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Abstract

The direct variational determination of the two-electron reduced-density matrix (2-RDM) cor-

responding to an atomic or molecular system is usually carried out in a basis of real-valued atom-

centered Gaussian basis functions, under the assumption that the 2-RDM is a real-valued quantity.

However, for systems that possess orbital angular momentum symmetry, the description of states

with a well-defined, non-zero z-projection of the orbital angular momentum requires a compu-

tational framework generalized to include either complex basis functions or a complex-valued 2-

RDM. We consider a semidefinite program suitable for the direct optimization of a complex-valued

2-RDM and explore the role of orbital angular momentum constraints in systems that possess

the relevant symmetries. For atomic systems, constraints on the expectation values of the square

and z-projection of the orbital angular momentum operator allow one to optimize 2-RDMs for

multiple orbital angular momentum states. Similarly, in linear molecules, orbital angular momen-

tum projection constraints enable the description of multiple electronic states, and, moreover, the

application of such constraints is essential for a qualitatively correct description of the electronic

structure. For example, in the case of molecular oxygen, we demonstrate that orbital angular

momentum constraints are necessary to recover the correct energy ordering of the lowest-energy

singlet and triplet states near the equilibrium geometry. However, care must still be taken in the

description of the dissociation limit, as the 2-RDM-based approach is not size consistent, and the

size-consistency error varies dramatically, depending on the z-projections of the spin and orbital

angular momenta.
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I. INTRODUCTION

It has long been understood that the direct variational determination of the elements of

the two-electron reduced-density matrix (2-RDM) is a desirable prospect.[1–3] The 2-RDM

affords a much more compact representation of the electronic structure than is offered by

the N -electron wavefunction, and, yet, it contains sufficient information to exactly spec-

ify the electronic energy for any many-electron system. Hence, the wavefunction can, in

principle, be supplanted by the 2-RDM in variational calculations, provided that the space

of 2-RDMs over which the optimization is performed is restricted to contain only those

that derive from antisymmetrized N -electron wavefunctions. Such 2-RDMs are said to be

N -representable.[4] One of the strengths of 2-RDM-based methods is that they are natu-

rally multiconfigurational and can thus be applied to multireference or strongly-correlated

electronic structure problems. Indeed, variational 2-RDM (v2RDM) approaches[5–19] that

enforce necessary ensemble N -representability conditions[14, 20, 21] can be used to realize

a polynomially-scaling approximation[22, 23] to complete active space self-consistent field

(CASSCF) theory[24–27] that is applicable to active spaces composed of as many as 64

electrons in 64 orbitals,[28] which is well beyond the limits of what can be considered using

a full-configuration-interaction-driven CASSCF algorithm. The v2RDM-driven CASSCF

approach has been applied to a variety of challenging chemical systems, including one- and

two-dimensional graphene nanoribbons[28, 29], nitrogenase cofactor (FeMoco),[30] cadmium

telluride polymers,[31] and transition metal complexes with non-innocent ligands.[32, 33]

Such nice properties notwithstanding, v2RDM approaches suffer from a number of well-

known issues that limit their application to general quantum chemical problems. For ex-

ample, the methods sometimes dissociate molecules into fractionally charged species.[34–36]

The source of this error is the lack of a derivative discontinuity in the energy when consid-

ering fractionally charged atoms; the same issue arises within density functional theory.[37]

Second, the direct application of the v2RDM approach to excited states is an outstanding

problem. Spin-symmetry constraints give one access to multiple (lowest-energy) spin states,

but, even then, one cannot reliably compare states that have the same total spin angular

momentum but different z-projections, as known N -representability conditions do not con-

strain the 2-RDMs representing these states equally.[38]. The next logical step would be the

application of spatial symmetry constraints to differentiate electronic states. However, this
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strategy cannot be easily realized within the v2RDM framework because the point-group of

the molecule is an N -electron property, the evaluation of which requires knowledge of the

N -electron reduced-density matrix.

This work aims to at least partially address this last deficiency of the v2RDM approach. In

systems possessing well-defined orbital angular momentum symmetry (i.e., atoms and linear

molecules), the application of appropriate orbital angular momentum constraints allows for

the direct description of multiple electronic states with different spatial symmetries. In

a basis of real-valued atom-centered Gaussian basis functions, the application of v2RDM

techniques to atomic states with non-zero magnitude and z-projection of the orbital angular

momentum requires the consideration of complex-valued reduced-density matrices (RDMs).

While atomic states with non-zero magnitude and zero z-projection of the orbital angular

momentum can be described with real-valued RDMs, we show that the quality of the energy

is inferior to that corresponding to non-zero z-projection states. This behavior is reminiscent

of that observed for different spin angular momentum projection states in Ref. 38. For linear

molecular systems, we demonstrate that angular momentum constraints and complex RDMs

can be necessary for even a qualitatively correct description of the electronic structure;

for example, in a correlation-consistent polarized valence double-zeta (cc-pVDZ)[39] basis

set, a real-valued v2RDM computation incorrectly predicts that the lowest-energy state of

molecular oxygen is a singlet.

