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We develop new protocols for high-fidelity single qubit gates that exploit and extend theoretical
ideas for accelerated adiabatic evolution. Our protocols are compatible with qubit architectures
where direct transitions between logical states are either vanishingly small or non-existent; in such
systems traditional approaches cannot be implemented. A prime example are superconducting
fluxonium qubits which have highly localized states or AMO systems where there is no dipole
allowed transitions between the ground states encoding the logical states. By using an accelerated
adiabatic protocol we can enforce the desired adiabatic evolution while having gate times that are
comparable to the inverse adiabatic energy gap (a scale that is ultimately set by the amount of
power used in the control pulses). By modelling the effects of decoherence, we explore the tradeoff
between speed and robustness that is inherent to shortcuts-to-adiabaticity approaches.

I. INTRODUCTION

Any approach to implementing quantum gates requires
applying time-dependent control fields to a system, such
that the corresponding time-dependent Hamiltonian gen-
erates the desired unitary evolution. Regardless of the
setting, ideal gates have two defining features: they are
both robust against small imperfections in the ampli-
tude, duration and phase of control pulses, and they are
fast. Unfortunately, typical approaches to constructing
gates optimize only one of these two desired character-
istics. Schemes based on quantum adiabatic evolution
(e.g. [1, 2]) are typically extremely robust against param-
eter variations [3], but suffer from extremely long proto-
col times. In contrast, more conventional non-adiabatic
approaches can be extremely fast (approaching the quan-
tum speed limit [4–9]), but require precise tuning of con-
trol pulses. In a typical experimental setting, neither
approach is fully optimal, as both speed and robustness
are important characteristics.

Given this, protocols that lie between these two ex-
tremes are highly desirable. This naturally leads one to
the general approach of shortcuts to adiabaticity (STA)
[10–13] (also known as counter-diabatic driving). STA
are a family of techniques that allow one to mimic
adiabatic evolution under some Hamiltonian Ĥ0(t) us-

ing a modified Hamiltonian Ĥmod(t), in a much shorter
timescale. STA protocols for evolving a well-defined ini-
tial state to some prescribed well-defined final state have
been discussed in many contexts, and have even recently
been implemented in a variety of experimental settings
[14–20]. While not often stressed, STA protocols invari-
ably involve a tuneable trade-off between speed and ro-
bustness. This tuneability can however be extremely use-
ful in a real experimental setting, where the ultimate infi-
delity of a gate will be influenced by both these features.
In Ref. [19], this tradeoff was discussed in the specific
context of an accelerated STIRAP protocol implemented
in an NV center system.

In this paper, we investigate the use of STA techniques
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Figure 1. (Color Online) (a) Schematic representation of a
tripod system. We choose |0〉 and |1〉 to encode the qubit
states. The ground state manifold couples to an excited state
|e〉 via control fields denoted Ω0e(t), Ω1e(t), and Ωae(t). (b)
Effective Λ system describing the evolution of the tripod sys-
tem. The control pulses Ωb1e(t) and Ωae(t) are chosen to
generate a cyclic evolution based on STIRAP. (c) Example
of a control sequence generating a cyclic evolution. The rel-
ative phase of Ωae(t) is changed instantaneously at t = tg/2.
This does not result in any discontinuity in the evolution since
Ωae(tg/2) = 0. (d) Geometric representation of the evolution
of the system on the Bloch sphere. The geometric phase accu-
mulated by |1̃〉 is equal to the solid angle encapsulated during
the evolution.

to accelerate well-known adiabatic quantum gates based
on a tripod level configuration, where three “ground
state” levels all interact controllably with a single “ex-
cited state” level. Such schemes can find direct appli-
cation in a variety of systems, including trapped ion
qubits [1, 21] as well as superconducting qubits [22, 23].
Accelerating a quantum gate is a more challenging prob-



2

lem than simply accelerating an adiabatic evolution with
a single, well-defined initial state, as now one is inter-
ested in a manifold of possible initial states. In the
case of a unique initial state, the (global) phase accu-
mulated during the evolution is of no importance and
it can consequently differ between the adiabatic and ac-
celerated protocol. In stark contrast, when generating
a quantum gate, the accumulated phases are of utmost
importance. This is problematic, as standard STA tech-
niques are not designed to preserve dynamical or geo-
metric phases generated by adiabatic evolution. Despite
this difference, we show that the superadiabatic transi-
tionless driving (SATD) scheme developed in Ref. [24] to
accelerate STIRAP-style quantum state transfer can be
used to accelerate tripod-based adiabatic quantum gates.
We also study in detail the tradeoffs entailed with using
an accelerated protocol: while the protocol time can be
dramatically reduced, one necessarily also becomes less
tolerant of parameter variations, and also more sensitive
to dissipative effects originating with the lossy excited
level. The understanding we develop will allow one to
design an optimally-constructed accelerated protocol for
a given set of experimental parameters.

In contrast to other schemes [25–28] that generate non-
adiabatic geometric gates, ours is purely geometric and
does not rely on accumulating specific dynamical phases.
This also distinguishes our work from the recent exper-
iment by Yan et al. [29], where an accelerated geomet-
ric gate is only obtained if a dynamical phase is can-
celled by applying a π-pulse. We also note that while
Ref. [30] straightforwardly applied the dressed state tech-
nique of Ref. [24] to accelerate an adiabatic gate, they did
not consider the potential difficulties associated with this
procedure (stemming from STA-induced modification of
phases).

II. GEOMETRIC GATES IN A TRIPOD
SYSTEM

A. Basic double-STIRAP protocol

We start by reviewing how geometric qubit gates
can be implemented in a four-level tripod system [see
Fig. 1 (a)]. Our discussion complements existing liter-
ature [1, 2] by providing a thorough discussion on how
non-adiabatic errors deteriorate the performance of such
gates. The system consists of three ground state lev-
els (|0〉, |1〉, and |a〉), each of which is controllably and
resonantly coupled to a common excited state |e〉. The
system Hamiltonian (in the rotating frame of the drive
fields) is

Ĥ(t) =
1

2
[Ω0e(t)|0〉〈e|+ Ω1e(t)|1〉〈e|+ Ωae(t)|a〉〈e|+ H.c.] ,

(1)
where Ωie(t) (i = 0, 1, a) denotes the complex envelope
of each control field.

We will use the ground states |0〉 and |1〉 to encode a
logical qubit state (logical subspace). It allows one to
use highly isolated states as qubit levels, thus potentially
enabling long coherence times. This kind of situation can
be realized in a variety of experimental platforms, e.g. in
superconducting fluxonium qubits [22, 23].

We next parametrize the control fields, assuming only
that they are chosen to keep the instantaneous eigenval-
ues of Ĥ(t) independent of time:

Ω0e(t) = Ω0 cos(α) sin[θ(t)],

Ω1e(t) = Ω0 sin(α) sin[θ(t)]eiβ ,

Ωae(t) = Ω0 cos[θ(t)]eiγ(t).

(2)

Ω0 determines the overall scale for the control fields [and

the size of the energy gap of Ĥ(t)], while the angles θ
and α determine their relative magnitudes. The angles β
and γ control the relative phases between control fields.
For reasons that will become clear, we consider in what
follows protocols where α and β are time-independent.
We emphasize that choosing Ω0 to be constant in Eq. (2)
is not restrictive. As we discuss below, adding a finite
turn-on (turn-off) to the control pulses does not modify
the dynamics of the logical subspace.

