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Randomized benchmarking (RB) is an efficient and robust method to characterize gate errors in
quantum circuits. Averaging over random sequences of gates leads to estimates of gate errors in terms
of the average fidelity. These estimates are isolated from the state preparation and measurement
errors that plague other methods like channel tomography and direct fidelity estimation. A decisive
factor in the feasibility of randomized benchmarking is the number of sampled sequences required to
obtain rigorous confidence intervals. Previous bounds were either prohibitively loose or required the
number of sampled sequences to scale exponentially with the number of qubits in order to obtain a
fixed confidence interval at a fixed error rate.

Here we show that, with a small adaptation to the randomized benchmarking procedure, the
number of sampled sequences required for a fixed confidence interval is dramatically smaller than
could previously be justified. In particular, we show that the number of sampled sequences required
is essentially independent of the number of qubits and scales favorably with the average error rate
of the system under investigation. We also investigate the fitting procedure inherent to randomized
benchmarking in the light of our results and find that standard methods such as ordinary least
squares optimization can give misleading results. We therefore recommend moving to more sophis-
ticated fitting methods such as iteratively reweighted least squares optimization. Our results bring
rigorous randomized benchmarking on systems with many qubits into the realm of experimental
feasibility.

I. INTRODUCTION

One of the central problems in the creation of large-
scale, functioning quantum computers is the need to ac-
curately and efficiently diagnose the strength and charac-
ter of the various types of noise affecting quantum oper-
ations that arise in experimental implementations. This
noise can be due to many factors, such as imperfect man-
ufacturing, suboptimal calibration, or uncontrolled cou-
pling to the external world. Tools that diagnose and
quantify these noise sources provide vital feedback on
device and control design leading to better quantum de-
vices. They are also used as certification tools, quanti-
fying a device’s ability to e.g. perform successful error
correction or implement quantum algorithms. A variety
of tools have been developed for this purpose, including
state and channel tomography [1, 2], direct fidelity esti-
mation (DFE) [3, 4], gate set tomography [5, 6], and ran-
domized benchmarking (RB) [7–9] together with its to-
mographic extension randomized benchmarking tomog-
raphy [10]. All of these tools have different strengths
and weaknesses. State and channel tomography allow the
user to get a full characterization of the quantum state or
channel of interest but are subject to state preparation
and measurement errors (SPAM), which place a noise
floor on the accuracy of these characterizations. More-
over these protocols require resources that scale exponen-
tially with the number of qubits even for the more effi-
cient variants using compressed sensing [11, 12], making
them prohibitively expensive for use in multi-qubit sys-

tems. Randomized benchmarking tomography and gate
set tomography remedy the SPAM issue, but require even
more resources.

This exponential scaling with the number of qubits
is problematic because even though on most quantum
computing platforms multi-qubit gates are generally per-
formed as circuits composed of one and two-qubit gates it
is still vitally important to obtain aggregate measures of
the behavior of multi-qubit quantum circuits. One can in
principle gauge the behavior of these circuit by character-
izing their component gates but such a characterization
will typically give only loose bounds [13] on the behavior
of the full circuit (even disregarding the possibility of cor-
related errors inside the circuit [14]). Therefore their is a
need for diagnostic tools that scale efficiently in the num-
ber of qubits. Protocols designed with such efficiency in
mind, like DFE and RB, do not aspire to a full character-
ization of the system, but instead aim to estimate a single
figure of merit that ideally captures relevant properties
of the system under investigation. The figure of merit es-
timated by both DFE and RB is the average gate fidelity
to some target state or gate. However, RB is also robust
to SPAM errors (as opposed to DFE). This makes RB
the protocol of choice for characterizing many candidate
quantum computing platforms [8, 15–18]. Variants of
RB that estimate output purity [19], and leakage [20–22]
have also been devised.

An important practical problem when using RB is
choosing a number of random gate sequences that is suffi-
ciently small to be practical experimentally, and yet gives
a good estimate of the gate fidelity. This problem be-
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comes increasingly relevant as error rates improve since
estimating small errors accurately ordinarily requires
more samples. Early treatments of this problem de-
manded numbers of sequences that were orders of magni-
tude larger than were feasible in experiment [23]. A more
specialized analysis allowed rigorous confidence intervals
to be derived for a number of random sequences compara-
ble to the number used in experiments [24]. However, this
analysis only provided reasonable bounds on the num-
ber of sequences for short sequence lengths and for single
qubit experiments while more general multi-qubit bounds
had an unfavorable exponential scaling with the number
of qubits being benchmarked. The restriction to short se-
quence lengths is also problematic because long sequences
generally lead to better experimental fits [25, 26].

In this paper we propose an adapted version of the
standard RB protocol on the set of Clifford gates that
requires little experimental overhead. For this protocol
we provide a bound on the number of random sequences
required to obtain rigorous confidence intervals that is
several orders of magnitude sharper than previous multi-
qubit bounds. Our result makes rigorous and efficient
randomized benchmarking of multi-qubit systems possi-
ble using a reasonable amount of experimental resources.
In particular, our bounds are approximately independent
of the number of qubits being benchmarked As a special
case, we also obtain bounds for the single-qubit version
of RB that are valid for all sequence lengths and improve
on the bounds of Ref. [24] for long sequence lengths. The
key to the analysis of the statistical performance is a
novel understanding of the representations of the Clif-
ford group, developed in a companion paper [27]. Similar
representation-theoretic questions have also been studied
independently by Zhu et al. [28]. We also prove a precise
sense in which the derived bounds are optimal. Finally
we analyze the fitting procedure inherent to randomized
benchmarking in light of our results. We conclude that
randomized benchmarking yields data that violates the
core assumptions of the Ordinary Least Squares fitting
procedure, a standard tool for processing randomized
benchmarking data [25]. This means using OLS to ana-
lyze RB data can lead to misleading results. As an alter-
native we propose using the more sophisticated method of
iteratively reweighted least squares optimization, which
can be guaranteed to lead to correct results[29, 30].

In section II we present an overview of the new contri-
butions of this paper (equations of note here are eqs. (9)
and (11)) and explain their context. In section III, we dis-
cuss the implications of the new bound for experiments,
and investigate it in various limits. Finally, in section IV
we discuss the derivation of the new bounds and how to
apply them in practice, notably with regard to the RB
fitting procedure. We also prove that our results are op-
timal in some well specified sense. We focus on intuition
and displace most of the technical proofs to the Supple-
mentary Material. We make heavy use of techniques from
group and representation theory, which are of indepen-
dent interest, but were derived in a more general setting

than needed for the purpose of this paper. Readers in-
terested in the details of this part of the derivation are
invited to the companion paper [27] or the closely related
work of Zhu et al. [28].

Figure of merit

We begin by introducing the essential quantities we
will use to state and derive our results. The central prob-
lem that RB addresses is how to efficiently obtain a rig-
orous figure of merit quantifying how close a physically-
performed operation Ũ (represented by a completely pos-
itive, trace preserving (CPTP) map [1]) is to an ideal tar-
get operation U , which is generally taken to be unitary,
that is U(ρ) = UρU† for some unitary U and for all den-
sity matrices ρ. The quality of a noisy implementation
Ũ relative to its ideal implementation U is quantified by
the average (gate) fidelity,

Favg(U , Ũ) :=

∫
dφTr(U(|φ〉〈φ|)Ũ(|φ〉〈φ|)), (1)

where dφ is the uniform Haar measure over pure quantum
states.

It is convenient (and always possible) to write the

physically-performed operation Ũ as the ideal operation
U up to composition with a “noise operation”, that is
we write Ũ = E ◦ U where E is a CPTP map. Note
that in general the map E can depend on the unitary U
being implemented. However, in this paper we shall al-
ways consider E to be the same for all possible unitary
operations U . This is called a gate-independent noise
model. We will also work with the more general noise
model Ũ = L ◦ U ◦ R where R,L are CPTP maps. This
ensures compatibility of our results with recent results
on RB with gate-dependent noise [31, 32]. However we
can always recover the presentation given here by choos-
ing the right gauge. This is explained in section IV D.
Because the map U is unitary we can also write

Favg(U , Ũ) = Favg(E , I) (2)

where I is the identity operation. A useful quantity is
the average infidelity r defined as

r(E) := 1− Favg(E , I) (3)

We also use the quantity f = f(E) defined as

f(E) :=
dFavg(E , I)− 1

d− 1
(4)

where d is the dimension of the state space. One can
think of f as the “depolarizing parameter” associated
to the quantum channel E . It is this quantity which ran-
domized benchmarking can estimate. In the text, we will
often drop the channel E from the (in)fidelity and depo-
larizing parameter and simply write r(E) = r because the
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only channel considered in the text is E (or equivalently
RL, see section IV D).

We will also use another quantity associated to quan-
tum channels called the unitarity

u(E) :=
d

d−1

∫
dφTr

(∣∣E
(
|φ〉〈φ| − 1/d

)∣∣2
)
. (5)

The unitarity has the property that u(E) = 1 if and only
if the quantum channel E is unitary [19]. We will again
drop the argument and write u(E) = u. Introducing this
extra parameter allows us to differentiate between situ-
ations where the noise is coherent or incoherent. Ran-
domized benchmarking behaves fundamentally different
in each of these situations, as we explain in section IV G.

The randomized benchmarking protocol

In fig. 1 we lay out our version of the randomized
benchmarking protocol as it was analyzed in [8, 23, 24].
We will perform randomized benchmarking over the Clif-
ford group on q qubits C. This is the group of unitary
operations that can be constructed by considering all pos-
sible products of CNOT gates, Hadamard gates and π/4
phase gates on the q qubits [33]. We make two essen-
tial changes to the standard randomized benchmarking
protocol, both of which lead to better guarantees on the
precision of randomized benchmarking.

• A first modification is to perform each random-
ized benchmarking sequence twice, but with dif-
ferent input states ρ, ρ̂ and then subtracting the
result. This is equivalent to performing standard
randomized benchmarking with the “input opera-
tor” ν = 1

2 (ρ − ρ̂). A similar idea was suggested
in [8, 26, 34, 35]. The factor (1/2) is not strictly
necessary but it allows for a fairer comparison be-
tween the original benchmarking protocol and our
proposal [36].

• Secondly, we do not assume the ideal measure-
ment operator to be the projector on the |0 · · · 0〉
state. Instead we perform some stabilizer measure-
ment related to a pre-chosen Pauli matrix P. An
experimentally good choice would be for instance
P = Z⊗q but our results hold for any choice of
Pauli operator. Correspondingly we pick the input
states to be some (impure) states ρ, ρ̂ with support
on the positive, resp. negative, eigenspaces of the
Pauli operator P That is, we would like to prepare
the impure states ρ = I+P

2d , ρ̂ = I−P
2d .

Both of these adjustments are done with the purpose of
lowering the experimental requirements for rigorous ran-
domized benchmarking. Our first change to the RB pro-
tocol, performing randomized benchmarking with a state
difference, has two beneficial effects: (1) It changes the
regression problem inherent to randomized benchmark-
ing from an exponential fit with a non-zero off-set to an

exponential fit (see eq. (7)). This eliminates a fitting
parameter, lowering experimental requirements. (2) It
lowers the statistical fluctuations of randomized bench-
marking regardless of what input states are actually used.
This improvement is mostly noticeable in the limit of long
sequence lengths. We discuss this in more detail in sec-
tion IV I.
A much stronger improvement to the statistical fluctua-
tions inherent to randomized benchmarking stems from
our second change to the RB protocol; preparing states
and performing measurements proportional to 1 + P
where P is a Pauli operator. This change allows us to
prove a radically sharper bound on the statistical fluc-
tuations induced by finite sampling relative to preparing
other input states. This is discussed in section IV E (see
in particular eq. (36)). In section IV G we argue that
this behavior is not an artifact of our proof techniques
but rather inherent to the statistical behavior of ran-
domized benchmarking. Note that for a single qubit the
state (I ±P)/2 is in fact a pure state for any choice of P
(in particular (I + Z)/2 = |0〉〈0|). Note that (1) and (2)
both reduce the amount of resources needed in a differ-
ent and independent manner. Using a difference of two
input states amounts to effectively preparing a traceless
input operator. The tracelessness of this operator has
two distinct effects. The first effect is that it fixes the
constant offset of the decay to be zero, thereby eliminat-
ing a fitting parameter. The second effect, which is more
subtle, is that it eliminates in the variance expression a
representation (which has support on the identity ma-
trix), and hence an extra term in the sequence variance.
This means the sequence variance is reduced compared
to the sequence variance of standard RB. This effect re-
mains even in the case of imperfect state preparation, as
the difference of two density matrices is always traceless
(assuming no leakage during the preparation)

As seen in fig. 1 the RB protocol starts by, for a given

sequence of Clifford operations ~G of length m, computing

the expectation value pm(~G)(ρ) of an observable Q for
two different input states ρ and ρ̂. We subtract these

two numbers to obtain a number km(~G) := 1
2 (pm(~G)(ρ)−

pm(~G)(ρ̂)). Next we obtain an average of this quantity

over all possible sequences ~G.