This paper is organized as follows. Section II outlines the general procedure for the direct

determination of the 2-RDM under ensemble N -representability conditions and describes

how one can incorporate orbital angular momentum constraints into the optimization. Sec-

tion III then provides some of the technical details of our computations. We explore the role

of orbital angular momentum constraints in atomic and linear molecular systems in Sec. IV,

and some concluding remarks are provided in Sec. V.
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II. THEORY

A. The variational optimization of the 2-RDM

The electronic energy of a many-electron system is a linear functional of the one-electron

reduced-density matrix (1-RDM) and the 2-RDM:

E =
1

2

∑

pqrs

(2Dpαqα
rαsα + 2D

pαqβ
rαsβ + 2D

pβqα
rβsα + 2D

pβqβ
rβsβ )(pr|qs)

+
∑

pq

(1Dpα
qα

+ 1D
pβ
qβ )hpq. (1)

Here, (pr|qs) represents a two-electron repulsion integral, hpq represents the sum of the one-

electron kinetic energy and electron/nuclear potential energy integrals, and the summation

indices run over all spatial orbitals. The 1-RDM and 2-RDM can be expressed in second-

quantized notation as

1Dpσ
qσ

= 〈Ψ|â†pσ âqσ |Ψ〉, (2)

and

2Dpσqτ
rσsτ

= 〈Ψ|â†pσ â
†
qτ
âsτ ârσ |Ψ〉, (3)

respectively, where â† (â) represents a fermionic creation (annihilation) operator, through-

out, Greek labels (with the exception of ξ) represent either α or β spin. The 1- and 2-RDM

can be determined directly via the minimization of Eq. 1 with respect to variations in their

elements, provided that the optimization is constrained such that it considers only those

reduced-density matrices (RDMs) that are derivable from an ensemble of antisymmetrized

N -electron wavefunctions. In practical computations, we can only reasonably enforce ap-

proximate N -representability conditions, and the resulting energy is thus a lower-bound to

the exact (full configuration interaction [CI]) energy within the relevant basis set. In this

work, we consider the two-particle (“PQG”) N -representability constraints of Garrod and

Percus.[20]

As we are concerned with non-relativistic Hamiltonians, we also enforce constraints on

the spin structure of the 1- and 2-RDM. For example, the total spin of the system is related

to an off-diagonal trace of the 2-RDM,[40, 41]

∑

pq

2D
pαqβ
qαpβ =

1

2
(Nα +Nβ) +M2

S − S(S + 1), (4)

4



where S andMS represent the total spin and spin-projection quantum numbers, respectively.

In addition, in all computations presented herein, the RDMs are constrained to represent

maximal spin-projection states, as it has been demonstrated that such states are better

described by v2RDMmethods than other spin-projection states.[38] Maximal spin-projection

states must satisfy

Ŝ+|Ψ〉 = 0, (5)

where Ŝ+ represents a spin angular momentum raising operator. Equation 5 implies a weaker

set set of constraints of the form[38]

∀rβ, sα : 〈Ψ|â†rβ âsαŜ
+|Ψ〉 = 0, (6)

which can be expressed in terms of the one-particle one-hole RDM (2G)

∀rβ , sα :
∑

p

2G
rβsα
pβpα = 0, (7)

whose elements are given by

2Gpσqτ
rλsµ

= 〈Ψ|â†pσ âqτ â
†
sµ
ârλ |Ψ〉. (8)

Similarly, the adjoint of the raising operator acting on the bra space also annihilates the

state, giving rise to a complementary set of constraints

∀rβ , sα :
∑

p

2G
pβpα
rβsα = 0. (9)

Note that Eq. 9 will automatically be satisfied if the RDMs are Hermitian and Eq. 7 is

satisfied.

The direct variational optimization of the 1- and 2-RDM subject to the constraints out-

lined above constitutes a semidefinite programming (SDP) problem. We solve this problem

using a modified boundary-point SDP algorithm[42–44] similar to that described in Ref. 23.

As discussed below, the introduction of orbital angular momentum constraints requires that

the boundary-point algorithm be generalized to treat complex RDMs.