Diagonalizing the instantaneous Hamiltonian Ĥ(t),
one finds that it always possesses two zero-energy eigen-
states that are orthogonal to |e〉. States in this “dark
state” manifold are ideally suited for geometric gates, as
they will never acquire dynamical phases. Further, there
is always a unique dark state that is a superposition of
qubit states only, namely

|0̃〉 = sin(α)|0〉 − exp(iβ) cos(α)|1〉. (3)

This state does not depend on time. The orthogonal
qubit-only state is

|1̃〉 = cos(α)|0〉+ exp(iβ) sin(α)|1〉, (4)

and in general is not an instantaneous eigenstate of Ĥ(t).

Writing Ĥ(t) in terms of these new qubit basis states
yields

Ĥ(t) =
1

2

[
Ω1̃e(t)|1̃〉〈e|+ Ωae(t)|a〉〈e|+ H.c.

]
, (5)

where Ω1̃e(t) = Ω0 sin[θ(t)]. We see that the qubit state

|0̃〉 is completely decoupled, whereas the qubit state |1̃〉
forms a three-level Λ-system [31, 32] with the states |a〉
and |e〉 [see Fig. 1 (b)]. One can now use well-known
STIRAP protocols [31, 32] to adiabatically manipulate
these states. In particular, using an appropriate double-
STIRAP protocol we can engineer a cyclic evolution, such
that the qubit state |1̃〉 acquires a purely geometric Berry
phase [33, 34]. This will form the basis of our adiabatic
single qubit gate (as first suggested in Refs. [1, 2]).

To understand the double-STIRAP protocol, we first
list the remaining instantaneous eigenstates of Ĥ(t).
In addition to the zero energy qubit dark state |0̃〉
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[c.f. Eq. (3)], Ĥ(t) in Eq. (5) also has a second, orthogonal
zero energy dark state

|d2(t)〉 = cos[θ(t)]|1̃〉 − eiγ(t) sin[θ(t)]|a〉. (6)

as well as two non-zero energy eigenstates:

|b±(t)〉 =
1√
2

(
± sin[θ(t)]|1̃〉 ± eiγ(t) cos[θ(t)]|a〉+ |e〉

)
(7)

with instantaneous energies ±Ω0/2.
The double-STIRAP protocol involves adiabatically

evolving the dark state |d2(t)〉 from being purely |1̃〉 at
t = 0, to being |a〉 at t = tg/2, and then back to being

|1̃〉 at the final time t = tg. This can be accomplished by
choosing

θ(t) =


π

2
P (t) 0 ≤ t < tg

2
π

2

[
1− P

(
t− tg

2

)]
tg
2
≤ t ≤ tg,

(8)

where P (t) is a monotonic function varying between
P (0) = 0 and P (tg/2) = 1. The following form for P (t)
is particularly effective:

P (t) = 6

(
2t

tg

)5

− 15

(
2t

tg

)4

+ 10

(
2t

tg

)3

. (9)

This choice gives a smooth turn on and turn off of the
pulses, i.e. it satisfies θ̇(0) = θ̇(tg/2) = θ̇(tg) = θ̈(0) =

θ̈(tg/2) = θ̈(tg) = 0. Note that at this stage, we do not
specify the time-dependence of the relative phase γ(t);
as we will see, γ(t) will determine the geometric phase
acquired by |1̃〉. We assume for clarity that the control
field Ωae(t) is non-zero at t = 0. This is not restrictive.
Even if one includes a finite turn-on (turn-off) time for
this field, the additional resulting dynamics only effects
the states {|a〉, |e〉} (i.e. the auxiliary subspace). As
shown in what follows, this does not hinder the realiza-
tion of our geometric gate, as this gate is not contingent
on any special preparation of the auxiliary subspace.

The system dynamics is best analyzed in the instan-
taneous eigenstate frame (adiabatic frame) that diago-

nalizes Ĥ(t) at each instant in time. The frame-change
operator is given by:

Ŝad(t) = |0̃〉〈0̃|+ |d2(t)〉〈d2|+ |b−(t)〉〈b−|+ |b+(t)〉〈b+|.
(10)

In the adiabatic frame, we have

Ĥad(t) = Ŝ†ad(t)Ĥ(t)Ŝad(t)− iŜ†ad(t)∂tŜad(t)

= Ĥ0(t) + V̂err(t),
(11)

where

Ĥ0(t) = −Ω0

2
(|b−〉〈b−| − |b+〉〈b+|) + γ̇(t) sin[θ(t)]2|d2〉〈d2|

+
1

2
γ̇(t) cos[θ(t)]2 (|b−〉〈b−|+ |b+〉〈b+|)

(12)

is a diagonal operator which generates the desired adi-
abatic evolution. In contrast, V̂err(t) describes non-
adiabatic errors in the evolution:

V̂err(t) =
θ̇(t)√

2
(i|d2〉〈b−| − i|d2〉〈b+|+ H.c.)

+
γ̇(t)

2

[
− cos[θ(t)]2|b+〉〈b−|+

sin[2θ(t)]√
2
|d2〉〈b−|

− sin[2θ(t)]√
2
|d2〉〈b+|+ H.c.

]
.

(13)
Equation (13) differs from the non-adiabatic Hamilto-
nian derived in Ref. [24] because the latter work did not
consider STIRAP with time-dependent relative phases.

If one now assumes that we are in the adiabatic limit,
i.e. 2θ̇(t)/Ω0 → 0 and 2γ̇(t)/Ω0 → 0, then we can ignore

V̂err(t), and the unitary operator describing the evolution
is

Ûad(t) = |0̃〉〈0̃|+ e−iγ0 |d2〉〈d2|

+ ei(
Ω0
2 t−γ1)|b−〉〈b−|+ e−i(

Ω0
2 t+γ1)|b+〉〈b+|

+O

[
θ̇(t)

Ω0
,
γ̇(t)

Ω0

]
,

(14)
where

γ0 =

∫ tg

0

dt1 sin[θ(t1)]2γ̇(t1),

γ1 =
1

2

∫ tg

0

dt1 cos[θ(t1)]2γ̇(t1)

(15)

are the geometric phases accumulated by the dark and
bright states, respectively.

Before proceeding, we note that there is an extremely
simple choice for the relative control field phase γ(t) that,
despite first appearances, is compatible with adiabatic
evolution. Namely, one can use

γ(t) = γ0Θ

(
t− tg

2

)
, (16)

where Θ(t) denotes the Heaviside step function. Despite
the discontinuity at t = tg/2, there is no issue with adia-
baticity. Note that our chosen pulse shapes [c.f. Eq. (2)]
satisfy θ(tg/2) = π/2 which leads to Ωae(tg/2) = 0, im-
plying that the phase γ(t) is not well defined at this time;
this allows the jump in Eq. (16). Another way to under-
stand that choosing γ(t) as given by Eq. (16) does not
impact the adiabaticity of the protocol is to realize that
the instantaneous eigenenergies of Ĥad(t) [see Eq. (11)]
are not altered by the phase jump. For a more geometric
picture, note that this type of control results in a trajec-
tory on the Bloch sphere that resembles a citrus wedge,
as depicted in Fig. 1 (d). Finally we emphazise that this
choice leads to γ1 = 0 [c.f. Eq. (15)].