E~G(Km) = |C|−m
∑

~G∈Cm
km(~G) (6)

This average over all possible Clifford strings of length
m can be fitted for various values m to the exponential
decay curve

E~G(Km) =fit Af
m, (7)

with two fitting parameter A and f . In the case where
all gates performed in the experiment suffer from the
same noise, that is Ĝ = E ◦ G for all Clifford operations
G the number f can be interpreted as the depolarizing
parameter of the channel E (as defined in eq. (4)) giving
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1. Choose a random sequence ~G = (G1, . . . , Gm) of m gates independently and uniformly at random from
the q-qubit Clifford group C and compute the gate Gm+1 = (Gm . . . G1)†.

2. Prepare q qubits in a state ρ that maximizes Tr(ρP) [e.g., ρ ≈ 2−q(I + P)].

3. For t = 1, . . . ,m+ 1, apply the gate Gt to ρ.

4. Measure the expectation value pm(~G)(ρ) of some observable Q ≈ P to a suitable precision (By repeating
1-3 for the same sequence L times)

5. Repeat these steps for the same string ~G but for a different state ρ̂ [ideally, ρ ≈ 2−q(I−P)]. and compute

km(~G) = 1
2 (pm(~G)(ρ)− pm(~G)(ρ̂)).

6. Repeat steps 1–5 a total of N times to estimate

E~G(Km) = |C|−m
∑

~G∈Cm

km(~G)

to a suitable precision (implicitly regarding the km(~G) as realizations of a random variable Km). We call
the empirical average over the N sampled Clifford sequences km,N

7. Repeat steps 1–6 for multiple values of m and fit to the decay model

E~G(Km) = Afm,

where f = (dFavg(E , I)− 1)/d− 1 is the depolarizing parameter as given in eq. (4) [23] (and d = 2q).

FIG. 1. The Randomized Benchmarking Protocol. We perform randomized benchmarking using the Clifford group C,
i.e. all gates that can be constructed by successive application of CNOT gates, Hadamard gates and π/4 phase gates. We
assume the input states ρ, (ρ̂) to be noisy implementations of the states 2−q(I+P), (2−q(I−P)), and Q a noisy implementation
of the observable P where P is a Pauli operator. We denote the length of an RB sequence by m, the amount of random sequences
for a given m by N and the amount of times a single sequence is repeated by L. The goal of this paper is to provide confidence
intervals around the empirical average km,N assuming that individual realizations km(~G) are estimated to very high precision
(corresponding to the case L→∞). In experimental implementations, running the same sequence many times (L) is typically
easy, but running many different sequences (N) is hard [25], meaning that the quantity that we want to minimize is N . See
section IV for a detailed discussion of the construction of confidence regions around the empirical average km,N

an estimate of the average fidelity of the noisy operation
Ĝ w.r.t. its ideal version G.

In practice the number of possible sequences for a given
m is too large to average over completely. Instead one
averages over a randomly sampled subset of sequences,
which generates an empirical estimate km,N the validity
of which we can interpret using confidence regions. A
confidence region, for some set confidence level 1− δ and
size ε, is an interval [km,N − ε, km,N + ε] around the esti-
mate km,N such that the probability that the (unknown)
parameter E~G(Km) lies in this interval with probability
greater than 1− δ, i.e.,

Prob
[
E~G(Km)∈ [km,N−ε, km,N+ε]

]
≥ 1−δ.

These confidence intervals, obtained for various values
of sequence length during the experiment can then be
used in the fitting procedure eq. (7) to generate a con-

fidence interval around the empirical estimate F̂ for the
true channel average fidelity Favg(E , I). This can be done
using standard statistical procedures (see e.g. [37]). The
number of random sequences N used to obtain km,N will

depend on ε and δ which are set before the beginning of
the experiment, and in general also on some prior esti-
mate of the infidelity r and unitarity u. The rest of the
paper will be concerned with making this N as small as
possible given δ and ε and (if possible) an a priori bound
on the average infidelity r.

II. RESULTS

In this section we state the main contributions of the
paper. We present practical bounds on the number of se-
quences required to obtain rigorous confidence intervals
for randomized benchmarking using the Clifford group
under the assumption that the expectation value differ-

ence km(~G) for a given Clifford sequence ~G is estimated
easily to a very high precision. This means we assume
that any uncertainty on the number km is mostly due to

the fact that we only sample N sequences ~G. [24, 25], or

equivalently that the uncertainty on the number km(~G)

for a fixed sequence ~G is negligible. In order to construct
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a 1 − δ confidence interval of size ε around a random-
ized benchmarking sequence average km,N with sequence

length m, system dimension d and a prior estimate of the
channel infidelity r and unitarity u one needs to average
over N random sequences where N is given by [38]:

N(δ, ε,m, r, χ, d) = − log(2/δ)

[
log

(
1

1− ε

)
1− ε

V2 + 1
+ log

(
V2

V2 + ε

)
V2 + ε

V2 + 1

]−1

, (8)

where V2 is the variance of the distribution of the sam-
ples km(~G) from a uniform distribution over the Clifford

sequences ~G. This variance is given below.

The variance of randomized benchmarking

The most important contribution of this paper is a
bound on the number of sequences N needed for multi-
qubit randomized benchmarking. Previous bounds for
multi-qubit RB [23, 24] are either prohibitively loose or
scale exponentially with the number of qubits. Our new

bounds, which are derived in detail in theorem 1 of the
Supplementary Material, resolve both these issues using
techniques from representation theory, enabling multi-
qubit RB with practical numbers of random sequences.

Variance bound for SPAM-free multi-qubit RB

For states and measurements that are (very close to)
ideal, section IV E yields a bound on the variance in terms
of the sequence length m, the infidelity r, the unitarity
u and the system size d. It is given by

V2
m ≤

d2 − 2

4(d− 1)2
r2mfm−1 +

d2

(d− 1)2
r2um−2

(m−1)
(
f2

u

)m
−m

(
f2

u

)m−1

+ 1

(1− f2/u)2
. (9)

This bound is asymptotically independent of system size
d.

To illustrate the improvements due to our bound,
consider a single qubit (d = 2) RB experiment with
sequences of length m = 100 and average infidelity
r ≤ 10−4. To obtain a rigorous 99% confidence interval
of size ε = 10−2 around pm,N , Ref. [24] reported that
N = 145 random sequences were needed (In the case
of perfect state preparation and measurement) while
our bounds imply that N = 173 random sequences are
sufficient. However, the new bound has substantially
better scaling with m. For instance, with m = 5000,
ε = 0.05 and other parameters as above, our bound only
requires N = 470 compared to the N = 1631 required
by the single qubit bound of Ref. [24]. We illustrate the
difference in scaling of the number of sequences needed
for a given confidence interval with respect to sequence
length m in fig. 2.

A notable upper bound on eq. (9), which is easier to

work with, is

V2
m ≤fm−1 (d2−2)m

4(d−1)2
r2 +um−2 d

2m(m−1)

2(d− 1)2
r2. (10)

This bound can be further weakened and simplified by
setting u = 1, yielding an upper bound on the variance
that is independent of the unitarity. This bound will
however rapidly become trivial with increasing sequence
length.

Variance bound including SPAM

The above variance bound is sensitive to SPAM er-
rors, which introduce terms into the variance which scale
linearly in the infidelity r. In theorem 1 of the Supple-
mentary Material, we prove that in the presence of SPAM
errors the variance is bounded by

V2
SPAM ≤

d2 − 2

4(d− 1)2
r2mfm−1+

d2(1 + 4η)r2

(d− 1)2

(m−1)
(
f2

u

)m
−m

(
f2

u

)m−1

+1

(1− f2/u)2
um−2+

2ηdmr

d− 1
fm−1. (11)

The correction factor η only depends on SPAM. As we show in section IV H, this SPAM dependence is impossi-
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FIG. 2. Improvements in dimensional and sequence length scaling The number of sequences needed (on a log scale)
to obtain a 99% confidence interval around pm,N with ε = 10−2 for a prior infidelity r = 10−3 as a function of (a) the
sequence length m for a single qubit (q = 1) from eq. (9) (full line red) compared to the single-qubit bound from [24, Eq. (6)]
(dashed green) and a trivial bound that arises from noting that the distribution sampled from is bounded on the interval [0, 1]
and hence has a variance at most 1/4 (dot-dashed blue) and (b) the number of qubits from eq. (11) (full line) for sequence
length m = 100 compared to the multi-qubit bound from from [24, Eq. (4)] (dashed green). In both cases, our bounds are
asymptotically constant while the bounds from [24] diverge. Our bounds are also substantially smaller than the trivial bound.
For multiple qubits, we set the SPAM contribution to η = 0.05 while for a single qubit we set the SPAM contribution to η = 0
in both bounds. We also assumed the unitarity to be u = (1 + f2)/2 where f is the depolarizing parameter, corresponding to
somewhat, but not fully coherent noise.

ble to avoid if one wants to retain the preferred quadratic
scaling in infidelity r. This bound is also asymptotically
independent of the number of qubits. This means we can
perform rigorous randomized benchmarking even in the
limit of very many qubits. We illustrate the difference in
scaling with respect to system size in fig. 2.

To illustrate the improvements our methods yield we
can again compare to [24]. Consider a system with 4
qubits, that is, d = 16, with sequence length m = 100,
an a priori estimate of r ≤ 10−4, and η = 0.05. For
a 99% confidence region of size ε = 10−2 the previous
best known bound for multiple qubits [24] would require
N = 3 × 105 random sequences, while our dimension
independent bound from eq. (11) only requires N = 249.

Optimality of results

We also prove (see section IV) that for arbitrary SPAM
a bound on the variance which is linear in the infidelity
r is in fact optimal. This means the result stated above
is in some sense the best possible bound on the variance
of a randomized benchmarking sequence. It is important
to note that this optimality result also holds when RB is
performed using a different set of gates than the Clifford
group and also when one considers the standard proto-
col [8, 9] as opposed to the protocol involving differences
of quantum states which we presented in this paper.

Both the SPAM and SPAM-free variance bound also
approach a constant independent of the infidelity r in
the limit of large sequence length m when the unitarity
is one, that is when the noise in the system is purely
coherent. In section IV H we argue that this behavior is

not an artifact of the proof techniques used but is in fact a
generic feature of a randomized benchmarking procedure
with a unitary noise process.

Fitting procedure

In section IV C we discuss the consequences of eqs. (9)
and (11) on the fitting procedure used to fit the data
{km,N} generated by fig. 1 to the RB fitting relation
eq. (7). Our results show that the variance of random-
ized benchmarking data is strongly heterogeneous with
respect to the sequence length m. This invalidates the
key assumption of homogeneity of variance (homoskedas-
ticity) [30] that is necessary for the correct functioning
of Ordinary Least Squares (OLS), the standard method
used for fitting RB data [25]. Because of this infer-
ences drawn from can give misleading results when ap-
plied to RB data. We recommend switching from OLS to
the more sophisticated method of Iteratively Reweighted
Least Squares, which can deal with non-homoskedastic
data.