B. Orbital angular momentum constraints

Consider the Hamiltonian for an atomic many-electron system. At the non-relativistic

limit, the operators corresponding to the square of the orbital angular momentum (L̂2)
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and its projection onto the z-axis (L̂z) commute with this Hamiltonian. Hence, RDMs

corresponding to good orbital angular momentum states should satisfy additional equality

constraints, including

〈Ψ|L̂2|Ψ〉 = L(L+ 1), (10)

and

〈Ψ|L̂z|Ψ〉 = ML, (11)

where L and ML represent the total orbital angular momentum and orbital angular mo-

mentum projection quantum numbers, respectively. These constraints can be expressed in

terms of the elements of the 1- and 2-RDM as

∑

ξ=x,y,z

(

∑

στ

∑

pqrs

2Dpσrτ
qσsτ

[Lξ]
p
q [Lξ]

r
s +

∑

σ

∑

pq

1Dpσ
qσ
[L2

ξ ]
p
q

)

= L(L+ 1), (12)

and
∑

σ

∑

pq

1Dpσ
qσ
[Lz]

p
q = ML. (13)

Here, [Lξ]
p
q represents a matrix element of the ξ-component of the angular momentum oper-

ator, L̂ξ, and [L2
ξ ]

p
q represents a matrix element of the one-electron component of the square

of the ξ-component of the angular momentum operator, L̂2
ξ, i.e., the second term on the

right-hand side of

L̂2
ξ =

∑

i 6=j

L̂ξ(i)L̂ξ(j) +
∑

i

L̂ξ(i)L̂ξ(i), (14)

where, the labels i and j refer to electron coordinates.

A 1-RDM that satisfies Eq. 13 is not guaranteed to represent a wavefunction that is

an eigenfunction of L̂z. Accordingly, we also consider a constraint on the variance in L̂z,

(∆Lz)
2 = 〈L̂2

z〉 − 〈L̂z〉
2, which can be evaluated with knowledge of the 2-RDM as

(∆Lz)
2 =

∑

στ

∑

pqrs

2Dpσrτ
qσsτ

[Lz]
p
q [Lz]

r
s +

∑

σ

∑

pq

1Dpσ
qσ
[L2

z]
p
q −M2

L. (15)

Here, we have assumed that the 1-RDM satisfies Eq. 13, and, thus, 〈L̂z〉
2 = M2

L. Similar

arguments could be made for RDMs that satisfy Eq. 12, so a constraint on the variance of

L̂2, (∆L2)2 = 〈L̂4〉−〈L̂2〉2, might also be desirable. However, the evaluation of this quantity

requires knowledge of the four-particle RDM, so this constraint will not be considered in

this work. We also note that we could consider additional projection constraints of the form

∀pσ, qσ : 〈Ψ|â†pσ âqσL̂z|Ψ〉 = ML
1Dpσ

qσ
, (16)
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which are similar to the angular momentum constraints applied by Rothman and

Mazziotti[45] within a v2RDM-based description of model two-dimensional quantum dots.

However, in finite one-electron basis set, such constraints are incompatible with the vari-

ance constraint of Eq. 15, and are thus not applied within the present work. The reader is

referred to the Appendix for a proof of the inconsistency of these conditions.

Since the angular momentum operator is pure imaginary, the RDMs that enter our com-

putations can only represent states with non-zero ML if they are allowed to take on complex

values. Although the boundary-point SDP algorithm was initially defined using real matri-

ces, its extension to the optimization of complex and even quaternion matrices is a purely

technical challenge. [46, 47] Realizing that the field of complex matrices, M, is isomorphic

to the field of 2× 2 real matrices of the form

Re(M) + i Im(M) ≃





Re(M) − Im(M)

Im(M) Re(M)



 , (17)

one can map the complex SDP programming problem to a real one with RDMs of twice

the original dimension, and, thus, a conventional SDP algorithm can be applied. Indeed,

this strategy has been realized previously in within the framework of variational 2RDM

theory in applications to molecular conductivity[48] and RDM reconstruction for quantum

tomography.[49]

As discussed in Refs. 44 and 23, the boundary-point SDP solver for the v2RDM problem

is a two-step procedure. In the first step, the dual solution to the SDP (y) is updated by

solving

AATy = A(c− z) + t(b−Ax) (18)

using conjugate gradient techniques. Here, x represents the primal solution vector (which

maps onto the RDMs), y and z represent dual solution vectors, c represents a vector con-

taining the one- and two-electron integrals that define the quantum system, and A and b

represent the constraint matrix and vector, respectively, which encode theN -representability

conditions. The symbol t represents a penalty parameter. In the second step, the primal

solution x and the secondary dual solution z are updated via the solution of an eigenvalue

problem. The rate-limiting step in this algorithm is the latter one, and its computational

cost increases with the third-power of the dimension of the RDMs. As such, expanding the

complex RDMs as is done in Eq. 17 will increase the number of floating-point operations
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required by the boundary-point SDP algorithm by a factor of eight.

We have performed numerical tests to determine the relative efficiency of real symmetric

(DSYEV) and complex Hermitian (ZHEEV) eigensolvers. The wall time required to diagonalize

a complex matrix of dimension 4000 is roughly 30% of that required for the diagonalization

of a real symmetric matrix of twice the dimension, when using Intel’s MKL library and one

core of an Intel Core i7-6850K CPU. Hence, we elect to retain the use of complex RDMs

and modify the boundary-point solver accordingly. The only substantive change is that the

number of coupled linear equations represented by Eq. 18 increases by a factor of two; one

set of equations is used to update Re(y), while the other determines Im(y). Because the

constraints we consider do not directly couple the real and imaginary components of the

RDMs, these equations can be solved independently.