We can express Eq. (14) in the (time-
independent) lab frame via the transformation
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Ûad(t) = Ŝad(t)ÛΛ,ad(t)Ŝ†ad(0). Using for γ(t) Eq. (16),
we find at the final time t = tg

ÛG,ad = e−i
γ0
2 e−i

γ0
2 n·σ̂01 ⊕ ei

γ0
2 ei

ϕad
2 nad·σ̂ae . (17)

Here, σ̂01 = (|0〉〈1|+ H.c., −i|0〉〈1|+ H.c., |0〉〈0| − |1〉〈1|)
and σ̂ae = (|a〉〈e|+H.c., −i|a〉〈e|+H.c., |a〉〈a|− |e〉〈e|) de-
note a vector of Pauli matrices. We have further defined
the unit vectors

n = [sin(2α) cos(β), sin(2α) sin(β), cos(2α)],

nad =
sin
(

Ω0tg
2

)
sin
(
ϕad

2

) sin
(γ0

2

)[
− cot

(γ0

2

)
, 1, cot

(
Ω0tg

2

)]
,

(18)
and the rotation angle

ϕad = 2 arccos

[
cos
(γ0

2

)
cos

(
Ω0tg

2

)]
. (19)

Equation (17) shows clearly that at t = tg the qubit
subspace is decoupled from that of the two auxiliary lev-
els. The evolution in the qubit subspace is a simple ro-
tation. The rotation axis n is controlled by the static
pulse parameters α, β, whereas the rotation angle γ0 is a
geometric phase. We thus have a purely geometric arbi-
trary single qubit gate. We stress that having a gate that
acts independently on the qubit and auxiliary subspaces
is crucial: it allows a qubit gate to be performed without
first having to prepare the state of the auxiliary levels.

B. Non-adiabatic errors

Our goal is to accelerate the adiabatic gate described
above. As a first step, we need to understand the ef-
fects of non-adiabatic errors that occur when the proto-
col time is not infinitely slow compared to the inverse
instantaneous energy gap 2/Ω0 of Ĥ(t).

We can calculate non-adiabatic corrections to the evo-
lution perturbatively in V̂err(t) [c.f. Eq. (13)] using a Mag-
nus expansion [35]. Using θ(t) as defined in Eq. (8) with
P (t) given by Eq. (9) and γ(t) as defined in Eq. (16), we
find to leading order (see Appendix A)

ÛG =
(
e−i

γ0
2 e−i

γ0
2 n·σ̂ ⊕ ei

γ0
2 ei

ϕna
2 nna·σ̂ae

)
+O

[
1

(Ω0tg)3

]
,

(20)
with

nna =
sin [ϕ0(tg)]

sin
(
ϕna

2

) sin
(γ0

2

){
− cot

(γ0

2

)
, 1, cot [ϕ0(tg)]

}
,

ϕna = 2 arccos
{

cos
(γ0

2

)
cos [ϕ0(tg)]

}
,

ϕ0(tg) =
Ω0tg

2
+

10π2

7Ω0tg
.

(21)
Comparing against Eqs. (17) and (20), we see that to
leading order, non-adiabatic errors do not change the na-
ture of the gate: we still have a pure geometric operation

10−15

10−12

10−9

10−6

10−3

100

101 102

er
ro

r,
ε

gate time, Ω0

2π
tg

ε (numerics)
ε (Magnus)

εq (numerics)
εq (Magnus)

Figure 2. (Color Online) Error ε = 1 − F̄ [see Eq. (22)] as a

function of gate time for the unitary operator ÛG acting on
both the qubit and auxiliary subspace and its projection Ûq on
the qubit subspace (εq). Corrections to the ideal gate due to
non-adiabatic transitions only affect the auxiliary subspace at
leading order in V̂err while the dynamics in the qubit subspace
is only affected at third order. This is a consequence of our
choice for θ(t) whose first and second derivates vanish at t = 0,
tg/2, and tg.

on the qubit subspace and the latter is still decoupled
from the auxiliary subspace. Non-adiabatic errors only
change the rotation performed on the auxiliary levels.
The favourable scaling here is a direct consequence of
our choice for θ(t) [c.f. Eq. (8)], whose derivatives vanish
at the protocol start and end; this corresponds to the
“boundary cancellation method” for non-adiabatic error
suppression discussed in Refs. [36–38].

A more useful measure for quantifying the impact of
non-adiabatic errors is given by the state-averaged fi-
delity of the gate [39]

F̄ =
Tr
[
ÔÔ†

]
+
∣∣∣Tr
[
Ô
]∣∣∣2

d(d+ 1)
, (22)

where Tr[·] denotes the trace operation, d = 4 is the

dimension of the Hilbert space, and Ô = Û†G,adÛG where

ÛG,ad is given in Eq. (17) and ÛG is the unitary operator
generated by Eq. (1) evaluated at t = tg. Using the

approximate ÛG given in Eq. (20), we find

F̄ = 1− 40π4

49 (Ω0tg)
2 +O

[
1

(Ω0tg)4

]
. (23)

However, it is misleading to compare ÛG,ad to ÛG to
determine the gating time for which the error ε = 1− F̄
goes above a critical threshold, e.g. ε = 10−3 for quan-
tum error correction. In Eq. (23) the deviations from
unity are only due to imperfect dynamics in the auxil-
iary subspace as we identified earlier on [see Eqs. (17)
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and (20)]. Since Eq. (22) holds for any linear opera-

tor Ô in a d-dimensional Hilbert space, we consider in-

stead Ôq = P̂qÛ
†
G,adP̂qÛGP̂q that allows us to quantify

errors that only affect the dynamics in the qubit sub-
space. Here, P̂q is the projector onto the qubit subspace.

Ôq corresponds to measuring the overlap between the

unitary operator Ûq,ad = P̂qÛG,adP̂q and the operator

Ûq = P̂qÛGP̂q; the latter is not necessarily unitary. Due

to the direct sum structure of ÛG,ad [cf. (17)], the projec-
tion operation yields the ideal gate acting on the qubit
subspace only.

Within this framework, and performing a fourth order
Magnus expansion (see Appendix A), we find

F̄q = 1+
aπ2

(Ω0tg)
6

[
−1 + cos

(
Ω0tg

4

)
cos(γ0)

]
sin2

(
Ω0tg

8

)
(24)

with a = 14745600. We stress that there exists special
gate times for which the fidelity is equal to unity. Using
Eq. (24), we find those times to be

tg =


8π

Ω0
k1, k1 ∈ N∗,

4(π + 2πk2)

Ω0
, k2 ∈ N.

(25)

This phenomenon (a coherent cancellation of non-
adiabatic effects) has also been discussed in Ref. [38].

In Fig. 2, we plot the error ε = 1 − F̄ [see Eq. (22)]

as a function of gate time for Ô and Ôq both obtained
numerically by integrating the Schrödinger equation and
perturbatively via the Magnus expansion. In the adia-
batic regime, i.e. Ω0tg/2 → ∞, the Magnus expansion
fully captures deviations from the ideal adiabatic evo-
lution which confirms our error scaling analysis. How-
ever, even with the improved error scaling in the qubit
subspace, the achievable gate times in a realistic setup
remain longer than typical decoherence rates.