III. DISCUSSION

In this section we will discuss the behavior of the vari-
ance bound eqs. (9) and (11) in various regimes. Of in-
terest are its scaling with respect to the number of qubits
in the system, the presence of state preparation and mea-
surement noise and varying amounts of coherence in the
noise process.
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FIG. 3. (a) Number of sequences needed for a 99% confidence interval of size ε = 5r for various infidelities r (ranging from
r = 5 · 10−3 tor = 10−4) , number of qubits q ∈ [1, 10] and sequence length m = 100 using eq. (10) under the assumption
of negligible SPAM. (similar plots can be made without this assumption). The number of sequences needed increases with
decreasing infidelity, reflecting the generic statistical rule that higher precision requires more samples. Note that even in the
case of infidelity r = 2×10−4 the number of sequences required is within experimental limits. (b) Variance, as given by eq. (11)
versus infidelity r (taking d = 16 and m = 100 for illustration) for various levels of SPAM η ∈ {0, 0.01, 0.05, 0.1, 0.5}. Note that
the size of the SPAM term has a strong influence on the variance and hence the number of sequences required, especially in
the small r limit. As indicated by the visual aids this is due to the transition from a variance scaling quadratically in infidelity
r (small η) to a variance scaling linearly in the infidelity r (large η).

A. Scaling with number of qubits.

We begin by discussing the effect of the number of
qubits in the system on the variance and the number of
necessary sequences.

As illustrated in fig. 2 (red full) and as can be seen from
eq. (9), the derived bound is almost independent of the
number of qubits q (where d = 2q). In fact, the bound on
the variance decreases asymptotically to a constant in the
limit of many qubits despite the number of possible se-
quences (that is, |C|m) increasing exponentially with the
number of qubits. This constitutes a notable improve-
ment over previous multi-qubit variance bounds with an
explicit dependence on the infidelity (dashed green in
fig. 2), given in [24] which had a linear scaling with infi-
delity but scaled exponentially with the number of qubits.
The qualitative behavior of the variance bound in terms
of dimension matches a trivial bound on the number of
sequences, which can be made by noting that the num-
bers km,N are sampled from a distribution bounded on an
interval of unit size (and hence has variance at most 1/4
(dashed blue in fig. 2)) but is much sharper in absolute
terms due to its quadratic dependence on the infidelity
r.

To further illustrate the behavior of the bound, fig. 3(a)
shows the number of sequences needed for a 99% confi-
dence interval around km,N of size 5r versus the number
of qubits in the system for various values of r ranging
from 5 · 10−3 to 10−4 and sequence length m = 100.
The size of ε was chosen to reflect that for fixed sequence
length a smaller infidelity will lead to the need for greater
precision around km.N for a successful fit to the exponen-
tial eq. (7) [25]. This plot was made using the unitarity

independent bound in eq. (10) for ideal SPAM, but simi-
lar plots can be made for non-negligible SPAM errors us-
ing eq. (11). Note also that greater numbers of sequences
are needed when the infidelity is small even though the
variance in eq. (9) decreases with infidelity. This is due
to our setting of the size of the confidence interval and
reflects the statistical truism that more samples are in
general needed to detect small differences.

B. Effects of SPAM terms

In practice it will always be the case that the input
state difference ν and the output measurement POVM
element Q are not ideal. This means that in general
we must take into account the contributions from non-
ideal SPAM when calculating the number of required se-
quences. These contributions scale linearly in the infi-
delity r (see eq. (11)) rather than quadratically and so
will increase the amount of required sequences. The de-
gree to which ν and Q deviate from the ideal situation
is captured by the prefactor η (see section IV for more
on this factor). To illustrate the effect of the SPAM
terms on the variance we plot in fig. 3(b) the variance
versus the infidelity r using eq. (11) taking the sequence
length m = 100 and the dimension of the system d = 16
(four qubits) for SPAM of size η ∈ {0, 0.01, 0.05, 0.1, 0.5}.
From this plot we note that for non-zero η the vari-
ance, and hence the amount of sequences needed in-
creases rapidly, especially in the regime of small r. This
is due to the fact that increasing the SPAM contribu-
tion interpolates the variance between a regime where
the terms quadratic in infidelity r are dominant and a
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regime where the terms linear in infidelity r are dom-
inant. This means that, especially when dealing with
systems with very small r it is advantageous to try to
suppress SPAM errors. In section IV G we show that
this type of quadratic-to-linear interpolation behavior is
in fact optimal for the variance of randomized bench-
marking.

C. Scaling with sequence length

Of more immediate relevance is the scaling of the
bound with the sequence length. It is easy to see that
the variance bound eq. (9) scales quadratically in the se-
quence length m for any noise process when the sequence
length is small (see also eq. (10)) but when the sequence
length is very long the precise nature of the noise under
consideration heavily impacts the variance. If the noise
is purely coherent, i.e. the unitarity u = 1, we see that
the scaling of the second term in eq. (9) is set by the
factor

(m− 1)f2m −mf2(m−1) + 1

(1− f2)2
. (12)

In the limit of m going to infinity this factor goes to

1

(1− f2)2
≈ O(1/r2) (13)

which means the variance eq. (9) converges to a constant
independent of the infidelity r. This behavior for uni-
tary noise is strikingly different from the behavior for
incoherent noise, that is u < 1. Here we see that the
variance in the limit of long sequences is dominated by
the exponential terms um−2 and f2(m−1). Since f and
u are strictly less than one by the assumption of inco-
herence, the variance will decay to zero in the limit of
long sequences. As u ≥ f2 for all possible noise pro-
cesses [19] the decay rate will be dominated by the size
of the unitarity. This is also evident in fig. 4(a). In this
figure we see the number of sequences needed (as given
by eq. (9)) versus sequence length m for fixed infidelity
r = 0.1 and dimension d = 16, and a fixed confidence
interval δ = 0.99, ε = 0.01 but for different values of the
unitarity u. Here we have chosen u = (κ+ (1− κ)f2) for
κ ∈ {0.2, 0.4, 0.6, 0.8, 1} corresponding to the situations
where the noise is relatively incoherent going all the way
up to a situation where the unitarity is one. We see
that for u < 1 the number of sequences needed first rises
quadratically, tops out and subsequently decays to zero
whereas in the case of u = 1 the number of sequences
needed keeps rising with sequence length m until it tops
out at some asymptotic value. In section IV H we argue
that this behavior is not a feature of the variance bound
but rather a feature of the variance of randomized bench-
marking itself. Therefore, in the case of highly unitary
noise, we recommend performing more experiments at
shorter sequence lengths rather than trying to map out
the entire decay curve.

Another noteworthy feature of the variance bound
eq. (9) is the fact that, for non-unitary noise (that is
u < 1) it is in general not monotonically increasing in
infidelity r. Rather, for a fixed sequence length, the vari-
ance increases at first with increasing infidelity but then
peaks and decays towards zero. This behavior is illus-
trated in fig. 4(b). Here we plot a contour plot of the
variance with infidelity on the y-axis (r ∈ [0.01, 0.1]) and
sequence length m on the y-axis (m ∈ [1, 100]) and have
set the unitarity to u = (f2 + 1)/2 corresponding to rel-
atively incoherent noise. The take-away from this plot
is that it is not enough to have an upper bound on the
infidelity to get an upper bound on the variance, rather
one must have both an upper and a lower bound on the
variance to make full use of the bound eq. (9). Note that
the looser upper bound eq. (10) does not share this be-
havior and always yields an upper bound on the variance
given an upper bound on the infidelity r.

On the other hand, when the underlying noise pro-
cess is unitary, that is u = 1 the variance does increase
monotonically with increasing r. This strikingly differ-
ent behavior is illustrated in fig. 4 (c). Here we plot
a contour plot of the variance with infidelity on the y-
axis (r ∈ [0.01, 0.1]) and sequence length m on the y-axis
(m ∈ [1, 100]) and have set the unitarity to u = 1 corre-
sponding to fully coherent noise.

D. Future work

An important caveat when applying the confidence
bounds is the assumption of gate and time independent
noise (this can be relaxed to Markovian, gate indepen-
dent noise [24]). This is an assumption that many anal-
yses of RB suffer from to various degrees, hence a major
open problem would be to generalize the current bounds
to encompass more general noise models. Note however,
that since our upper bound captures the correct func-
tional behavior of the RB variance with respect to se-
quence length (for gate and time independent noise) one
could in principle check if these assumptions hold true by
computing estimates for the variance at each sequence
length (from the measured data) and checking if these
estimates deviate significantly from the proposed func-
tional form.

Recent work has also argued that the exponential be-
havior of randomized benchmarking is robust against
Markovian gate-dependent fluctuations [31]. This how-
ever comes at a substantial increase in mathematical
complexity. We suspect that similar robustness state-
ments can be made for the variance of randomized bench-
marking but new mathematical tools will be needed (per-
haps using the Fourier analysis framework proposed re-
cently in [39]) to make this suspicion rigorous.

Our work can be straightforwardly extended to inter-
leaved RB [40]. However the dominant source of error in
the interleaved RB protocol is usually systematic rather
than stochastic (due to the fact that the protocol does
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FIG. 4. (a) Number of sequences needed for a 99% confidence interval of size ε = 0.01 around km,N for various values of
the unitarity (given by a linear interpolation between f2 and 1 where κ = 1 corresponds to u = 1 (unitary noise) and κ = 0
corresponds to u = f2 (depolarizing noise)) for fixed infidelity r = 0.01 and sequence length in the interval m ∈ [1, 10000]
(log scale) using the variance eq. (9). We also assume d = 16 (four qubits) and ideal SPAM (η =0). Note that the number
of sequences differs radically for u = 1 (unitary noise). In the case of u < 1 the number of sequences needed rises with
increasing sequence length m, peaks and then decays to zero but for u = 1 the number of sequences keeps rising with increasing
sequence length m until it converges to a non-zero constant (which will be independent of r). In section IV H we argue that
this is expected behavior for randomized benchmarking with unitary noise. (b),(c) Contour plot of the variance bound with
infidelity on the y-axis (r ∈ [0.01, 0.1]) and sequence length m on the y-axis (m ∈ [1, 100]). For (b) we have set the unitarity
to u = (1 + f2)/2 corresponding to relatively incoherent noise and for (c) we have set the unitarity u = 1 corresponding to
coherent noise. Note again the radical difference in behavior. For u = 1 the variance rises monotonically in the sequence length
m to a constant independent of the infidelity r . Moreover the variance is monotonically increasing in infidelity r. However
for incoherent noise the variance will peak strongly around mr ≈ 1 and then decay to zero with increasing sequence length m.
This means that both an upper and lower bound on the infidelity is required to make full use of the bound in eq. (9). The
looser bound of eq. (10) does not share this property and can be used with only an upper bound on the infidelity r.

not yield an estimate of the interleaved gate fidelity but
rather provides upper and lower bounds). Interleaved
RB essentially consists of two RB experiments: a
reference experiment and an interleaved experiment, the
latter of which has an extra interleaved gate inserted
between the random gates of the standard RB protocol.
Hence the fidelity extracted from the second experiment
corresponds to the fidelity of the composition of the
noise due to the random gates and the noise due to the
interleaved gate. An estimate of the fidelity of the in-
terleaved gate is then extracted by considering the ratio
of the fidelity of the random gates (from the reference
experiment) and the fidelity of the above composition.
However, the fidelity of a composition of two noise maps
is in general not equal to the product of the fidelities of
the individual maps and can, depending on the specifics
of the noise processes, differ quite radically. Hence in
the absence of more knowledge about the underlying
noise processes, IRB gives an inaccurate estimate of
the fidelity of the interleaved gate. This inaccuracy is
not remedied by reducing the imprecision of the fidelity
estimates (for a fixed amount of resources), which is
what we provide here. And since the inaccuracy due to
this lack of fidelity-composition can be much larger than
the imprecision for even a modest amount of resources
it is less useful to spend significant energy on increasing
precision in IRB.