III. COMPUTATIONAL DETAILS

The boundary-point SDP solver for the complex v2RDM problem was implemented as

a plugin to the Psi4 electronic structure package.[50] Optimized RDMs obtained from this

plugin satisfied the PQG N -representability conditions and the spin angular momentum

constraints outlined in Sec. II. Energies from v2RDM computations were compared to

those from full CI and multireference CI (MRCISD+Q) computations performed with the

Psi4 and ORCA [51] packages, respectively. All orbitals were considered active within

all v2RDM and full CI computations, while the reference computations for MRCISD+Q

considered only full valence active spaces. All computations on atomic systems employed

the cc-pVDZ basis set, while linear molecular systems were described by the STO-3G[52],

Dunning-Hay double zeta (D95V)[53], 6-31G*,[54–56] and cc-pVDZ basis sets; the reader is

referred to Sec. IVB for additional details.

For atomic systems, the v2RDM procedure was considered converged when ǫerror < 1.0×

10−5 and ǫgap < 1.0 × 10−4 hartree, with the exception of two cases identified in Table II

for which the convergence were achieved at least at ǫerror < 4.4×10−6 and ǫgap < 5.6×10−4

hartree. Here, ǫerror refers to the maximum of the primal error (||Ax− b||) and dual error

(||ATy − c+ z||), and the primal/dual energy gap, ǫgap, is defined as |xTc−bTy|. For linear

molecular systems, the v2RDM procedure was considered converged when ǫerror < 1.0×10−4

and ǫgap < 1.0 × 10−4 hartree, with the exception of several calculations used to produce
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TABLE I: Designation of the v2RDM computations on atomic systems according to the complexity

of the RDMs and the orbital angular momentum constraints enforced.

designation RDM complexity constraints enforced

real real

complex complex

L2 complex 〈L̂2〉

Lz complex 〈L̂2〉, 〈L̂z〉

(∆Lz)
2 complex 〈L̂2〉, 〈L̂z〉, (∆Lz)

2

Fig. 3 and Fig. 6 . The most challenging calculation could only be converged to ǫerror <

1.4 × 10−5 and ǫgap < 2.0 × 10−3 hartree, and six other calculations were converged to

at least ǫerror < 9.0 × 10−6 and ǫgap < 9.3 × 10−4 hartree. The reader is referred to the

Supporting Information for additional details.

All v2RDM computations exploited the block structure of the RDMs resulting from

spin and abelian point-group symmetry considerations, but it should be noted that the

point group was chosen in each case such all operators belonged to the totally symmetric

irreducible representation. Hence, computations in which we constrained the expectation

values of L̂z were performed within the C2h point group, and computations in which we

constrained the expectation value of L̂2 were performed within the Ci point group.

The orbital angular momentum constraints outlined in Sec. II B involve molecular in-

tegrals that do not usually arise in quantum chemical energy calculations. The molecular

integrals over the orbital angular momentum operator, L̂z, were obtained from the standard

molecular integral library in Psi4. On the other hand, the integrals over the square of the

angular momentum operator are not implemented in this package. We evaluated integrals

of the form [L2
ξ ]

p
q = 〈χp|L̂

2
ξ|χq〉 numerically, where ξ ∈ {x, y, z}, and χp represents an atomic

basis function. Numerical integrals were evaluated on the same quadrature grids employed

with density functional theory (DFT) computations in Psi4. We use the Lebedev-Trueutler

(75,302) grid, which is the default grid for all DFT computations in Psi4.
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IV. RESULTS AND DISCUSSION

In this Section, we numerically evaluate the effects of orbital angular momentum con-

straints in v2RDM computations on systems with well-defined orbital angular momentum

symmetry. Table I provides the designations used to describe the constraints applied in

calculations on atomic systems, as well as the complexity of the RDMs. Note that the con-

sideration of L̂2 symmetry does not require the use of complex RDMs, but L2 computations

were performed using our complex-valued v2RDM algorithm nonetheless.

A. Atomic systems

Figure 1 illustrates the errors in the ground-state energies of second-row atoms computed

at the v2RDM level of theory, relative to energies obtained from full CI computations. First,

as a technical note, the error incurred when using complex- and real-valued RDMs is nearly

indistinguishable on this scale, which suggests that our complex-valued boundary-point SDP

algorithm is implemented correctly. Second, we note that the error increases, in general, with

the number of electrons. This observation is consistent with the fact that v2RDM methods

with approximate N -representability constraints are not strictly size extensive. However, in

the absence of orbital angular momentum constraints, the error does not increase monotoni-

cally with system size; it is exaggerated for states with non-zero orbital angular momentum.