III. ACCELERATED GATE

We now turn to the main goal of this paper: how
can we accelerate the geometric qubit gate presented in
Sec. II A using the general philosophy of “shortcuts to
adiabaticity” (STA) [10–12, 24, 40]? At first glance, this
is a non-trivial problem. The original purpose of STAs
is to accelerate the evolution of a specific initial state,
and usually, one does not care about the final, overall
phase of the state. In contrast, we want to accelerate
the evolution of an arbitrary initial qubit state, and the
phases acquired by the adiabatic states are of crucial im-
portance. Despite these difficulties, we show that our
desired goal can indeed be accomplished. We will use
our recently proposed dressed-state approach, which al-
lows acceleration of STIRAP-type processes by simply
modifying the form of the original control pulses [19, 24].

Note that Ref. [30] did not consider these difficulties; as
we show below, it is not a trivial task to find a suitable
STA that preserves the phases acquired by the adiabatic
states.

Our goal will be to modify the three control fields
Ωie(t) (i = 0, 1, a) from the values given in Eqs. (2)
and (8), so that the desired gate operation is accom-
plished even though the total protocol time tg is not
long compared to 2/Ω0. This modification can be de-

scribed by adding a term to the Hamiltonian, i.e. Ĥ(t)→
Ĥ(t) + Ŵ (t) ≡ Ĥmod(t). In the adiabatic frame, this
modification can be written as

Ŵad(t) =
1

2
[−Wz(t) (|b−〉〈b−| − |b+〉〈b+|)

+
Wx(t)√

2
(|d2〉〈b−|+ |d2〉〈b+|+ H.c.)

+
Wy(t)√

2
(−i|b−〉〈d2| − i|b+〉〈d2|+ H.c.)

]
.

(26)
One can readily verify that transforming Eq. (26) to the

original frame, Ŵ (t) = Ŝad(t)Ŵad(t)Ŝ†ad(t), results in a
control Hamiltonian having the same form as Eq. (1);
no additional control fields are required. Note that
the qubit-only dark state |0̃〉 remains decoupled for any
choice of the Wj(t), j ∈ {x, y, z}.

Conventional STAs attempt to modify Ĥ(t) so that the
evolution follows the (original) adiabatic trajectory at all
times. In contrast, the dressed-state approach of Ref. [24]
aims for something less extreme. We let the system devi-
ate from the adiabatic trajectory at intermediate times.
This can be framed as a time-dependent dressing of the
original adiabatic eigenstate, with the dressing vanishing
at t = 0 and t = tg. For our problem, we need to add an
additional constraint. We must find a dressed version of
the dark state |d2〉

|d̃2(t)〉 ≡ Ŝ†µ(t)|d2〉, (27)

which retains the geometric nature of the evolution. In
other words we require that the new dressed dark state
does not acquire any dynamical phases.

A. Generic dressing

Following Ref. [24] we try a simple dressing transfor-
mation

Ŝµ(t) = exp [−iµ(t) (|b−〉〈d2|+ H.c.)] , (28)

where the dressing angle µ(t) remains to be determined.
It must satisfy µ(0) = µ(tg) = 0, to ensure the dressing
vanishes at the start and end of the protocol (which then

guarantees |d̃2(t)〉 = |1̃〉 at t = 0 and t = tg). Note that
at this stage we only assume θ(t) to be of the form given
in Eq. (8) while no particular form is assumed for γ(t).

The goal is now to pick the dressing parameter µ(t)

and control modifications Ŵ (t) such that the resulting
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dynamics does not cause transitions out of the dressed
dark state. By considering the dynamics in the time-
dependent frame defined by Eq. (28) (dressing frame),
we find that this can be accomplished by choosing the
dressing angle to fulfill the differential equation

µ̇(t) =
sin [2θ(t)] γ̇(t)√

2
(29)

and the control fields to be

Wx(t) = sin[2θ(t)]γ̇(t),

Wy(t) =
√

2
[
cos[θ(t)]2 tan[µ(t)]γ̇(t) +

√
2θ̇(t)

]
,

Wz(t) = −Ω0 + 4
√

2 cot[2µ(t)]θ̇(t)

+
γ̇(t)

2

[
1 + 5 cos[2θ(t)]− 2 cos[θ(t)]2 sec[µ(t)]2

]
.

(30)
Unfortunately, suppressing unwanted transitions is not
enough to achieve our gate. We also need control over
the phase acquired by the dressed dark state. In partic-
ular, it should not acquire a dynamical phase which de-
pends explicitly on tg while still accumulating a geomet-
rical phase. We stress that the control fields in Eq. (30)
also cancel the purely dynamical phase originating from
the dressing by ensuring that the energy of the dressed
dark state is 0. Within this framework the phase accu-
mulated by the dressed dark state is given by

ϕdds =

∫ tg

0

dt
sec[µ(t)]2

8

{
γ̇(t)

[
3 + cos[2µ(t)]

− cos[2θ(t)](1 + 3 cos[2µ(t)])
]

+ 4
√

2 sin[2µ(t)]θ̇(t)
}
.

(31)
In spite of the similarities with Eq. (15), there is no
guarantee that this phase is purely geometric since one
might not be able to express µ as a function of γ and
θ only. In our example, however, the situation is far
worse. A solution of Eq. (29) that fulfills the require-
ment that the dressing must vanish at the boundaries,
[µ(0) = µ(tg) = 0] leads to γ̇(t) to be an antisymmetric
function on the interval [0, tg] since sin[2θ(t)] is symmet-
ric on said interval [see Eq. (8)]. Using the symmetry of
the functions involved in Eq. (31), one finds ϕdds = 0.

B. Spin-based dressing

However, for γ(t) given by Eq. (16) and arbitrary θ(t)
of the form in Eq. (8), one can find a large class of
STAs for which there is an accumulated phase whose
nature is geometric. To proceed, we first define effec-
tive spin-1 operators to describe the dressed frame states:
Ĵx = (|d̃2〉〈b̃+| + |d̃2〉〈b̃−| + H.c.)/

√
2, Ĵy = (i|d̃2〉〈b̃−| −

i|d̃2〉〈b̃+|+H.c.)/
√

2, and Ĵz = (|b̃−〉〈b̃−|−|b̃+〉〈b̃+|). The
dressing transformation of interest is then:

Ŝν(t) = exp
[
−iν(t)Ĵx,ad

]
. (32)

In the dressed frame, the Hamiltonian is given by

Ĥdressed = Ŝ†ν(t)Ĥad(t)Ŝν(t)− iŜ†ν(t)∂tŜ
†
ν(t)

= Ĥspin(t) + Ĥns(t) + Ĥgeom(t),
(33)

with

Ĥspin(t) = Bz(t)Ĵz +Bx(t)Ĵx +By(t)Ĵy (34)

Ĥns(t) =
γ̇(t)

2

[
Ξ1(t)

(
|b̃−〉〈b̃−|+ |b̃+〉〈b̃+|

)
+ Ξ2(t)

(
|b̃+〉〈b̃−|+ H.c.

)
+ Ξ3(t)

(
i|b̃+〉〈b̃−|+ H.c.

)
+ Ξ4(t)

(
|d̃2〉〈b̃−| − |d̃2〉〈b̃+|+ H.c.

)
+Ξ5(t)

(
i|d̃2〉〈b̃−|+ i|d̃2〉〈b̃+|+ H.c.