Moreover, it should be noted that while randomized
benchmarking is efficient in the complexity theoretical
sense, i.e. the amount of resources needed scales poly-
nomially with the number of qubits in the system, the
amount of resources required is still significant, and no
RB experiment has been performed beyond 3 qubits so
far [14]. Recently several protocols have been devised and
implemented that are similar to randomized benchmark-
ing but less resource intensive [41–43], making larger-
scale characterization of multi-qubit systems possible.
We suspect the bounds derived in this paper can be
adapted to these new proposal but we leave this for future
work.

Also, successful and rigorous randomized benchmark-
ing not only depends on the number of random sequences
needed per sequence length but also on the fitting pro-
cedure used to fit the points generated by randomized
benchmarking of various lengths to a decay curve in or-
der to extract an estimate of the average gate fidelity.
Finding the optimal way to perform this fitting proce-
dure is still an open problem [25]. Accounting for het-
eroskedasticity, as we have done here, can be considered
a first step in this direction. Performing this accounting
is standard practice in statistics but does not seem to be
in widespread use in the experimental community. One
could also consider directly estimating the variance at
each sequence length from obtained data and then using
these estimates directly as inputs to a weighted least-
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squares fitting procedure. We however believe that the
parametric model we propose here will be more efficient
in terms of data needed for a fixed precision.

Finally, a major theoretical open problem is the exten-
sion of the present bounds to non-qubit systems, differ-
ent varieties of randomized benchmarking [44–46], and
to different 2-designs [44, 47, 48] or even orthogonal 2-
designs [49, 50]. If these 2-designs are assumed to be
groups, similar techniques from representation theory
might be used [51] but how this would be done is cur-
rently unknown.

IV. METHODS

In this section, we will discuss the new contributions in
detail, and explain how to apply them in an experimental
setting. We will give a high level overview of the proof of
the bound on the variance of a randomized benchmarking
sequence; full details can be found in the Supplementary
Material. We will also discuss the behavior of noise terms
in the case of non-ideal SPAM and prove that the bounds
we obtain are in some sense optimal. Finally we briefly
comment on how the variance changes when performing
regular randomized benchmarking (using an input state
ρ rather than an input state difference ν = 1

2 (ρ− ρ̂)).

A. Estimation theory

In this section, we review confidence intervals and
relate the bounding of confidence intervals to the bound-
ing of the variance of a distribution. A first thing of note
is that all the variance bounds stated in section II are
dependent on the infidelity r. The appearance of r in the
bound might strike one as odd since this is precisely the
quantity one tries to estimate through RB. It is however
a general feature of estimation theory that one needs
some knowledge of the quantity one tries to estimate in
order to use nontrivial estimation methods [37]. Note
also that while our results are stated in frequentist
language, they should also be translatable to Bayesian
language, that is, as credible regions on the infidelity
given prior beliefs as in Ref. [26] for example. Bayesian
methods are more natural because our bounds depend
on prior information about the infidelity, however, a full
Bayesian treatment would involve the fitting process,
obscuring our primary technical result, i.e. the variance
bounds.

Let us now discuss how to use the variance bounds to
construct confidence intervals around numbers km,N . We
can in general define a 1− δ confidence interval of size ε
to be

Pr
[
|km,N − E~G(Km)| ≤ ε

]
≥ 1− δ. (14)

Once we have an upper bound on the variance V2
m of an

RB distribution we can relate this to an upper bound on

number of required sequences through the use of concen-
tration inequalities.

Note that for the case of randomized benchmarking
there are two sets of confidence parameters. (δN , εN ) is
associated with estimating the average over all possible
Clifford sequences, where the relevant parameter is
the number of performed sequences N and (δL, εL) is
associated with getting an estimate for the survival

probability difference km(~G) for a given fixed sequence.
Here the relevant parameter is L, the number of times a
single sequence is performed. Since in practice L < ∞
there will be some finite (δL, εL) confidence region

around the survival probability difference km(~G) for a

given sequence ~G. So in general, when looking at a ε, δ
confidence region for an RB procedure of a given length
on should look at (εN + εL, δN + δL) confidence regions.
In what follows we will assume that L is high enough
such that εL, δL are negligible relative to (δN , εN ). This
approach is motivated by experimental realities where
it is usually much easier to perform a single string of
Cliffords many times quickly than it is to generate, store
and implement a large number of random sequences.

For a given variance V2 we can relate the number of
sequences N needed to obtain 1− δ confidence intervals
of size ε using the following concentration inequality due
to Hoeffding [38]:

Pr
[
|km,N − E~G(Km)| ≥ ε

]
≤ δ ≤ 2H(V2, ε)N , (15)

with

H(V2, ε) =

(
1

1− ε

) 1−ε
V2+1

(
V2

V2 + ε

) V2+ε

V2+1

. (16)

We can invert this statement to express the number of
necessary sequences N as a function of δ, r, ε as

N = − log(2/δ)

log(H(V2, ε))
. (17)

Note that this expression can also be inverted to yield a
bound on δ, ε in terms of a given number of samples N .
This identity heavily depends on the size of the variance
V2
m.

B. State preparation and measurement costs

We have argued that our adapted RB protocol allows
for a reduction in the number of needed sequences to
make rigorous estimates. However implicit in this cost
reduction argument is the assumption that estimating

the number km(~G) for a fixed sequence ~G is not more

costly than estimating the number pm(~G). Here we
justify this assumption for the two changes we made to
the randomized benchmarking protocol: using a state
difference as input and using an impure input state
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defined by a single Pauli matrix. In the following we
forgo rigor in favor of intuition. We are however only
applying standard statistical techniques that can easily
be made rigorous.

State difference
At first glance one might think that estimating the same
sequence twice for difference input states as we propose
yields a two-fold overhead in the number of samples per
sequence. To see that this is not the case consider the
variance V2

ρ associated with estimating the expectation
value for a single sequence for a single state ρ. From
the standard rules of error addition we now have, for the
state difference ν = (ρ− ρ̂)/2 that

V2
ν = V2

(ρ−ρ̂)/2 =
1

22
(V2
ρ + V2

ρ̂) (18)

since the random variables associated to ρ and ρ̂ are inde-
pendently distributed (making the covariance zero). Now
assuming that ρ incurs the largest variance, we get

V2
ν ≤

1

2
V2
ρ (19)

which means that estimating the expectation value of a
single sequence for a difference of states is statistically
not harder than estimating it for a single state.

Optimal input state and measurement
In our adapted RB procedure we call for preparing the
input states ρ = 1+P

2 , ρ = 1−P
2 for some Pauli matrix

P and measuring the output operator P. This is dif-
ferent from standard RB where one is asked to prepare
and project onto the all zero state |0 . . . 0〉〈0 . . . 0|. We
argue that performing RB this way is not more costly
than using the standard approach. For concreteness we
shall set P = Z⊗q. Measuring the expectation value
of the operator Z⊗q is trivial; one simply measures all
qubits in the standard basis (as one would do in stan-
dard RB) and then computes the parity of the outcome.
Since standard basis states with even parity precisely
span the positive eigenspace of Z⊗q this amounts to mea-
suring the expectation value of Z⊗q. Preparing the states

ρ = 1+Z⊗q

2 , ρ = 1−Z⊗q
2 is a little more involved. The

state ρ is a probabilistic mixture of all computational
basis states |x〉 of even parity. By the linearity of expec-

tation one could compute (for a fixed Clifford sequence ~G

) the survival probability pm(~G, |x〉) and then compute

pm(~G, ρ) = 2−q/2
∑
x pm(~G, |x〉). This requires mea-

suring 22/q expectation values pm(~G, |x〉), making this
approach not scalable. We can remedy this by realiz-
ing that we are only interested in a good estimate of

the mean pm(~G, ρ). Considering pm(~G, |x〉) to be the
mean of a Bernoulli random variable with outcomes 0
and 1, and thus pm(~G, ρ) to be the mean of a normal-
ized binomial distribution we can estimate this mean ef-
ficiently by sampling |x〉 at random (with even parity),

estimating pm(~G, |x〉) and then computing the empirical

mean. Moreover, since we do not need to know the means

pm(~G, |x〉) very well to get a good estimate of pm(~G, ρ)
the about of single data points (clicks) gathered to es-

timate pm(~G, ρ) is not higher than it would be to accu-

rately estimate pm(~G, |ψ〉) for |ψ〉 some pure state.

C. The fitting procedure

In the previous section we outlined how to use the
bound eq. (9) to construct confidence intervals around
km,N . However, we have not yet discussed how to
integrate the variance bound eq. (9) into the fitting
procedure required by eq. (7). A fitting procedure is any
method that takes in the set of data points {km,N}m,
with m ∈ M, where M is some set of integers and
outputs a tuple (A∗, f∗) such that A∗f∗m is a ‘good’
description of the data {km,N}m. There are many ways
to approach this problem, we refer to [30] for a good
overview, and finding an optimal procedure is outside
the scope of this paper. However we would like to discuss
the most commonly used fitting procedure: Ordinary
Least Squares (OLS) in the light of the bounds eqs. (9)
and (11).

Ordinary least squares
Given data {km,N}m and the function F (A, f) = Afm

the OLS procedure returns estimates (Â, f̂). Through a
linearization procedure, as outlined for RB in [25], con-
fidence intervals can then be constructed around these
estimates. However, for this procedure to yield correct
results each data point km,N must be distributed around
E~G(Km) with the same variance [30, Chapter 2.8]. This
assumption, called homoskedasticity in the statistics
literature, is not universally valid for randomized bench-
marking data {km,N}m. This shows in the functional
form of the upper bound eq. (9), which strongly depends
on the sequence length and from eq. (36) one can see
that this is not an artifact of bounding techniques but
rather an innate feature of RB data. Moreover OLS
assumes that the variance of km,N is independent of
the fitting parameters A, f , an assumption which is also
explicitly violated in RB data. The violation of these
two assumptions (homoskedasticity and independence of
fitting parameters) creates problems when performing
OLS on the RB data {km,N}m. In particular OLS no
longer provides an unbiased estimate of the standard
error on the fitting parameters (f,A) [30, Chapter 3.3],
which can lead to mis-estimation of confidence intervals
around the fitting parameters. Therefore we recommend
using a more sophisticated approach.

Iteratively re-weighted least squares
Heteroskedasticity (violation of homoskedasticity) and
functional dependence of the data distribution on the
fitting parameters are well studied problems, and many
robust solutions are available. Here we will focus on one
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particular solution called Iteratively Re-weighted Least
Squares (IRLS). For the purposes of this construction
we will assume that the data {km,N}m is drawn from
a random variable with mean E~G(Km) and variance
V2
m(m, r)/N . IRLS constructs estimates for the parame-

ters (A, f) by minimizing the function

min
A,f

∑

m∈M
wm(km,N −Afm)2 (20)

where the weights wm can depend on f and A. Under the
assumption that eq. (9) is the actual variance V2

m up to a
constant factor we can set the weights [30, Section 2.8.8]
to be wm = w(f, u,m) = 1/σ(f, u,m) where σ is the
RHS of eq. (9) (if one suspects that η 6= 0 the eq. (11)
can be used instead). We note that this procedure is
fairly robust against misspecification of the weights, and
moreover that σ captures the behavior of V2

m with respect
to the sequence length very well (see section IV E). IRLS
now proceeds in the following manner:

Algorithm 1 Iteratively Reweighted Least Squares

Input: Initial estimates f0, u0, A0 and a dataset km,N

Output: Final estimates f̂ , Â
1: Set f−1 = 0
2: Set i = 0
3: // Optimization loop (here ε is some preset sensitivity)
4:

5: while |fi−1 − fi| ≥ ε do
6: Set wm = w(fi, ui,m) = σ(fi, ui,m)−1

7: Optimize eq. (20) with weights wm to get Ai+1, fi+1

8: Estimate ui+1 by fitting σ(fi+1, ui,m)/N to the em-
pirical variance of km,N

9: Set i = i+ 1
10: end while
11: Set Â = Ai, f̂ = fi
12: return Â, f̂

It as been shown [29, Page 45] (under some mild reg-
ularity conditions) that this algorithm converges to esti-

mates Â, f̂ . If the weights wm are exactly proportional to
the variance V2

m then these estimates are asymptotically
consistent. In appendix B 3 in the Supplementary Mate-
rial we provide a detailed estimate of how close the esti-

mate f̂ is to the real depolarizing parameter f in terms of
the number of data points in {km,N}m and the number
of sequences N sampled per data point.