For these states, the application of L̂2 constraints results in a minor improvement. On the

other hand, constraints on the expectation value of L̂z lead to a significant improvement

in accuracy. Here, these non-zero angular momentum states are taken to have the maxi-

mal orbital angular momentum, which results in complex-valued RDMs. The subsequent

application of variance constraints [(∆Lz)
2 = 0] leads to essentially no improvement in the

description of these maximal orbital angular momentum projection states.

Clearly, orbital angular momentum constraints play an important role in the v2RDM-

based description of ground states with non-zero total angular momentum. The data in

Fig. 1 indicate that, in some cases (boron, carbon, and oxygen), the application of such

constraints reduces the error in the v2RDM energy by more than a factor of two. Moreover,

angular momentum constraints also allow us to directly optimize 2-RDMs for excited states

that are not otherwise accessible by v2RDM methods. Table II illustrates energy differences
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FIG. 1: Errors in ground-state energies (millihartree) of second row atoms computed at the

v2RDM/cc-pVDZ level of theory, as compared to results from full CI.
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between excited spin and orbital angular momentum states and the ground electronic states

for all second-row atoms, except lithium and neon. Note that all results tabulated under

the heading “Lz” correspond to the maximum orbital angular momentum projection. First,

we consider those states that are accessible without angular momentum constraints (all

cases in Table II for which numerical values are given under the heading “real”). For the

beryllium atom, the 1S → 3P transition is equally well-described by all combinations of

angular momentum constraints considered. On the other hand, the description of every

other transition energy is improved by the consideration of angular momentum constraints,

sometimes dramatically so. In particular, the consideration of L̂2 symmetry improves the

almost 1 eV error in the description of the 4S → 2D transition in nitrogen by 0.32 eV. The

subsequent application of the constraint on 〈L̂z〉 reduces the error to only 0.15 eV.

Now, consider those cases in Table II where no numerical values are given under the

heading “real;” the excited states in question are inaccessible to the v2RDM approach unless

angular momentum constraints are imposed. In one case, the 4S→ 4P transition in nitrogen,

a constraint on the expectation value of L̂2 yields a terrible estimate of the excitation energy;

it is too low by 5.78 eV. However, subsequent application of the constraint on 〈L̂z〉 yields

an excitation energy that agrees with that from the full CI to within less than 0.01 eV. We

also observe that the application of the L̂z constraint improves over the consideration of

the L̂2 constraint alone for the 4S → 2P transition in nitrogen, although the improvement

11



is less dramatic in this case. On the other hand, it appears that the application of the L̂2

constraint alone gives superior results to the application of both L̂2 and L̂z constraints in

the cases of the 3P → 1S transitions in carbon and oxygen. We believe this behavior stems

from an inconsistency in the description of different S and L states in v2RDM methods in

general. For example, for linear chains of hydrogen atoms, we have found[18] that large-S

states are more well-constrained than low-S states. That effect, combined with an apparent

complementary effect regarding the relative description of large-L and small-L states, results

in estimates of the absolute energies of the 1S states that are relatively poor, as compared to

estimates of the absolute energies of higher angular momentum states in the same atoms (the

absolute energies for all states considered here are tabulated in the Supporting Information).

The application of L̂2 constraints alone (i.e., without constraints on 〈L̂z〉) overstabilizes the

3P states, resulting is a fortuitous cancellation of error in the description of the 3P → 1S

transitions in carbon and oxygen.

FIG. 2: The v2RDM energy (hartree) for different Lz projection states corresponding to the 3P

and 1D terms of the carbon and oxygen atoms.
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To this point, all computations enforcing constraints on 〈L̂z〉 considered only the maximal

orbital projection state. Here, we demonstrate that, for a given L-state, different orbital

angular momentum projections are not treated on equal footing by the v2RDM approach.

Figure 2 illustrates the energy for each ML state within the manifold of states associated

with the 3P and 1D terms of the carbon and oxygen atoms. For comparison, the horizon-

tal lines represent the corresponding full CI energies for each state. Clearly, the v2RDM
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TABLE II: Energy differences (eV) between ground and excited spin and orbital angular momentum

states calculated by at the v2RDMa and full CI levels of theory. The lack of numerical data under

the “real” heading indicates that the excited state in question is not accessible by v2RDM methods

without considering angular momentum symmetry.

atom transition real L2 Lz full CI

Be 1S → 3P 2.75 2.75 2.75 2.75

B 2P → 4P 3.56 3.56 3.52 3.51

C 3P → 1D 0.86 1.18 1.44 1.49

C 3P → 1S – 2.80 2.68 2.93

C 3P → 5S 4.11 4.10 3.98 3.93

N 4S → 2D 1.75 2.07 2.57 2.72

N 4S → 2P – 2.92 3.40b 3.31

N 4S → 4P – 5.46 11.24 11.24

O 3P → 1D 1.57 1.71 2.03 2.14

O 3P → 1S – 4.28 3.82 4.30

F 2P → 4P 34.96 34.97 35.00b 35.00

a For values labeled as “real,” the specification of the spin angular momentum state is

meaningful, while the specification of the orbital angular momentum state is not.