)]
(35)

and

Ĥgeom(t) = γ̇(t) sin2[θ(t)] cos2[ν(t)]|d̃2〉〈d̃2|. (36)

We have written Eq. (33) as the sum of a spin Hamilto-
nian [see Eq. (34)], a non-spin Hamiltonian [see Eq. (35)],
and a Hamiltonian that generates the geometric phase
[see Eq. (36)]. We also defined the effective magnetic
field components

Bx(t) = −ν̇(t),

By(t) = −Ω0

2
sin[ν(t)] + θ̇(t) cos[ν(t)],

Bz(t) = −Ω0

2
cos[ν(t)]− θ̇(t) sin[ν(t)],

(37)

as well as the parameters of the non-spin Hamiltonian:

Ξ1(t) = cos2[θ(t)] + sin2[θ(t)] sin2[ν(t)],

Ξ2(t) = − cos2[θ(t)] + sin2[θ(t)] sin2[ν(t)],

Ξ3(t) = sin[2θ(t)] sin[ν(t)],

Ξ4(t) =
sin[2θ(t)] cos[ν(t)]√

2
,

Ξ5(t) = − sin2[θ(t)] sin[2ν(t)]√
2

.

(38)

The choice of dressing in Eq. (32) was made to en-

sure that 〈d̃2|Ĥdressed(t) − Ĥgeom(t)|d̃2〉 = 0; this partly
solves the problem of the STA giving rise to unwanted dy-
namical phases in the evolution of the dressed dark state
|d̃2〉. In contrast to the STA approach (see Sec. III A),
we do not start by looking for a dressing angle ν(t)
that generates a dressing transformation that cancels
unwanted transitions (between dressed dark state and
dressed bright states). Instead, we start by looking for a
ν(t) that gives a specific value for the phase accumulated

by the dressed dark state |d̃2〉. Neglecting for a moment
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transitions involving the dressed dark state, we have that
the phase accumulated by |d̃2〉 is given by

ϕdds =

∫ tg

0

dt sin2[θ(t)] cos2[ν(t)]γ̇(t). (39)

Taking into account that we have chosen a particular
form for γ(t) [see Eq. (16)] and comparing Eq. (39) to
Eq. (15), we see that the phase accumulated by the
dressed dark state is equal to the adiabatic-limit dark
state geometric phase γ0 if

ν(tg/2) = 0, (40)

i.e. we must restrict ourselves to a class of dressing trans-
formations that exactly vanish halfway through the pro-
tocol.

There is a second consequence of having to work with
dressing transformations that fulfill Eq. (40): one can eas-

ily verify that Ĥns(t) does not generate any dynamics.

Since γ̇(t) = γ0δ(t − tg/2), integrating Ĥns(t) between

t = 0 and t = tg yields 0 because we evaluate Ĥns(t) at
t = tg/2 where θ(tg/2) = π/2 and ν(tg/2) = 0 such that
all parameters defined in Eq. (38) evaluate to 0.

Within this framework all that remains is to find a
specific dressing function ν(t) satisfying Eq. (40), and

a corresponding control Hamiltonian Ŵ (t) that cancels

unwanted transitions generated by Ĥspin(t). This is es-
sentially equivalent to the general problem treated in
Ref. [24]. While many choices are possible, a particular
simple approach is the so-called superadiabatic transi-
tionless driving (SATD) dressing introduced in Ref. [24].
This is defined by the specific dressing angle

ν(t) = νSATD(t) = arctan

[
2θ̇(t)

Ω0

]
. (41)

This satisfies our constraint Eq. (40) as long as the initial

pulse sequence satisfies θ̇(tg/2) = 0. For example, the
pulse shape in Eq. (9) satisfies this property.

Before proceeding we note that the phase accumulated
by the dressed dark state can still be viewed as a geomet-
ric phase. As long as Eq. (40) is fulfilled the accumulated
phase is independent of the protocol time tg and does not
depend on the details of the pulse. We stress, however,
one more time that the dressing transformation allowing
one to get a STA that preserves the geometric nature of
the phase accumulated by the dressed dark state |d̃2(t)〉
explicitly depends on our choice of γ(t) and that our spe-
cific choice of dressing [see Eq. (41)] further requires the

adiabatic protocol to obey θ̇(tg/2) = 0.

For this choice of dressing, the required modified con-
trol fields (which cancel transitions out of the dressed

dark state) are:

Ω0e(t)→ Ω0

2
cos(α)

[
sin[θ(t)] + 4

cos[θ(t)]θ̈(t)

Ω2
0 + 4θ̇2(t)

]
,

Ω1e(t)→ Ω0

2
sin(α)eiβ

[
sin[θ(t)] + 4

cos[θ(t)]θ̈(t)

Ω2
0 + 4θ̇2(t)

]
,

Ωae(t)→ Ω0

2
eiγ(t)

[
cos[θ(t)]− 4

sin[θ(t)]θ̈(t)

Ω2
0 + 4θ̇2(t)

]
.

(42)
Combining these results, we find that the accelerated

dynamics results in an evolution that at t = tg yields the
gate

ÛG,SATD = e−i
γ0
2 e−i

γ0
2 n·σ̂ ⊕ ei

γ0
2 ei

ϕSATD
2 nSATD·σ̂ae ,

(43)

whose action on the qubit subspace is the same as ÛG,ad

[see Eq. (17)], but acts differently on the auxiliary sub-
space. The latter undergoes a rotation of angle ϕSATD =
2 arccos[cos(γ0/2) cos(Φ)] around the axis

nSATD =
sin(Φ) sin

(
γ0

2

)
sin
(
ϕSATD

2

) [
− cot

(γ0

2

)
, 1, cot(Φ)

]
(44)

with Φ =
∫ tg/2

0
dt
√

Ω2
0 + 4θ̇2(t).

We note that Eq. (43) always leads to a perfect qubit-
subspace fidelity F̄q = 1 independent of the speed of the
protocol.

IV. DISSIPATIVE DYNAMICS

In the following section, we characterize the perfor-
mance of both the adiabatic and STA gates in the pres-
ence of imperfections. We consider two types of imper-
fections: dissipation and uncertainties in the parameters
of the Hamiltonian.

To model the loss we consider a Lindblad master equa-
tion that describes pure dephasing of the ground and ex-
cited states

∂tρ̂(t) = −i
[
Ĥ(t), ρ̂(t)

]
+

∑
j=0,1,a,e

Γϕ,j

[
|j〉〈j|ρ̂(t)|j〉〈j| − 1

2
{|j〉〈j|, ρ̂(t)}+

]
,

(45)

where Ĥ(t) is the Hamiltonian, ρ̂(t) is the density op-
erator of the system, Γϕ,j (j ∈ {0, 1, a, e}) is the de-
phasing rate of state |j〉, and we have defined the anti-

commutator {Ô1, Ô2}+ = Ô1Ô2 + Ô2Ô1. We stress
that in the adiabatic frame the dephasing processes we
are considering lead to transitions between instantaneous
eigenstates. For this reason we do not explicitly consider
relaxation processes.

To quantify how decoherence affects the performance
of the gate, we use the result of Bowdrey et al. for the
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average fidelity of single qubit maps [41]

F̄map =
1

6

∑
j=±x,±y,±z

Tr
[
Ûqρ̂jÛ

†
q ρ̂j(t)

]
, (46)

where ρ̂j with j ∈ {±x,±y,±z} is an axial pure state
on the Bloch sphere of the qubit, e.g. ρ̂x = 1/2(|0〉 +

|1〉)(〈0| + 〈1|), Ûq was defined earlier in the text, and
ρ̂j(t) is a solution of Eq. (45) for the initial state ρ̂j .