Finally we would like to note that we have in this
procedure kept the number of sequences N constant for
varying N . It is however possible to let N depend on
the sequence length m. One choice would be to vary N
proportionally to V2

0 (assuming a good estimate of f is
available). In this scenario, since km,N is drawn from a
distribution with variance V2

m/N this would remedy the
issue with heteroskedasticity and OLS could be used to
provide reliable fitting.

D. Gate dependent noise and gauge invariance

In recent work [31, 32] it has been noted that the
relation between the parameter estimated by random-
ized benchmarking and the average fidelity is less than
straightforward when the noise channel is allowed to de-
pend on the gate being implemented, that is G̃ = EGG.
At the heart of the issue is that the only quantities mea-
surable in the lab, probabilities of the form Tr(QG̃(ρ))
for a state ρ and an observable Q are gauge invariant.
That is, for any invertible superoperator S we have that

Tr(QG̃(ρ)) = Tr(S−1(Q)SG̃S−1(S(ρ))). (21)

This difficulty can be remedied by considering a more
general noise model. Instead of choosing G̃ = EG one
chooses G̃ = LGGRG for superoperators RG,LG [31].
The individual operators RG,LG are not gauge invariant
but the combined operator RGLG is. Since in this paper
we deal exclusively with gate-independent noise we can
choose the gauge such that L = I and R = E but our
results also hold for the more general choice of gauge
with the express caveat that our bounds then work in
terms of the infidelity r and unitarity u of the noise in
between gates RL. That is we have r = r(RL) and
u = u(RL). It is possible to see this explicitly by making
the substitution E → RL in all steps of the derivation of
the variance bound in section IV E (and theorem 1 in the
Supplementary Material).

E. Variance bound

In this section we present a derivation of the multi-
qubit variance bound in eq. (9) under the assumption of
ideal input difference operator ν = 1

2 (ρ − ρ̂) and output
POVM element Q, i.e.

ν =
P

2d
(22)

Q =
1

2
(1 + P) (23)

where P is some pre-specified target Pauli matrix (fig. 1).
Under these ideal conditions we can guarantee that the
variance scales quadratically in the infidelity r. We will
focus on intuition and relegate most technical work to
the Supplementary Material. For the remainder of the
text we will choose a basis for the space of linear op-
erators Md. This means we can think of density ma-
trices and POVM elements as column and row vectors
which we denote with a Dirac-like notation, i.e. ν → |ν〉〉
and Q → 〈〈Q|. Quantum channels can then be though
of as matrices acting on vectors (which represent den-
sity matrices). Moreover, in this picture, composition
of channels corresponds to matrix multiplication. When
measuring the state E(ρ) using a two component POVM
{Q,1−Q} for some quantum channel E and state ρ and
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positive operator Q we can write the expectation value
Tr(QE(ρ) as a vector inner product

Tr(QE(ρ)) = 〈〈Q|E(ρ)〉〉 = 〈〈Q|E|ρ〉〉 (24)

where we abuse notation by referring to the matrix rep-
resentation of the quantum channel E as E as well.
This is variously called the affine or Liouville representa-
tion [24, 52].

We assume that every experimental implementation of
a Clifford gate G̃ can be written as G̃ = EG for some
fixed CPTP map E where G is the ideal Clifford gate.
That is, we assume the noise is Markovian, constant and
independent of the target gate. These assumptions can
be relaxed partially [24, 25, 31, 53].

The key to randomized benchmarking is that randomly
applying elements of the Clifford group C and then invert-
ing produces, on average, the depolarizing channel [54]

Df (ρ) = fρ+
1− f
d

1d, (25)

that is, we have

∑

G∈Cq
G†EG = Df (26)

with the depolarizing parameter f related to the fidelity
by [55]

Favg(E , I) =
(d− 1)f + 1

d
. (27)

Therefore applying a sequence of independently-random
gates and then inverting produces Dfm on average.
Hence the expectation value of any operator decays as
fm on average.

The value of km(~G) for a fixed sequence of Clifford

gates ~G (as defined in fig. 1), and the variance over ~G ∈
Cq are

km(~G) = 〈〈Q|G†mEGm · · · G†1EG1|ν〉〉 (28)

V2
m = E~G[km(~G)2]− [E~G(km(~G))]2 (29)

respectively. We can use the identity a2 = a ⊗ a for
a ∈ C, the distributivity and associativity of the tensor
product, and the linearity of quantum channels to write
this as [24, 56]

V2
m = 〈〈Q⊗2

∣∣TC(E⊗2)m−[TC(E)m]
⊗2∣∣ν⊗2〉〉 (30)

where

TC(E) =
1

|Cq|
∑

G∈Cq
G†EG = Df , (31)

TC(E⊗2) =
1

|Cq|
∑

G∈Cq
G†⊗2E⊗2G⊗2. (32)

The superoperator TC(E) is often referred to as the twirl
of the quantum channel E .

At this point, our analysis diverges from that of
Ref. [24]. First, note that for our modified scheme, ν⊗2

is traceless and symmetric under the interchange of the
tensor factors (we will refer to such a matrix as a traceless
symmetric matrix) so

[TC(E)m]
⊗2 ∣∣ν⊗2〉〉 = f2m

∣∣ν⊗2〉〉. (33)

Furthermore, TC(E⊗2) preserves the trace and symme-
try under interchange of tensor factors. Therefore we
can define TTS(E⊗2) to be the restriction of TC(E⊗2) to
the space of traceless symmetric matrices. As we prove
in lemma 2 and [27], the representation G⊗2 of the Clif-
ford group restricted to the traceless symmetric subspace
decomposes into inequivalent irreducible representations.
Therefore by Schur’s lemma (see Supplementary Materi-
als for an explanation of Schur’s lemma),

TTS(E⊗2) =
∑

i∈Z
χiPi (34)

where Z indexes the irreducible subrepresentations of
G⊗2 on the space of traceless symmetric matrices, Pi are
projectors associated to each representation and χi =
χi(E) ∈ R are numbers that depend on the quantum
channel E . [57] As the Pi are orthogonal projectors that
span the space of traceless symmetric matrices, we can
write the variance as

V2
m =

∑

i∈Z
〈〈Q⊗2|Pi|ν⊗2〉〉(χmi − f2m). (35)

Now we use a telescoping series trick (lemma 7 and in
particular corollary 1) on the last factor to write this as

V2
m =

∑

i∈Z
〈〈Q⊗2|Pi|ν⊗2〉〉

[
mf2(m−1)(χi − f2) (36)

+(χi−f2)2
m∑

j=1

(j − 1)χm−ji f2(j−2)
]
. (37)

Here we see that getting a sharp bound on the variance
will depend on getting sharp bounds on the difference
between the χi prefactors and the square of the depolar-
izing parameter f2. Before we start giving upper bounds
to eq. (36), we would like to note that the behavior of
eq. (36) with respect to the sequence length m is very
well matched to that of the final upper bounds given
in eqs. (9) and (11). This justifies the use of eqs. (9)
and (11) to set the weights in algorithm 1.

Up to this point the derivation has been valid for any
input state difference ν and output positive operator Q.
However now we will restrict to the case of ideal Q and
ν. For the general case of non-ideal Q and ν see the
Supplementary materials. In the case of ideal Q and ν
we can use lemmas 3 and 4 to upper bound

∑

i∈Z
〈〈Q⊗2|Pi|ν⊗2〉〉(χi − f2) ≤ 1

4

d2 − 1

(d− 1)2
r2 (38)
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where r = 1− Favg(E , I) is the infidelity of the quantum
channel. We would like to note here that lemma 3 can
only be applied if ν (Q) are proportional to P (1 + P).
Moreover, we will see in section IV G that without this
assumption the variance of RB will scale linearly in infi-
delity r. Continuing the calculation, for r ≤ 1

3 , we can
say that (lemma 6)

|χi − f2| ≤ 2dr

d− 1
. (39)

Hence we can say

V2
m ≤ mf2(m−1) d2 − 2

4(d− 1)2
r2

+
∑

i∈Z

4d2r2〈〈Q⊗2|Pi|ν⊗2〉〉
(d− 1)2

×
m∑

j=1

(j − 1)χm−ji f2(j−2)

(40)

for ideal Q and ν. Now we only need to deal with the χi
factors in the sum. To do this we will use the fact that
every χi term is upper bounded by the unitarity u of the
quantum channel E . This is derived in lemma 5 in the
Supplementary Material. Inserting this we get

V2
m ≤ mf2(m−1) d2 − 2

4(d− 1)2
r2

+
∑

i∈Z

4d2r2〈〈Q⊗2|Pi|ν⊗2〉〉
(d− 1)2

×
m∑

j=1

(j − 1)um−jf2(j−2).

(41)

Now we factor um−2 out of the sum over j and use the fact
that this sum has a closed form. Using this and lemma 3
to bound the projector inner products we obtain a final
bound on the variance

V2
m ≤ mf2(m−1) d2 − 2

4(d− 1)2
r2

+
d2

(d− 1)2
r2um−2

× (m−1)( f
2

u )m−m( f
2

u )m−1+1

(1−( f
2

u ))2
,

(42)

which is the bound we set out to find. To obtain from
this the bound given in eq. (10) we note that u ≥ f2 and
moreover that the fractional term in eq. (42) is monoton-
ically decreasing in u (for fixed f2) and reaches a limiting
value of m(m− 1)/2 in the limit of u→ f2 (This can be
seen by using l’Hôpital’s rule).

F. State preparation and measurement

When Q, ν do not satisfy eq. (22), (which will always
happen in practice) the above derivation will not hold

exactly and the deviation of Q, ν from their ideal forms
will introduce terms of order ηr i.e., terms which scale
linearly and not quadratically in the infidelity r. Deriving
an expression of the variance taking into account these
these contributions is a little tedious so we will relegate
it to the Supplementary Material and instead discuss the
form of the prefactor η. Let ν be some non-ideal input
state difference and let Q be some non-ideal observable.
Note from eq. (22) that the ideal input state difference ν
and output POVM Q are related to a pre-chosen “target
Pauli matrix” P. We hence have

Qid =
1

2
(1 + P) (43)

νid =
P

2d
(44)

the ideal Q and ν. Suppressing some prefactors (the ex-
act expression can be found in eq. (B34) in the Sup-
plementary material) we get the following approximate
expression for the SPAM factor η:

η ≈ ‖Q−Qid‖2 ‖ν − νid‖2
+ ‖Q−Qid‖22 + ‖ν − νid‖22

(45)

where ‖·‖2 is the Schatten-2 norm [52] and Q, ν are
the non-ideal operators that are actually implemented.
There are several important things to notice here:

• η goes to zero in the limit of ideal Q, ν. This jus-
tifies our choice of the ideal Q and ν as being de-
fined in terms of a single Pauli matrix rather than
preparing and measuring in the |0〉 state as was
the case in the original randomized benchmarking
proposal [23]

• η scales quadratically in the deviation from the
ideal of Q and ν. This means that for small de-
viations η is likely to be small.

• η is non-zero for non-ideal Q even when ν is ideal
and vice versa. This is unfortunate as it means
that both state preparation and measurement must
be good to ensure small variance. However, as we
argue in section IV G, this is actually optimal.