b Loose convergence criteria were employed (ǫgap < 5.6× 10−4 hartree and ǫerror < 4.4 × 10−6).

approach fails to recover the proper degeneracy of different angular momentum projection

states. Rather, the v2RDM energy is a convex function of the expectation value of L̂z, with

the maximal projection states giving the best lower-bound to the full CI energy. Similar

observations were made by van Aggelen et al.,[38] regarding the treatment of spin projection

states within v2RDM theory. The consideration of 〈L̂z〉 = 0 constraint does not improve

the quality of the v2RDM results over the case in which a real-valued algorithm is applied;

this result is not too surprising, since any purely real-valued 1-RDM satisfies this constraint.

What is more interesting is that forcing the variance (∆Lz)
2 to vanish substantially improves

the quality of the non-maximal orbital angular momentum projections, most dramatically

so for the 〈L̂z〉 = 0 state; such a constraint could be applied within a real-valued v2RDM

optimization. On the other hand, variance constraints do not appear to improve the quality
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of the maximal orbital angular momentum projection states. Again, this behavior is similar

to that observed in Ref. 38 for spin projection states. In that work, the application of pure-

state and ensemble spin conditions yielded comparable results for maximal spin projection

states.

B. Linear molecular systems

Unlike the Hamiltonian for atomic systems, the Hamiltonian for linear molecular systems

does not commute with L̂2, so, in this case, the only good orbital angular momentum quan-

tum number is Λ = 〈L̂z〉, the projection of the orbital angular momentum on the internuclear

axis (which we have chosen to be aligned in the z-direction). The results presented above

for atomic systems suggest that orbital angular momentum projection constraints may play

a similarly important role in the v2RDM-based description of states with non-zero Λ (e.g.,

Π, ∆, Φ, etc. states). Hence, in this Section, we explore the utility of constraints on L̂z and

(∆Lz)
2 in linear molecular systems, beginning with a simple question: at the v2RDM level

of theory, is the ground state of molecular oxygen a singlet or a triplet?

Table III illustrates the energy gap between the 3Σ and 1∆ states of molecular oxygen,

as computed at the v2RDM, full CI, and MRCISD+Q levels of theory, in various basis

sets. Here, a positive value for the gap indicates that the triplet is lower in energy. Note

that values labeled as “real” were generated without the consideration of orbital angular

momentum constraints, so the orbital angular momentum is technically unspecified in these

cases. In a minimal (STO-3G) basis, such a real-valued v2RDM computation predicts a

triplet/singlet gap of 0.914 eV, which is in reasonable agreement with that from full CI

(1.042 eV). However, the v2RDM result is surprisingly sensitive to the size of the basis set;

in a 3-21G basis, the triplet/singlet gap reduces to 0.424 eV, and, in a cc-pVDZ basis, the

singlet is actually predicted to be lower in energy than the triplet by almost 0.2 eV. Table

III also provides results from complex-valued v2RDM computations in which we have placed

constraints on the expectation value and variance of L̂z, where Λ = 0 for the triplet state

(3Σ) and Λ = 2 for the singlet state (1∆). The application of orbital angular momentum

constraints significantly improves the v2RDM results, in all basis sets. In particular, L̂z

and (∆L̂z)
2 constraints remedy the qualitative failure of the v2RDM approach within the

cc-pVDZ basis. In this case, the predicted triplet/singlet gaps are 0.924 eV and 0.940 eV,
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TABLE III: The relative energies (eV) of the 3Σ and 1∆ states of molecular oxygen,a with an

inter-atomic distance of 1.208 Å.

STO-3G 3-21G cc-pVDZ

MRCISD+Q 1.042b 1.113 1.049

real 0.914 0.424 -0.196

Lz 1.031 1.132 0.924

(∆Lz)
2 1.037 1.162 0.940

a For values labeled as “real,” the specification of the spin angular momentum state is

meaningful, while the specification of the orbital angular momentum state is not.

b This value was obtained from the full CI.

respectively, which are both in reasonable agreement with the value of 1.049 eV predicted

by MRCISD+Q.

FIG. 3: The relative energies (eV) of the spin and orbital angular momentum states of molecular

oxygen described by the (a) STO-3G, (b) D95V, and (c) cc-pVDZ basis sets. All energies are given

relative to that of the 3Σ state.
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In the cc-pVDZ basis set, the imposition of orbital angular momentum constraints is
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clearly important for obtaining the correct ordering of the spin angular momentum states

of molecular oxygen. However, these constraints cannot guarantee the correct ordering of

orbital angular momentum states within a given spin manifold; this trend is evident in energy

diagrams depicted in Fig. 3. In these diagrams, the energy levels in all cases are shifted such

that the energy of the 3Σ state is zero. In a minimal basis set [Fig. 3(a)], the full CI, v2RDM

[Lz], and v2RDM [(∆Lz)
2] approaches all predict that the 3Σ is the ground state. When

constraining only the expectation value of L̂z , the v2RDM approach incorrectly predicts that

the three singlet states considered are nearly degenerate, and the energy of the 1Π state in

particular is severely underestimated. Further, the energies of the 5Σ and 3Π states are far

too low. With variance constraints, the v2RDM approach recovers the correct ordering for

all spin and orbital angular momentum states, but the spacing between the ground and 1Π

state is still underestimated by more than 1 eV. In the D95V and cc-pVDZ basis sets [Figs.