In addition to errors due to noise, we also consider
errors arising from uncertainties in the system Hamilto-
nian. Here, we assume that the amplitude parameter Ω0

[cf. Eqs. (1) and Eq. (2)] is only known with finite pre-
cision, as described by a probability distribution p(Ω0).
In the following we assume p(Ω0) to be uniform on the
interval [Ω0(1 − k),Ω0(1 + k)] with k ∈ (0, 1). The per-
formance of the gate is then quantified via the averaged
average fidelity

〈F̄map〉 =

∫ Ω0(1+k)

Ω0(1−k)

dΩ0p(Ω0)F̄map(Ω0). (47)

For the results that follow, accelerated gates are im-
plemented using a starting pulse shape given by Eq. (9)
and the SATD STA defined by Eqs. (41) and (42).

A. Excited State Dephasing

In Fig. 3, we plot the error εmap = 1 − F̄map as a
function of the gate time for α = π/4, β = 0, γ0 = π,
Γϕ,e = Ω0/(2π × 100), and Γϕ,j = 0 for j ∈ {0, 1, a} for
both the adiabatic (blue traces) and accelerated protocol
(orange traces) either without uncertainty on Ω0 (dashed
traces) or with an uncertainty of 40% (k = 0.2) on Ω0

(solid traces). We have indicated with a green arrow the
shortest gate time for which the maximal amplitude of
the modified controls is still Ω0, with a blue (red) arrow
the gate time for which the energy cost to generate the
STA is twice (three times) as large as the energy cost to
generate the adiabatic control sequence. We define the
energy cost of a control sequence as

C =
1

tg

∫ tg

0

dt
∥∥∥Ĥ(t)

∥∥∥
2
, (48)

where
∥∥∥Ĥ(t)

∥∥∥
2

= σmax[Ĥ(t)] is the p = 2 operator norm

equal to the largest singular value of the Hamiltonian
operator Ĥ(t) denoted by σmax[Ĥ(t)].

We start by observing that going to the adiabatic
regime, tg →∞, results in both gates becoming insensi-
tive to noise and uncertainty. This is expected because
the evolution of the system can be reduced to the evolu-
tion of the dark state |d2(t)〉 [see Eq. (6)] which contains
no excited state amplitude. We note that for the ac-
celerated gate, going to the adiabatic regime results in
a vanishing dressing such that the dressed dark state is

10−4

10−2

100

100 101 102

er
ro

r,
ε

gate time, Ω0

2π
tg

Ad.
SATD

Ad. no uncert.
SATD no uncert.

Figure 3. (Color Online) Comparison of the average error
εmap = 1 − F̄map between adiabatic (upper blue traces) and
accelerated gate (lower orange traces) either without uncer-
tainty on Ω0 (dashed traces) or with a 40% (k = 0.2) uncer-
tainty on Ω0 (solid traces) as a function of the gate time for
α = π/4, β = 0, γ0 = π, Γϕ,e = 10−2(Ω0/2π), and Γϕ,j = 0
for j ∈ {0, 1, a}. Shorter gate times than the one indicated
by the green arrow (first arrow from the right) result in a
modified control sequence whose maximal amplitude is larger
than Ω0. The blue (second from the right) (red [third from
the right]) arrow indicates a modified control sequence that
requires twice (three times) the energy cost [see Eq. (48)] of
the adiabatic sequence.

effectively |d2〉. Moreover, a small uncertainty on the in-
stantaneous gap is irrelevant as long as tg � 2/Ω0. It
is only outside of the adiabatic regime that both gates
are affected by a lossy excited state since during the evo-
lution the excited state will be occupied. One clearly
sees that the accelerated version of the gate outperforms
its adiabatic counterpart; this reflects the fact that the
mechanism leading to excited state occupancy is different
in each case.

For the adiabatic version of the gate, non-adiabatic
processes are responsible for the transitions between the
dark state |d2〉 and the bright states |b±〉, which con-
tain a finite excited state amplitude [see Eq. (7)]. Since
non-adiabatic transitions need first to happen for noise in
the excited state to disrupt the dynamics, the gate error
is mainly dominated by non-adiabatic errors. However,
signatures of the dissipative dynamics can be observed
for the special times [see Eq. (25)] for which the coher-
ent evolution brings the system back to the dark state.
These special times do not lead to a perfect gate anymore
because the coherent mechanism that brings the system
back to the dark state is disrupted by excited state de-
phasing. This coherent mechanism is further hindered by
the uncertainty on Ω0.

The accelerated gate is constructed such that whatever
amplitude leaves the dark state it has to come back to the
dark state by the end of the protocol; this is equivalent
to having the system remaining in the dressed dark state
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|d̃2(t)〉 for the whole evolution. However, leaving the dark
state is not harmless in the presence of a noisy excited
state: it disrupts the STA dynamics in two ways. First,
there is no guarantee that the amplitude leaving the dark
state comes back by the end of the evolution. Second,
even if the amplitude that left the dark state comes back,
it could come back with a phase error. These two mech-
anism can be identified as the leading order processes
leading to deviations of the average fidelity [Eq. (46)]
from unity. Using a Magnus expansion we can find ap-
proximate solutions of Eq. (45) which we use to evaluate
F̄map [Eq. (46)] (see Appendix B). We find

F̄map = 1− 4

3
Γϕ,e

∫ tg/2

0

dt
θ̇2(t)

Ω2
0 + 4θ̇2(t)

− 8

3
Γϕ,eΩ2

0

∫ tg/2

0

dt
θ̇2(t)[

Ω2
0 + 4θ̇2(t)

]2
+O

[(
Γϕ,e
Ω2

0tg

)2
]
,

(49)

which is in good agreement with numerical simulations
[see Appendix B]. In particular, Eq. (49) captures the
non-monotonic behavior of the gate error as a function
of gate time. Sufficiently faster gates become insensitive
to a lossy excited state. We note, however, that reaching
such a regime experimentally is difficult.

In the presence of uncertainty in Ω0, it is impossi-
ble to realize the exact STA that would cancel out non-
adiabatic transitions. As a result, a small non-adiabatic
transition probability from the dressed dark state to the
bright states remains. This becomes apparent for faster
gate times where the fidelity of the accelerated gates os-
cillates in sync with the fidelity of the adiabatic gate.

Finally, we note that in this scenario if being fast is
not essential, then there is no benefit in using an ac-
celerated gate. Both gates perform equally well in the
adiabatic regime. However, if the gate time has to be
below a threshold outside of the adiabatic regime, then
the accelerated gate will outperformed the adiabatic one.

B. Ground and Excited State Dephasing

In Fig. 4, we plot the error, εmap = 1−F̄map, as a func-
tion of the gate time for α = π/4, β = 0, γ0 = π, Γϕ,e =
Ω0/(2π × 100), and Γϕ,0 = Γϕ,1 = Γϕ,a = Ω0/(2π × 100)
for both the adiabatic (blue traces) and accelerated pro-
tocol (orange traces) either without uncertainty on Ω0

(dashed traces) or with an uncertainty of 40% (k = 0.2)
on Ω0 (solid traces). Similarly to Fig. 3, we have indi-
cated with a green arrow the shortest gate time for which
the maximal amplitude of the modified controls is still
Ω0, with a blue (red) arrow the gate time for which the
energy cost [see Eq. (48)] to generate the STA is twice
(three times) as large as the energy cost to generate the
adiabatic control sequence.