To get a feel for how the parameter η behaves we dis-
cuss a particular error model for state preparation and
measurement errors, inspired by recent research in super-
conducting qubits [58]. Here we see that the dominant
error source when preparing states in the computational
basis is given by decay to the ground state when in the
excited (|1〉) state and residual excitations when prepar-
ing the ground (|0〉) state. The dominant contribution
to measurement errors when measuring in the computa-
tional basis are here discrimination errors (mistaking 0
for 1 and vice versa) as well as errors due to finite sam-
pling. When performing our version of RB, and choosing
P = Z, we see that νid = (|0〉〈0| − |1〉〈1|)/2 and hence
we want to ideally prepare the states |0〉〈0| and |1〉〈1|.
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Following [58] we assume 0.5% residual excitations when
preparing the |0〉〈0| state, 0.8% decay to the ground when
preparing |1〉〈1| and a 1% discrimination error (modeled
by a symmetric bit-flip channel) (Here we use the discrim-
ination fidelity given in [59]). Plugging these numbers
into the assumed error models and calculating η using
eq. (B34) in the Supplementary Material we see that in
this case η = 0.001. Hence we can say that under realis-
tic scenarios η will be quite small. It is possible to make
a more fine-grained analysis of the SPAM term η as it is
defined under eq. (B13), as opposed to upper bounding
it. However this is likely to be rather involved and given
that η is already small in realistic scenarios we have opted
not to pursue this here.

G. Optimality of maximal variance

In this section we will argue that the bounds on the
variance in the case of non-ideal SPAM are optimal in the
sense that it is impossible for the variance to scale better
that linearly in the infidelity r for arbitrary noise maps
when the input POVM element Q is non-ideal even when
the input state difference ν is ideal. The same reasoning
will also hold for non-ideal ν even when Q is ideal. (More
generally the reasoning below will also work when ran-
domized benchmarking is performed using a state rather
than a state difference but we will not show this explicitly
here).

Consider the variance as in eq. (30) for a random-
ized benchmarking experiment with a quantum channel
E with infidelity r and for simplicity set the sequence
length m = 1 (the argument will work for general m).
Then we have an expression for the variance

V2 = 〈〈Q⊗2
∣∣TC(E⊗2)− TC(E)⊗2

∣∣ν⊗2〉〉 (46)

with the TC(E⊗2), TC(E)⊗2 defined in eq. (31). Now con-
sider setting ν = νid and maximizing over the POVM
element Q. That is consider

V2 = max
0≤Q≤1

〈〈Q⊗2
∣∣TC(E⊗2)− TC(E)⊗2

∣∣ν⊗2
id 〉〉.

Now note that for any unitary U the operator U(Q) =
UQU† is also a POVM element. This means we can write

V2 = max
0≤Q≤1

〈〈Q⊗2
∣∣TC(E⊗2)− TC(E)⊗2

∣∣ν⊗2
id 〉〉

= max
0≤Q≤1

〈〈(U(Q))⊗2
∣∣TC(E⊗2)− TC(E)⊗2

∣∣ν⊗2
id 〉〉

≥ max
0≤Q≤1

〈〈
∫
dU(U(Q))⊗2

∣∣TC(E⊗2)

− TC(E)⊗2
∣∣ν⊗2

id 〉〉,

where we used the linearity of the inner product and the
definition of maximum and the integral is taken over the
uniform or Haar measure of the unitary group. Now we
use a well known fact from the representation theory of

the unitary group which states that the integrated oper-
ator

∫
dU(U(Q)) is precisely proportional to one of the

projectors defined in eq. (34). [19]. In particular it is pro-
portional to the rank one projector Ptr = |∆〉〉〈〈∆| where
∆ ∈Md is some matrix operator (see lemma 2 in the ap-
pendix) and tr is an element of the set Z which indexed
the irreducible representations of the Clifford group in
eq. (34). This means we can we can write using eq. (35)

V2 ≥ max
0≤Q≤1

∑

i∈Z
α(Q)〈〈∆|Pi|ν〉〉(χi − f2)

= max
0≤Q≤1

α(Q)〈〈∆|Ptr|ν〉〉(χtr − f2)
(47)

where α(Q) is some positive prefactor function of Q.
From lemma 5 and [19] it can be seen that χtr is pre-
cisely the unitarity u of the quantum channel E . If we
now consider E to be a unitary channel (that is u = 1),
we get (ignoring the prefactors, which can be proven to
be strictly positive)

V2 ≈ 1− f2 =
dr

d− 1

(
2− dr

d− 1

)
(48)

which is linear in infidelity r. Hence when the POVM
element Q is allowed to vary freely a linear scaling of the
variance with the infidelity r can not be avoided even
when the input state difference ν is ideal. One can per-
form a similar thought experiment maximizing over ν
while setting Q = Qid and get the same result. Hence
the expression for η we discussed in the above section is
essentially optimal.

H. Asymptotic behavior of the variance

When looking at the bound on the variance eq. (9)
the difference between unitary and non-unitary noise is
striking. When the noise is non-unitary, and thus u < 1
the upper bound on the variance (and hence the vari-
ance itself) decays exponentially to zero in the sequence
length m but when the noise process is unitary the vari-
ance keeps increasing and eventually saturates on a con-
stant that is independent of the infidelity of the noise
process. Here we argue that this is not an artifact of the
bounding techniques but rather a fundamental feature of
performing randomized benchmarking over unitary noise.
Moreover this effect is independent of whether RB is per-
formed using a state difference input ν or a state input
ρ (as in standard RB).
Consider a unitary noise process U = U · U† with infi-
delity r > 0 (That is U is not the identity). Now con-
sider a randomized benchmarking experiment of sequence
length m. That is, for a random sequence of Clifford uni-
taries G1, . . . Gm we perform the unitary

Vm = U(Gm · · ·G1)†UGmU · · ·UG1 (49)

Following the reasoning of [23] we can write Vm as

Vm = UG′
†
mUG

′
m · · ·G′

†
1UG

′
1 (50)
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where the unitaries G′m, . . . G
′
1 are sampled uniformly at

random from the Clifford group. We can equally well
think of the unitary U†Vm as being the product of m
uniformly random samples from the set

GU = {G†UG ‖ G ∈ C}. (51)

Note that this set depends on the unitary U . In [60] it was
shown that the distribution of the product of m unitaries
sampled uniformly at random from a set of unitaries con-
verges to the Haar measure (uniform measure) on the
unitary group in the limit of large m as long as this set
contains a universal set of gates. Note that this conver-
gence phenomenon is independent of the initial set [61].

Note now that as long as the unitary U is not a Clif-
ford gate the set GU will contain a universal gateset [1].
This means that the distribution from which Vm is sam-
pled will converge to the Haar measure in limit of long
sequence length (the extra U† factor gets absorbed into
the Haar measure). This will happen independently of
the unitary U (as long as U is not Clifford). From this
we can conclude that the variance of randomized bench-
marking with unitary noise must, in the limit of long
sequences, converge to the variance of the randomized
benchmarking expectation value over the Haar measure
independently of what the original unitary noise process
is. Note again that the above argument is independent of
whether RB is performed using a state difference input
or a state input.

I. Relation to regular randomized benchmarking

When performing regular randomized benchmarking,
that is using an input state ρ = 1

2 (1 + P) rather than

an input state difference ν = P
2 the upper bounds on the

variance given in eqs. (9) and (11) still hold provided an
extra additive term is added to them. This term will stem
from the addition of an extra superoperator (that is not
a projector) in the sum in eq. (34) which stem from the
appearance of two equivalent trivial subrepresentations
of the two-copy representation G⊗2 of the Clifford group.
This term is of the form

T =
1

4
‖E(1/d)− 1/d‖22

1− um
1− u

≤ (d+ 1)2

2d2
r2 1− um

1− u

(52)

where E is the noise process under investigation, with in-
fidelity r and unitarity u and system dimension d. Here
‖E(1/d)− 1/d‖22 is a measure of how ‘non-unital’ the
quantum channel E , that is how far its output deviates
from the identity when the identity is the input. This
measure can be upper bounded using [62, Theorem 3]
and is already implicitly analyzed in [24]. We will not
prove the above explicitly but it can be derived straight-
forwardly by following the derivation in theorem 1 using
ρ as input state. Note however that the upper bound
on T does not decay to zero exponentially but rather
converges to a non-zero constant even for non-unitary
channels. This is not a feature of the upper bound it-
self but rather of the long sequence behavior of standard
randomized benchmarking. It was proven in [24, The-
orem 17] that the upper bound T is actually saturated
for almost all non-unitary channels. Moreover, for phys-
ically relevant noise models such as amplitude damping
T can be quite substantial. This very different behavior
in the limit of long sequence lengths further motivates
the use the state difference ν for rigorous randomized
benchmarking.
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Appendix A: Preliminaries

1. Clifford and Pauli groups

In this section we recall definitions for the Pauli and Clifford groups on q qubits. We begin by defining the Pauli
group.

Definition 1 (Pauli group). Let {v0, v1} be an orthonormal basis of C2 and in this basis define the following linear
operators by their action on the basis

Xvl = vl+1, Zvl = (−1)lvl, Y vl = iZXvl = i(−1)l+1vl+1,

for l ∈ {0, 1} and addition over indices is taken modulo 2. Note that X,Y, Z ∈ U(2). The q-qubit Pauli group Pq
is now defined as the subgroup of the unitary group U(2q) consisting of all q-fold tensor products of q elements of
P1 := 〈X,Z, i12〉.

Elements P, P ′ of the Pauli group have the property that they either commute or anti-commute, that is

[P, P ′] := PP ′ − P ′P = 0 or {P, P ′} := PP ′ + P ′P = 0. (A1)

We also define P̂q as the subset of Pq consisting of all q-fold tensor products of element of the set {1, X, Y, Z},
i.e.P̂q = {1, X, Y, Z}⊗q. Note that the Hermitian subset P̂q of the Pauli group forms a basis for the Hilbert space
Md. We can turn this into an orthonormal basis under the Hilbert-Schmidt inner product which is defined as

〈A,B〉 := Tr(A†B), ∀A,B ∈Md. (A2)

To see this note that Tr(P ) = 0 for all P ∈ Pq/{1} and that Tr(1) = d. We introduce the set of normalized Hermitian
Pauli matrices.

σ0 :=
1√
d
, σq :=

{
P√
d
‖ P ∈ P̂q\{1}

}
, (A3)

where we have given the normalized identity its own symbol for later convenience. We will denote the elements of the
set σq by Greek letters (σ, τ, ν, ...). We also, for later convenience, introduce the normalized matrix product of two
normalized Pauli matrices as

σ · τ :=
√
dστ σ, τ ∈ σq ∪ σ0. (A4)

Note that σ · τ ∈ ±σq ∪ σ0 if [σ, τ ] = 0 and iσ · τ ∈ ±σq if {σ, τ} = 0. Lastly we define the following parametrized
subsets of σq .For all τ ∈ σq we define

Nτ := {σ ∈ σq | {σ, τ} = 0}, (A5)

Cτ := {σ ∈ σq\{τ} | [σ, τ ] = 0}, (A6)

Note that we have |Nτ | = d2

2 , |Cτ | = d2

2 − 2 and Cτ and Nτ are disjoint for all τ ∈ σq. We also have for σ, σ′ ∈ σq
and σ 6= σ′ that |Cσ ∩Cσ′ | = d2

4 − 3. For a proof of this see [27, Lemma 1].

Next we define the Clifford group. We have

Definition 2. The q-qubit Clifford group Cq is the normalizer (up to complex phases) of Pq in U(2q), that is,

Cq := {U ∈ U(2q) ‖ UPqU† ⊆ Pq}/U(1).

The Clifford group is also often introduced as the group generated by the Hadamard (H), π/4 phase gate and
CNOT gates on all qubits. These are equivalent definitions (up to global phases) [63].

For a more expansive introduction to the Pauli and Clifford groups see e.g. [63] and references therein.
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2. Representation theory

We recall some useful facts about the representations of finite groups. For a more in depth treatment of this topic
we refer to [64, 65]. Let G be a finite group and let V be some finite dimensional complex vector space. Let also
GL(V ) be the group of invertible linear transformations of V . We can define a representation φ of the group G on the
space V as a map

φ : G→ GL(V ) : g 7→ φ(g) (A7)

that has the property

φ(g)φ(h) = φ(gh), ∀g, h ∈ G. (A8)

In general we will assume the operators φ(g) to be unitary. If there is a non-trivial subspace W of V such that

φ(g)W ⊂W, ∀g ∈ G, (A9)

then the representation φ is called reducible. The restriction of φ to the subspace W is also a representation, which
we call a subrepresentation of φ. If there are no non-trivial subspaces W such that eq. (A9) holds the representation
φ is called irreducible. Two representations φ, φ′ of a group G on spaces V, V ′ are called equivalent if there exists an
invertible linear map T : V → V ′ such that

T ◦ φ(g) = φ′(g) ◦ T, ∀g ∈ G. (A10)

We can also define the twirl Tφ(A) of a linear map A : V → V with respect to the representation φ to be

Tφ(A) :=
1

|G|
∑

g∈G
φ(g)Aφ(g)†. (A11)

The following corollary of Schur’s lemma, an essential result from representation theory. [64, 65], allows us to evaluate
twirls over certain types of representations.

