr
(te, ts) =

∣

∣

∣

∣

∣

√

2∆εcv0
m∗

0

E(te)∆P
vc
κr(te)

∣

∣

∣

∣

∣

−1/2

×
∣

∣

∣

∣

∣

[
√

2∆εcv0
m∗

0

+ iE(ts)

ˆ te

ts

dt
1

m∗
κr(t)

]
∣

∣

∣

∣

∣

−1/2

,

(E3)
resulting in the approximated integrated interband yield

Y er(ω) ≈ (2π)3 (ω |Dvc
0 |)2

× |
∑

|kr|<A0

E(ts) e

[

−
√

2 ∆εcv0

E0|Dvc
0 |

√
1−(kr/A0)2

]

×
∑

te

[

e−iωteei{ℜ[S(k, ts)]+S(k, te)+
3π
2 } + c.c.

]

× ycvκr
(te, ts)|2 .

(E4)

Appendix F: Simplification of Eq. (44)

We here approximate Eq. (44), proceeding in a similar
way as in Appendix D, by splitting Eq. (44) in a real and
a complex integral (Fig. 13)

ˆ te

ts

∆P vc
κr(t)

dt = I1 + I2 ,

with

I1 =

ˆ t0

ts

∆P vc
κr(t)

dt

I2 =

ˆ te

t0

∆P vc
κr(t)

dt .

Following the derivation of Eq. (38), we find

d (εcvK )

dK
≡ −∆P vc

K =
K

m∗
0

+O(K3) .

Using κ(t) = k +A(t), we perform the integral in I1 by
contour integration in the complex plane to obtain

I1 =
k

iω0m∗
0

{tanh [ω0ℑ(ts)]− ω0ℑ(ts)}

− A0

ω0m∗
0

cos(ω0t0) {1− cosh [ω0ℑ(ts)]}

≈ O(γ3) ,

where we used that, according Eq. (38), K(ts) is imag-
inary. Thus, to second order in γ, I1 ≈ 0 and Eq. (44)
can be approximated as the real integral

ˆ te

ts

∆P vc
κr(t)

dt ≈
ˆ te

t0

∆P vc
κr(t)

dt .

This expression is more suitable for numerical calcula-
tions than Eq. (44).
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