10−3
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Figure 4. (Color Online) Comparison of the average error
εmap = 1 − F̄map between adiabatic (upper blue traces) and
accelerated gate (lower orange traces) either without uncer-
tainty on Ω0 (dashed traces) or with a 40% (k = 0.2) uncer-
tainty on Ω0 (solid traces) as a function of the gate time
for α = π/4, β = 0, γ0 = π, Γϕ,e = 10−2(Ω0/2π), and
Γϕ,j = 10−2(Ω0/2π) for j ∈ {0, 1, a}. Shorter gate times than
the one indicated by the green arrow (first from the right) re-
sult in a modified control sequence whose maximal amplitude
is larger than Ω0. The blue (second from the right) (red [third
from the right]) arrow indicates a modified control sequence
that requires twice (three times) the energy cost [see Eq. (48)]
of the adiabatic sequence.

In contrast to the case where only the excited state
is lossy, operating in the adiabatic regime does not lead
to a perfect gate. The dephasing on the ground state
manifold sets a threshold for the slowest “allowed” gate
time. As a consequence, the adiabatic version of the gate
becomes an unviable option. Trying to perform the gate
faster to avoid ground state dephasing unavoidably leads
to a regime where the dominating source of errors are
non-adiabatic transitions. On the other hand, the ac-
celerated gate is less susceptible to non-adiabatic errors.
As a result decreasing the gate time allows one to escape
the interval for which the error is mainly dominated by
ground state dephasing, tg � 1/(Γϕ,0 + Γϕ,1 + Γϕ,a), to
operate in a regime where only excited state dephasing
contributes to the gate error.

In this scenario, being fast becomes essential and corre-
sponds to a situation where the accelerated gate provides
a real benefit over its adiabatic counterpart.

C. Extended Robustness Comparison

To identify the regimes where the accelerated gate pro-
vides a clear benefit over the adiabatic gate, we look for
the gate time that yields the smallest error for fixed de-
phasing rates. We have constrained the minimal gate
time by imposing that the maximal amplitude of the
modified pulse sequence cannot be larger than Ω0. For



10

Figure 5. (Color Online) Comparison of the smallest gate
error between adiabatic and accelerated gate. For fixed values
of the dephasing rates we look for the gate time that yields
the smallest error. We consider an uncertainty on Ω0 of 10%
(k = 0.05) and Γϕ,0 = Γϕ,1 = Γϕ,a = Γϕ,GS. The accelerated
gate reaches the same error as the adiabatic gate for dephasing
rates that are roughly one order of magnitude larger.

simplicity we consider the case where the ground state de-
phasing rates are equal, i.e. Γϕ,0 = Γϕ,1 = Γϕ,a = Γϕ,GS.
We also assume that the uncertainty on Ω0 is 10%
(k = 0.05). In Fig. 5, we plot contour lines for differ-
ent error thresholds as a function of Γϕ,GS and Γϕ,e for
the adiabatic gate (dashed lines) and accelerated gate
(solid lines). For the displayed contours, we see that the
accelerated gate reaches the same error level as the adia-
batic gate for rates that can be roughly up to one order
of magnitude larger.

V. CONCLUSION

We have shown how to use the framework of shortcuts-
to-adiabaticity to accelerate geometric gates in tripod
systems. We have discussed both how standard STA
techniques designed for the transfer of a single known
state are problematic due to STA-induced modification
of dynamical and geometric phases. We have also shown
a set of protocols that overcome this seeming limitation
and discussed the advantages of using accelerated gates
in the presence of dissipation and Hamiltonian uncertain-
ties: the accelerated gate preserves the robustness against
parameter variations and allows one to be fast enough
to overcome thresholds set by relaxation and dephasing
times. Our accelerate control scheme can be implemented
in a variety of state-of-the-art qubit implementations.

Our work also suggests that accelerated geometric-
based two-qubit gates could be developed for a vari-
ety of systems. In particular, it could greatly bene-
fit superconducting-based architectures where two-qubit
gates are still the main limitation preventing the realiza-
tion of high-fidelity complex gate sequences.
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Appendix A: Average Gate Fidelity with Unitary
Evolution

In this appendix we show how to use a Magnus expan-
sion to obtain approximate solutions of the Schrödinger
equation

i∂tÛ(t) = Ĥ(t)Û(t), (A1)

where Ĥ(t) was defined in Eq. (5) of the main text. We
focus on the special case where the control field phase
γ(t) is given by Eq. (16). The special form of γ(t) and
the symmetry of the function θ(t) [see Eq. (8)] allows us
to split the evolution into two distinct STIRAP processes
defined by the Hamiltonians

Ĥ1(t) =
Ω0

2

[
sin[θ1(t)]|1̃〉〈e|+ cos[θ1(t)]|a〉〈e|+ H.c.

]
,

(A2)
which describes the first half of the evolution that brings
the system from |1̃〉 to |a〉, and

Ĥ2(t) =
Ω0

2

[
cos[θ1(t)]|1̃〉〈e|+ eiγ0 sin[θ1(t)]|a〉〈e|+ H.c.

]
,

(A3)
which describes the second half of the evolution that
brings |a〉 back to |1̃〉. Here, θ1(t) = πP (t)/2 [see Eq. (9)]
is defined for t ∈ [0, tg/2] and we have used the symme-
try of the function θ(t) [see Eq. (8)] to obtain Eq. (A3).

Within this framework the evolution operator Û can be
parametrized as

Û(t) =

{
Û1(t) 0 ≤ t < tg

2 ,

Û2(t− tg/2)Û1(tg/2)
tg
2 ≤ t < tg,

(A4)

where Û1(t) is generated by Ĥ1(t) [see Eq. (A2)] and

Û2(t) is generated by Ĥ2(t) [see Eq. (A3)]. We stress

that Û(t) is continuous at t = tg/2 because the actual
coupling strength between |a〉 and |e〉 is 0, which allows
us in the first place to have a phase jump.

It is useful to look for solutions of Eq. (A1) in the
adiabatic frame. We can transform Eqs. (A2) and (A3) to
the adiabatic frame by using the frame-change operator
Ŝad(t) defined in Eq. (10) of the main text with

|d2(t)〉 =

{
cos[θ1(t)]|1̃〉 − sin[θ1(t)]|a〉 for Ĥ1(t)

sin[θ1(t)]|1̃〉 − eiγ0 cos[θ1(t)]|a〉 for Ĥ2(t)
(A5)
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and

|b±(t)〉 =



1√
2

(
± sin[θ1(t)]|1̃〉 ± cos[θ1(t)]|a〉+ |e〉

)
for Ĥ1(t),

1√
2

(
± cos[θ1(t)]|1̃〉 ± eiγ0 sin[θ1(t)]|a〉+ |e〉

)
for Ĥ2(t).