Lemma 1. Let G be a finite group and let φ be a representation of G on a complex vector space V with decomposition

φ(g) '
⊕

i

φi(g), ∀g ∈ G (A12)

into inequivalent irreducible subrepresentations φi. Then for any linear operator A from V to V , the twirl of A over
G takes the form

Tφ(A) =
1

|G|
∑

g∈G
φ(g)Aφ(g)† =

∑

i

Tr(APi)

Tr(Pi)
Pi. (A13)

where Pi is the projector onto the subspace carrying the irreducible subrepresentation φi. In the rest of the text we
will often denote the prefactor Tr(APi)/Tr(Pi) by χi.

3. Liouville representation of quantum channels

Quantum channels [1] are completely positive and trace-preserving (CPTP) linear maps E : Md → Md. We will
denote quantum channels by calligraphic font throughout. The canonical example of a quantum channel is conjugation
by a unitary U , which we denote by the corresponding calligraphic letter, i.e., U(ρ) = UρU† for all density matrices

ρ. We will denote the noisy implementation of a channel by an overset tilde, e.g., G̃ denotes a noisy implementation
some ideal quantum channel channel G.

It is often useful to think of quantum channels as matrices acting on vectors. This is variously known as the
Liouville [24] or affine [52] representation. This representation corresponds to fixing an orthonormal basis for Md

according to the Hilbert-Schmidt or trace-inner product and then expressing elements of Md as vectors in Cd
2

. The
Hilbert-Schmidt inner product is again defined as

〈A,B〉 := Tr(AB†), ∀A,B ∈Md. (A14)
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Now let {Bj}j for j ∈ Zd2 be an orthonormal basis for Cd×d with respect to the Hilbert-Schmidt inner product. We

can construct a map |.〉〉 :Md → Cd
2

by setting |Bj〉〉 = ej where ej is the jth canonical basis vector for Cd
2

. Linearly
extending the map |·〉〉 to all elements M ∈Md we get

|M〉〉 =
∑

j

Tr(B†jM)|Bj〉〉. (A15)

Defining 〈〈M | = |M〉〉†, we then have

〈〈M |N〉〉 = 〈M,N〉 = Tr(M†N), (A16)

so that the Hilbert-Schmidt inner product is equivalent to the standard vector inner product.
We will generally construct the Liouville representation using the basis spanned by the normalized (with respect

to the Hilbert-Schmidt inner product) Pauli matrices {σ0} ∪ σq where σ0 := Id/
√
d with d = 2q is the normalized

identity matrix and

σq :=
1√
d
{I2, X, Y, Z}⊗q\{σ0}, (A17)

is the set of normalized Hermitian Pauli matrices excluding the identity.
As any quantum channel E is a linear map from Md to Md we have

|E(ρ)〉〉 =
∑

σ∈σq∪σ0

|E(σ)〉〉〈〈σ|ρ〉〉, (A18)

so that we can represent E by the matrix

E =
∑

σ∈σq∪σ0

|E(σ)〉〉〈〈σ|, (A19)

where we abuse notation by using the same symbol to refer to an abstract channel and its matrix representation. The
action of a channel E on a density matrix ρ now corresponds to the standard matrix action on the vector |ρ〉〉, hence
for a density matrix ρ and a POVM element Q in Md we have

E|ρ〉〉 = |E(ρ)〉〉, (A20)

Tr(QE(ρ)) = 〈〈Q|E|ρ〉〉. (A21)

The Liouville representation has the nice properties (as can be easily checked) that the composition of quantum
channels is equivalent to matrix multiplication of their Liouville matrices and that tensor products of channels corre-
spond to tensor products of the corresponding Liouville matrices, that is, for all channels E1 and E2 and all A ∈Md,

|E1 ◦ E2(A)〉〉 = E1E2|A〉〉
|E1 ⊗ E2(A⊗2)〉〉 = E1 ⊗ E2|A⊗2〉〉. (A22)

In the Liouville picture the depolarizing parameter and the unitarity [19] of a quantum channel E are

f(E) =
1

d2 − 1

∑

τ∈σq

〈〈σ|E|σ〉〉 (A23)

u(E) =
1

d2 − 1

∑

τ∈σq

〈〈σ|EE†|σ〉〉. (A24)

and the Liouville representation of a depolarizing channel with depolarizing parameter f is given by [24]

Df = |σ0〉〉〈〈σ0|+ f
∑

τ∈σq

|τ〉〉〈〈τ |. (A25)
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4. Traceless-Symmetric representation

In the rest of the text we will often work with quantum channels which have a tensor product structure. That is
we will often be dealing with channels of the form

W :=
∑

i

λiE⊗2
i (A26)

where Ei is a CPTP map for all i and λi ∈ C is some abstract parameter. Note thatW is now a linear map fromM⊗2
d

to M⊗2
d . Maps of these form have a number of useful properties which we will now consider. We begin by defining

the traceless-symmetric subspace VTS which is a subspace of M⊗2
d of the form

VTS := Span

{
Sσ,τ :=

1√
2

(|στ〉〉+ |τσ〉〉) ‖ σ, τ ∈ σq
}
. (A27)

where we have suppressed the tensor product (that is στ := σ ⊗ τ). The traceless-symmetric subspace has several
desirable properties which we note here. First let ρ, ρ̂ ∈ Md be density matrices and call their difference ν := ρ− ρ̂,
then we have that

|ν⊗2〉〉 = |(ρ− ρ̂)⊗2〉〉 ∈ VTS (A28)

Moreover, for any quantum channel W of the form defined in eq. (A26) we have that

W|v〉〉 ∈ VTS, ∀|v〉〉 ∈ VTS, (A29)

or equivalently we have that

PTSW =WPTS (A30)

where PTS is the projector onto the space VTS (note that PTS is a linear map from M⊗2
d to M⊗2

d ). This observation
follows from the fact thanW is a linear combination of two-fold tensor products of quantum channels (which preserve
the trace and map operators that are symmetric under interchange of the two copies of M⊗2

d to operators that are

symmetric under interchange of the two copies of M⊗2
d ).

We will in particular be interested in how a representation of of the Clifford group C behaves on the traceless
symmetric subspace. Define the two-fold tensor product representation of the Clifford group on M⊗2

d as

φ2 : G −→ G⊗2 (A31)

for all where G is the Liouville representation of G for all G ∈ C. This representation has a natural restriction to the
subspace VTS since G⊗2 is of the form described in eq. (A26). We can define the subrepresentation φTS of φ2 as

φTS : G −→ PTSG⊗2PTS (A32)

for all G ∈ C. This representation is in general not irreducible but decomposes further into a collection of irreducible
subrepresentations. In [27] we derived these irreducible subrepresentations of φTS and studied their properties. In
the following lemma we will quote several results from [27] which will be useful for our purposes.

Lemma 2. Let C be the Clifford group and let φTS be the traceless symmetric representation. This representation
is a direct sum of three subrepresentations φd (diagonal), φ[S] (symmetric commuting) and φ{S} (symmetric anti-
commuting) acting on the spaces

Vd := Span {|σσ〉〉 ‖ σ ∈ σq} (diagonal)

V[S] := Span{Sν,ν·τ ‖ τ ∈ σq, ν ∈ Cτ} (symmetric commuting)

V{S} := Span{Sν,iν·τ ‖ τ ∈ σq, ν ∈ Nτ} (symmetric anti-commuting)

The diagonal subrepresentation φd decomposes into three subrepresentations denoted by φtr, φ1, φ2 with φtr the trivial
representation spanned by

Vtr =





1√
d2 − 1

∑

τ∈σq
|ττ〉〉



 . (trivial)
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We will index these representations by the set Zd := {tr, 1, 2}.
The symmetric commuting representation φ[S] decomposes into 3 irreducible subrepresentations denoted as

φ[adj], φ[1], φ[2]. We will index these representations by the set Z[S] := {[adj], [1], [2]}. The spaces carrying these
representations can be written as a direct sum of subspaces in the following way

Vi =
⊕

τ∈σq

V τi (A33)

where V τi ⊂ V [τ ] with

V [τ ] := Span{Sν,ν·τ ‖ ν ∈ Cτ}. (A34)

The symmetric anti-commuting representation φ{S} decomposes into 2 irreducible subrepresentations denoted as
φ{1}, φ{2}. We will index these representations by the set Z{S} := {{1}, {2}}. The spaces carrying these representa-
tions can be written as a direct sum of subspaces in the following way

Vi =
⊕

τ∈σq

V τi (A35)

where V τi ⊂ V {τ} with

V {τ} := Span{Sν,iν·τ ‖ ν ∈ Nτ}. (A36)

Finally we denote the set indexing all irreducible subrepresentations of φTS as Z = Zd ∪ Z[S] ∪ Z{S} and we note
that all irreducible representations indexed by Z are mutually inequivalent.

Note that we have only given an explicit basis for the space on which the representation φtr acts. It is possible to
write down explicit bases for all relevant vector spaces but we will not need to do see (see however [27]).

Appendix B: Randomized benchmarking

1. Variance bound

In this section we prove the main theorem of the paper. Concretely we prove the following.

Theorem 1. Let Q be an observable and ρ, ρ̂ density matrices and set ν = 1
2 (ρ − ρ̂). Consider a randomized

benchmarking experiment using the Clifford group C with noisy implementation G̃ = EG for all G ∈ C. Then the
variance V2

m of this experiment is upper bounded by

V2
m ≤ mfm−1 d2 − 2

(d+ 1)2
r2 +

d2

(d− 1)2
r2um−2 (m− 1)

(
f2/u

)m −m
(
f2/u

)m−1
+ 1

(1− (f2/u))2

+ η(Q, ν)mfm−1r + η(Q, ν)r2um−2 (m− 1)
(
f2/u

)m −m
(
f2/u

)m−1
+ 1

(1− (f2/u))2

(B1)

where u = u(E) is the unitarity, r = r(E) is the infidelity, d is the system dimension, m is the sequence length,
f = 1 − dr

d−1 is the depolarizing parameter and η is a function capturing the deviation from the ideal Q and ν. This

bound is valid for r ≤ 1
3 .