3(b) and 3(c), respectively], we observe similar dramatic failures of the v2RDM approach

(with constraints on the expectation value of L̂z) to yield the correct state orderings, relative

to the orderings obtained from MR-CISD+Q. In the cc-pVDZ basis in particular, constraints

on the expectation value of L̂z alone are insufficient to yield the correct ground state; the

1Σ and 1Π states are both predicted to lie below the 3Σ state. Fortunately, the application

of variance constraints leads to the correct prediction that the ground state of molecular

oxygen is a triplet. Nonetheless, in both the D95V and cc-pVDZ basis sets, the singlet and

triplet states are not ordered correctly amongst themselves; energies of the 1Π, 1Σ, and 3Π

states are all severely underestimated. The relative energies of all of the states considered

in Fig. 3 are tabulated in the Supporting Information.

Figure 4 provides dissociation curves for the 3Σ, 1∆, and 5Π states of O2, as computed

at the v2RDM and MRCISD+Q levels of theory, within the D95V basis set. Here, the

v2RDM curves were generated under orbital angular momentum constraints (〈L̂z〉 = Λ and

(∆Lz)
2 = 0), as well as the spin angular momentum constraints outlined in Sec. II for

the maximal spin projection states. As observed in Table III, the 3Σ / 1∆ energy gap is

well-predicted by the v2RDM approach at the equilibrium geometry, but the overall shapes

of the v2RDM-derived curves are not particularly accurate. It is clear that the v2RDM

approach suffers from some serious deficiencies, particularly in the limit of dissociation. The

3Σ, 1∆, and 5Π curves should all share the same energy at dissociation, but they do not,

regardless of the imposition of angular momentum constraints.
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FIG. 4: Dissociation curves for molecular oxygen, calculated within the D95V basis set. The

v2RDM computations enforced constraints on the expectation value and variance of L̂z.
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The lack of degeneracy of the 3Σ, 1∆, and 5Π states in the limit of dissociation is similar

to the behavior observed in Ref. 38. Those authors focused mainly on the lack of degeneracy

among different MS states, and it is clear from that work that the maximal spin-projection

states are the most well constrained, in general (i.e., these states have the highest energies).

Here, we can draw similar conclusions regarding the orbital angular momentum projections.

In the limit of dissociation, the ground state should have an energy equal to twice that of

a single oxygen atom in its ground state (3P). Two such atoms could couple to form nine

states with S = 0, 1, or 2 and Λ = 0, 1, or 2, all of which should be degenerate at large O–O

bond distances. Figure 5 illustrates the energy of these nine states at an O–O bond length

of 5.0 Å; in all cases, the spin-projection state is chosen to be the maximal one. The dashed

line represents twice the energy of an isolated oxygen atom in the 3P state, as described

by the v2RDM method (constraining the maximal spin and orbital angular momentum

projection states, but not the expectation value of L̂2). We can draw two conclusions from

these data. First, for a given spin state, higher orbital angular momentum projection states

are more well constrained. Second, for a given orbital angular momentum projection state,

the highest-multiplicity state is the most well constrained. Indeed, the highest energy is

obtained for the 5∆ state; the size consistency error (EO2
- 2 EO) is only 2.9 millihartrees

in this case.

Lastly, we consider dissociation curves for the 1∆ and 1Σ states of another linear molecular
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FIG. 5: The energy of molecular oxygen (hartree), as described by the D95V basis set, at an O–O

distance of 5 Å. The v2RDM computations enforced constraints on the expectation value of L̂z or

both the expectation value and variance of L̂z.
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atomic limit

system, C2. It is well known that a proper description of these states requires a sophisti-

cated treatment of electron correlation effects,[57–59] and, in the absence of orbital angular

momentum constraints, v2RDM methods can only describe whichever state lies lower in

energy. What is more problematic is that, because the potential energy curves for the 1Σ

and 1∆ states should cross, a real-valued v2RDM computation may yield RDMs for differ-

ent electronic states at different C–C bond lengths. Figure 6 illustrates v2RDM and full CI

potential energy curves for C2 computed within the 6-31G* basis set. Full CI results were

taken from Ref. 57. The application of orbital angular momentum constraints facilitates the

description of both states via the v2RDM approach, and, near the equilibrium geometry for

the ground state, we observe reasonable splittings between the ground and excited states.