(A6)
We find

Ĥad,1(2)(t) = −Ω0

2
Ĵz,ad ± θ̇1(t)Ĵy,ad, (A7)

where Ĥad,1 (Ĥad,2) denotes Ĥ1(t) [Ĥ2(t)] in the adi-
abatic frame. We have introduced the spin operators
Ĵz,ad = (|b−〉〈b−| − |b+〉〈b+|) and Ĵy,ad = (i|d2〉〈b+| −
i|d2〉〈b−| + H.c.)/

√
2. We note that the remaining spin

operator Ĵx,ad was introduced in the main text below
Eq. (32). It is convenient to transform Eq. (A7) to the

interaction picture generated by Ĥ0,ad = −Ω0Ĵz,ad/2 to
perform the Magnus expansion, this yields

V̂I,1(2)(t) = ∓ie−i
Ω0
2 t θ̇1(t)√

2
|b−〉〈d2| ± iei

Ω0
2 t θ̇1(t)√

2
|b+〉〈d2|

+ H.c..
(A8)

It is useful to notice that the dynamics generated by
V̂I,1(2)(t) can be parametrized as

ÛI,1(2)(t) = exp
[
−i
(

∆(t)Ĵz,ad ± Ωx(t)Ĵx,ad ± Ωy(t)Ĵy,ad

)]
= exp

[
−iξ(t)

(
nz(t)Ĵz,ad ± nx(t)(t)Ĵx,ad ± ny(t)Ĵy,ad

)]
(A9)

with ξ(t) =
√

∆2(t) + Ω2
x(t) + Ω2

y(t), nx(t) = Ωx(t)/ξ(t),

ny(t) = Ωy(t)/ξ(t), and nz(t) = ∆(t)/ξ(t). This form

allows us to get an exact representation for ÛI,1(2)(t) by
expanding the exponential into a series and using the
properties of the spin operators. The functions ∆(t),
Ωx(t), and Ωy(t) are found perturbatively using a fourth-
order Magnus expansion [35]. We find that at t = tg/2
these functions evaluate to

∆(tg/2) =
a1

Ω0tg
+

a2

(Ω0tg)
3 ,

Ωx(tg/2) = b1
sin2

(
Ω0tg

8

)
(Ω0tg)

3 + b2
sin
(

Ω0tg
4

)
(Ω0tg)

4 ,

Ωy(tg/2) = c1
sin
(

Ω0tg
4

)
(Ω0tg)

3 + c2
cos2

(
Ω0tg

8

)
(Ω0tg)

4 ,

(A10)

with a1 = −5π2/7, a2 = 4500π4/2431 − 960π2/7, b1 =
3840π, b2 = 960π(336 + 5π2)/7, c1 = −1920π, and c2 =
−1920π(336 + 5π2)/7.

Finally, the evolution operators are given by

Û1(2)(t) = Ŝad,1(2)Û0(t)ÛI,1(2)(t)Ŝ
†
ad,1(2)(0), (A11)

10−4

10−2

100 101 102

er
ro

r,
ε

gate time, Ω0

2π
tg

Num.
Magnus

Figure 6. (Color Online) Comparison of the average error
εmap = 1− F̄map calculated numerically (solid blue trace) and
using Eq. (49) (dashed orange trace). We used α = π/4,
β = 0, γ0 = π, Γϕ,e = Ω0/(2π × 100).

with Û0(t) = exp[iΩ0tŜz,ad/2].

We can evaluate Eq. (22) with Ô = Ôq [see text below

Eq. (23)] and ÛG = Û(tg) [see Eq. (A4)] (not shown due
to the length of the result). To get Eq. (24), one further
needs to expand the trigonometric functions involved in
the result to fourth-order in ξ(t) and collect terms up to
sixth-order in 1/(Ω0tg).

Appendix B: Average Map Fidelity with Excited
State Dephasing

In this section we present the general framework al-
lowing us to evaluate perturbatively the average fidelity
of the qubit map [cf. Eq. (46)] for the accelerated gate
in the presence of excited state dephasing. We start by
defining the modified Hamiltonian with the SATD cor-
rection

Ĥmod(t) = Ĥ(t) + ŴSATD(t), (B1)

where Ĥ(t) is the Hamiltonian of the tripod system writ-
ten in terms of the new qubit states [cf. Eq. (5)] and

ŴSATD =
2Ω0θ̈(t)

Ω2
0 + 4θ̇2(t)

×[
cos[θ(t)]|1̃〉〈e| − eiγ(t) sin[θ(t)]|a〉〈e|+ H.c.

]
.

(B2)

In the frame defined by the SATD dressing [see
Eqs. (32) and (41)], the master equation describing the
evolution of the tripod system with excited dephasing is
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given by

∂tρ̂dr(t) = −i
[
Ĥmod,dr(t), ρ̂dr(t)

]
+ Γϕ,e

∑
i,j,k,l=

b̃−,b̃+,d̃2

ci(t)c
∗
j (t)|i〉〈j|ρ̂dr(t)ck(t)c∗l (t)|k〉〈l|

− 1

2
Γϕ,e

∑
i,j=

b̃,b̃+,d̃2

{
ci(t)c

∗
j (t)|i〉〈j|, ρ̂dr(t)

}
+

(B3)

with cb̃−
(t) = cb̃+

(t) = 1/

(√
2
√

1 + 4θ̇2(t)/Ω2
0

)
and

cd̃2
= 2iθ̇(t)/

(
Ω0

√
1 + 4θ̇2(t)/Ω2

0

)
.

Using a superoperator formalism Eq. (B3) can be writ-
ten as

∂tρ̂dr(t) = [̀`̀0(t) + `̀̀ϕ(t)] ρ̂dr, (B4)

where `̀̀0(t) = i
[
Ĥᵀ

mod,dr(t)⊗ 1− 1⊗ Ĥmod,dr(t)
]

and `̀̀ϕ = L̂∗(t) ⊗ L̂(t) −(1/2)1 ⊗ L̂ᵀ(t)L̂(t)

−(1/2)L̂ᵀ(t)L̂∗(t) ⊗ 1 and we have defined L̂ϕ(t) =√
Γϕ,e

∑
i,j ci(t)c

∗
j (t)|i〉〈j| with i, j ∈ {b̃−, b̃+, d̃2}. We

also introduced the complex conjugation and transpose
operation denoted by L̂∗(t) and L̂ᵀ(t), respectively.

To find approximate solutions of Eq. (B4) it is conve-
nient to work in the interaction picture defined by `̀̀0(t).
In this frame Eq. (B4) reduces to

∂tρ̂dr,I(t) = `̀̀ϕ,I(t)ρ̂dr,I(t), (B5)

where `̀̀ϕ,I(t) = L†0(t)`̀̀ϕ(t)L0(t) and L0(t) is the solu-
tion of ∂tρ̂dr(t) = `̀̀0(t)ρ̂dr(t), i.e. ρ̂dr(t) = L0(t)ρ̂dr(0).
Within this framework the solution of Eq. (B4) is given
by ρ̂dr(t) = L0(t)LI(t)ρ̂dr(0) where LI(t) is a solution of
Eq. (B5). Using a first order Magnus expansion [35], we
can approximate LI(t) by

LI(t) ' exp

[∫ t

0

dt1`̀̀ϕ,I(t1)

]
' 1 +

∫ t

0

dt1`̀̀ϕ,I(t1).

(B6)

This leads to an approximate solution for ρ̂dr(t),

ρ̂dr(t) ' L0(t)

[
1 +

∫ t

0

dt1`̀̀ϕ,I(t1)

]
, (B7)

which can be used to evaluate Eq. (46).
In Fig. 6 we plot the error εmap as a function of

gate time for α = π/4, β = 0, γ0 = π, and Γϕ,e =
Ω0/(2π×100) for the accelerated protocol calculated nu-
merically (solid blue trace) and using Eq. (49) (dashed
orange trace). As stated in the main text, the approxi-
mate analytical result is in very good agreement with the
numerical results.
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