At a C–C bond length of 1.25 Å, full CI predicts that the 1∆ state lies 2.43 eV above the 1Σ

state, while the v2RDM approach predicts that these states are separated by 2.90 eV. The

relative overstabilization of the 1Σ state is consistent with our observation that, for a given

spin state, higher orbital angular momentum projection states are more well-constrained.

Unfortunately, the v2RDM method exhibits two qualitative failures for this system. First,

it predicts that the 1Σ state is the ground state for all C–C bond lengths; that is, the po-

tential energy cures for the two states are predicted to never cross. Second, as was observed

above for molecular oxygen, the two electronic states considered here do not share the same
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dissociation limit.

FIG. 6: Dissociation curves for the 1Σ and 1∆ states of molecular carbon, calculated using the

6-31G* basis set. The v2RDM computations enforced constraints on the expectation value and

the variance of L̂z, and the full CI results were taken from Ref. 57.
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V. CONCLUSIONS

In systems with well-defined orbital angular momentum symmetry, the application of

orbital angular momentum constraints facilitates the direct variational determination of 2-

RDMs for multiple electronic states. Moreover, without such considerations, the v2RDM

approach cannot qualitatively describe states with non-zero z-projection of the orbital an-

gular momentum, even if the state in question is the lowest-energy state of a given spin

symmetry. Indeed, we demonstrated that, in the absence of orbital angular momentum

constraints, the v2RDM approach incorrectly predicts that the ground state of molecular

oxygen (described by the cc-pVDZ basis set) is a singlet. The application of appropriate con-

straints, which necessitates the consideration of complex-valued RDMs, recovers the correct

spin-state ordering.

The v2RDM energy appears to be a convex function of the expectation value of L̂z, and,

for a given magnitude of the orbital angular momentum, maximal orbital angular momentum

projection states are the most well-constrained. This result reveals a qualitative failure of

v2RDM methods: they do not to recover the correct degeneracy for different L/ML states,

at least when the RDMs satisfy the ensemble N -representability conditions considered in
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this work. This behavior suggests that the conclusions of Ref. 38 regarding the description

of different spin projection states apply to angular momentum projection states in general.

Moreover, should one consider the direct optimization of 2-RDMs corresponding to different

total angular momentum states, we expect that similarly incorrect behavior would emerge.

A natural extension of the present approach will be the description of systems possessing

orbital angular momentum symmetry that also display significant spin-orbit coupling. For

example, ground and excited states of UO2+
2 , exhibit strongly correlated electron motion

as well as similarly strong spin-orbit coupling effects. [60–62] However, extreme care must

be taken in such computations, as we have demonstrated here that different orbital (and

presumably total) angular momentum states may not be described on equal footing.
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Appendix: On the inconsistency of projection and variance constraints on L̂z in

finite basis sets

In addition to the angular momentum projection constraints given by Eqs. 13 and 15,

one could consider additional projection constraints like those that were given by Eq. 16.

Mazziotti[63] and Rothman and Mazziotti[45] have argued that such projection constraints

are equivalent to the variance constraints, in the limit of exact N -representability of the

RDMs. Indeed, one can easily show that one implies the other, in the limit that the one-

electron basis is complete, but, importantly, the projection constraint yields a result that

is inconsistent with the variance constraint in a finite basis set and is thus less suitable for

practical optimizations.

Starting with

〈Ψ|â†pσ âqσ L̂z|Ψ〉 = ML
1Dpσ

qσ
, (19)

we multiply the left- and right-hand sides of this equation by [Lz]
p
q and sum over all orbitals,

pσ and qσ, to obtain

∑

στ

∑

pqrs

[Lz]
p
q [Lz]

r
s 〈Ψ|â†pσ âqσ â

†
rτ
âsτ |Ψ〉 = ML

∑

σ

∑

pq

[Lz]
p
q

1Dpσ
qσ
. (20)
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If Eq. 13 is satisfied, the right-hand side of Eq. 20 is equal to M2
L, and the remaining terms

can be reexpressed in terms of 1D and 2D to give

∑

στ

∑

pqrs

2Dpσrτ
qσsτ

[Lz]
p
q [Lz ]

r
s +

∑

σ

∑

pqr

1Dpσ
qσ
[Lz]

p
r [Lz]

r
q = M2

L. (21)

This result, when compared to the expectation value of L̂2
z

〈L2
z〉 =

∑

στ

∑

pqrs

2Dpσrτ
qσsτ

[Lz]
p
q [Lz]

r
s +

∑

σ

∑

pq

1Dpσ
qσ
[L2

z]
p
q , (22)

implies

[L2
z]

p
q =

∑

r

[Lz ]
p
r [Lz]

r
q, (23)

which is only true in the limit of a complete one-electron basis.[64] Hence, the projection

constraint (Eq. 16) is inconsistent with the variance constraint (Eq. 15) in a finite basis.
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[5] C. Garrod, M. V. Mihailović, and M. Rosina, Journal of Mathematical Physics 16, 868 (1975).
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