Proof. We begin from an exact expression of the variance expressed in the Liouville representation eq. (30):

V2
m = 〈〈Q⊗2|Tφ2

(E⊗2)m|ν⊗2〉〉 − 〈〈Q⊗2|
(
Tφ(E)⊗2

)m|ν⊗2〉〉 (B2)

where Tφ2 is the twirl over the two-copy representation of the Clifford group as defined in eq. (A31) and Tφ is the twirl
over the (single copy) Liouville representation. Note now that |ν⊗2〉〉 ∈ VTS and that both Tφ2(E⊗2) and Tφ(E)⊗2 are
CPTP maps of the form described in eq. (A26). This means we can restrict both twirls to the traceless symmetric
subspace. In this subspace we have from lemma 1 and lemma 2 that Tφ2(E⊗2) and Tφ(E)⊗2 are of the form

Tφ2
(E⊗2) =

∑

i∈Z
χiPi (B3)

Tφ(E)⊗2 =
∑

i∈Z
f2Pi (B4)
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where Z (as defined in lemma 2) indexes the irreducible subrepresentations of the traceless symmetric representation
of the Clifford group and χi = Tr(PiE⊗2)/Tr(Pi) are the prefactors associated to the different subrepresentations. We
also used that Tφ(E) is a depolarizing channel with depolarizing parameter f [24]. Using that P2

i = Pi and PiPj = 0
for i, j ∈ Z, i 6= j we can rewrite the variance as

V2
m = 〈〈Q⊗2|

∑

i∈Z
χmi Pi|ν⊗2〉〉 − 〈〈Q⊗2|

∑

i∈Z
f2mPi|ν⊗2〉〉 =

∑

i∈Z
〈〈Q⊗2|Pi|ν⊗2〉〉(χmi − f2m). (B5)

We now apply a telescoping series identity, which is proven in corollary 1 of lemma 7, to the factor χmi − f2m in the
above equation (for all i ∈ Z). This gives

V2
m = mf2(m−1)

∑

i∈Z
〈〈Q⊗2|Pi|ν⊗2〉〉(χi − f2) (B6a)

+
∑

i∈Z
〈〈Q⊗2|Pi|ν⊗2〉〉(χi − f2)2

m∑

s=2

(s− 1)χm−si f2(s−2). (B6b)

This equation contains two terms, eq. (B6a) and eq. (B6b) which we will bound separately. We now proceed to upper
bound the first term, that is eq. (B6a). For this we will split the the input and output operators Q, ν into their ideal

parts (that is, the Pauli operator σP := P/
√
d) and deviations from that ideal. We define the functions

Hi(Q, ν) := 〈〈Q⊗2|Pi|ν⊗2〉〉 −Q2
Pν

2
P〈〈σ⊗2

P |Pi|σ⊗2
P 〉〉 (B7)

for all i ∈ Z where QP = Tr(QσP) and similarly for νP. Using this we can write eq. (B6a) as

mf2(m−1)
∑

i∈Z
〈〈Q⊗2|Pi|ν⊗2〉〉(χi − f2) = Q2

Pν
2
Pmf

2(m−1)
∑

i∈Z
〈〈σ⊗2

P |Pi|σ⊗2
P 〉〉(χi − f2) (B8a)

+mf2(m−1)
∑

i∈Z
Hi(Q, ν)(χi − f2). (B8b)

Now consider the first term of the RHS, eq. (B8a). First note from lemma 3 that for i 6∈ Zd = {tr, 1, 2} we have
Pi|σ⊗2

P 〉〉 = 0. Hence we have

Q2
Pν

2
Pmf

2(m−1)
∑

i∈Z
〈〈σ⊗2

P |Pi|σ⊗2
P 〉〉(χi − f2)

= Q2
Pν

2
Pmf

2(m−1)
∑

i∈Zd

〈〈σ⊗2
P |Pi|σ⊗2

P 〉〉(χi − f2)

= Q2
Pν

2
Pmf

2(m−1)
∑

i∈Zd

Tr(Pi)
d2 − 1

(
Tr(PiE⊗2)

Tr(Pi)
− f2

)

= Q2
Pν

2
Pmf

2(m−1)

[
1

d2 − 1
Tr

[∑

i∈Zd

PiE⊗2

]
− f2

]

= Q2
Pν

2
Pmf

2(m−1)


 1

d2 − 1

∑

τ∈σq

〈〈τ⊗2|E⊗2|τ⊗2〉〉 − f2




(B9)

where we used lemma 3 in the first and second equalities and the fact that

∑

i∈Zd

Pi =
∑

τ∈σq

|τ⊗2〉〉〈〈τ⊗2| (B10)

in the last equality (this can be seen from lemma 2). Now we use lemma 4 and the fact that QPνP ≤ 1/4 to obtain
an upper bound

Q2
Pν

2
Pmf

2(m−1)
∑

i∈Z
〈〈σ⊗2|Pi|σ⊗2〉〉(χi − f2) ≤ mf2(m−1) d2 − 2

4(d− 1)2
r2. (B11)
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This leaves us with the second term in the RHS, eq. (B8b). Here we cannot attain a bound that is quadratic in r.
Instead we will attempt a bound that is linear in r using lemma 6. We can write

mf2(m−1)
∑

i∈Z
Hi(Q, ν)(χi − f2) ≤ mf2(m−1)

∑

i∈Z
|Hi(Q, ν)||χi − f2|

≤ mf2(m−1) 2dr

d− 1

∑

i∈Z
|Hi(Q, ν)|

(B12)

subject to the condition r ≤ 1
3 . Writing η(Q, ν) :=

∑
i∈Z |Hi(Q, ν)| we have a bound on eq. (B6a).

We continue by upper bounding the second term in the variance, that is eq. (B6b). We again split off the ideal
components of Q and ν and write

∑

i∈Z
〈〈Q⊗2|Pi|ν⊗2〉〉(χi − f2)2

m∑

s=2

(s− 1)χm−si f2(s−2)

= Q2
Pν

2
P

∑

i∈Z
〈〈σ⊗2

P |Pi|σ⊗2
P 〉〉(χi − f2)2

m∑

s=2

(s− 1)χm−si f2(s−2)

+
∑

i∈Z
Hi(Q, ν)(χi − f2)2

m∑

s=2

(s− 1)χm−si f2(s−2)

≤ 1

4

∑

i∈Zd

Tr(Pi)
d2 − 1

(χi − f2)2
m∑

s=2

(s− 1)χm−si f2(s−2)

+
∑

i∈Z
|Hi(Q, ν)|(χi − f2)2χm−2

i

m∑

s=2

(s− 1)χm−si f2(s−2)

(B13)

where we have used the definition of the function Hi(Q, ν), lemma 3 and the triangle inequality. Now we use lemma 6
to upper bound this quantity as

∑

i∈Z
〈〈Q⊗2|Pi|ν⊗2〉〉(χi − f2)2

m∑

s=2

(s− 1)χm−si f2(s−2)

≤
∑

i∈Zd

Tr(Pi)
d2 − 1

(
dr

d− 1

)2 m∑

s=2

(s− 1)χm−si f2(s−2)

+
∑

i∈Z
|Hi(Q, ν)|

(
2dr

d− 1

)2 m∑

s=2

(s− 1)χm−si f2(s−2)

≤ d2r2

(d− 1)2

m∑

s=2

(s− 1)χm−si f2(s−2)

+
4d2r2

(d− 1)2

∑

i∈Z
|Hi(Q, ν)|

m∑

s=2

(s− 1)χm−si f2(s−2)

(B14)

where we have used the fact that
∑
i∈Zd

Tr(Pi) = d2 − 1. It remains to deal with the last factor. This we do by
using lemma 5 which states that χi ≤ u for all i ∈ Z, where u is the unitarity of the channel E . Writing again
η(Q, ν) :=

∑
i∈Z |Hi(Q, ν)| we then have

∑

i∈Z
〈〈Q⊗2|Pi|ν⊗2〉〉(χi − f2)2

m∑

s=2

(s− 1)χm−si f2(s−2)

≤ d2r2

(d− 1)2

m∑

s=2

(s− 1)um−sf2(s−2)

+
4d2r2

(d− 1)2

∑

i∈Z
|Hi(Q, ν)|

m∑

s=2

(s− 1)um−sf2(s−2)

(B15)
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We can further make sense of this quantity by using the well known series identity

m∑

k=1

(k − 1)xk−2 =
(m− 1)xm −mxm−1 + 1

(1− x)2
, m ∈ N, (B16)

Factoring out a factor of um−2 and setting x = f2/u we obtain the following

∑

i∈Z
〈〈Q⊗2|Pi|ν⊗2〉〉(χi − f2)2

m∑

s=2

(s− 1)χm−si f2(s−2)

≤ d2r2

(d− 1)2
(1 + 4η(Q, ν))um−2 (m− 1)(f2/u)m −m(f2/u)m−1 + 1

(1− (f2/u))2
.

(B17)

This finishes the upper bounding of eq. (B6b). Gathering all terms we come to a final bound

V ≤ mfm−1 d2 − 2

4(d+ 1)2
r2 +

d2

(d− 1)2
r2um−2 (m− 1)

(
f2/u

)m −m
(
f2/u

)m−1
+ 1

(1− (f2/u))2

+ η(Q, ν)mfm−1r + η(Q, ν)r2um−2 (m− 1)
(
f2/u

)m −m
(
f2/u

)m−1
+ 1

(1− (f2/u))2

(B18)

which is the bound we set out to find. �

Noting that f2 ≤ u and that the factor

(m− 1)
(
f2/u

)m −m
(
f2/u

)m−1
+ 1

(1− (f2/u))2
, (B19)

is monotonically decreasing in u we can upper bound this factor by taking the limit u→ f2. This gives

lim
u→f2

(m− 1)
(
f2/u

)m −m
(
f2/u

)m−1
+ 1

(1− (f2/u))2
=
m(m− 1)

2
. (B20)

which can be confirmed by an application of l’Hôpital’s rule. Plugging this in to eq. (B18) we obtain eq. (10).

2. State preparation and measurement (SPAM) terms

In the central bound on the variance ( theorem 1) we had to account for the fact that the variance can depend on
how well the input states ρ, ρ̂ and the output POVM Q can be implemented. The ideal behavior of ν = 1

2 (ρ− ρ̂) and
Q are given by

Qid =
1

2
(1 + P) (B21)

νid =
P

2d
(B22)

where P is a pre-specified element of the Pauli group (see fig. 1). The deviation of Q and ν from this ideal can be
captured by writing

Q = Qid +Qspam (B23)

ν = νid + νspam (B24)

where 〈Qid, Qspam〉 = 〈νid, νspam〉 = 0.
In the variance bound the deviation from the ideal has an effect which is measured by the parameter η(Q, ν). This

parameter η(Q, ν) was defined as

η(Q, ν) =
∑

i∈Z
Hi(Q, ν) =

∑

i∈Z
|〈〈Q⊗2|Pi|ν⊗2〉〉 − 〈〈Q⊗2

id |Pi|ν⊗2
id 〉〉| (B25)
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where Z indexes the irreducible representations of the traceless symmetric representation of the Clifford group and
the Pi are projectors onto the spaces carrying these subrepresentations (lemma 2). Let us now analyze these terms
further. For i ∈ Zd we have

Hi(Q, ν) = |〈〈(Qid +Qspam)⊗2|Pi|(νid + νspam)⊗2〉〉 − 〈〈Q⊗2
id |Pi|ν⊗2

id 〉〉|
= |〈〈Q⊗2

id |Pi|ν⊗2
spam〉〉+ 〈〈Q⊗2

id |Pi|ν⊗2
id 〉〉+ 〈〈Q⊗2

spam|Pi|ν⊗2
spam〉〉|

(B26)

where we have used that 〈Qid, Qspam〉 = 〈νid, νspam〉 = 0 which implies that 〈〈Qid ⊗ Qspam|Pi = Pi|νid ⊗ νspam〉〉 = 0
for i ∈ Zd. Using the triangle inequality and the Cauchy-Schwarz inequality we can get

Hi(Q, ν) ≤ |〈〈Q⊗2
id |Pi|ν⊗2

spam〉〉|+ |〈〈Q⊗2
spam|Pi|ν⊗2

id 〉〉|+ |〈〈Q⊗2
spam|Pi|ν⊗2

spam〉〉|
≤
∥∥Q⊗2

id

∥∥
2

∥∥Pi(ν⊗2
spam)

∥∥
2

+
∥∥Q⊗2

spam

∥∥
2

∥∥Pi(ν⊗2
id )
∥∥

2
+
∥∥Q⊗2

spam

∥∥
2

∥∥Pi(ν⊗2
spam)

∥∥
2

≤ ‖Pi‖2→2

(
‖Qid‖22 ‖νspam‖22 + ‖Qspam‖22 ‖νid‖22 + ‖Qspam‖22 ‖νspam‖22

) (B27)

where ‖Pi‖2→2 is the induced 2-norm of the superoperator Pi. It is well known that this norm is equal to the largest
singular value of the Liouville representation of Pi [24], which since the Liouville representation of Pi is an orthonormal
projection, is equal to one. This means we have for i ∈ Zd that

Hi(Q, ν) ≤ ‖Qid‖22 ‖νspam‖22 + ‖Qspam‖22 ‖νid‖22 + ‖Qspam‖22 ‖νspam‖22
= ‖Qid‖22 ‖ν − νid‖22 + ‖Q−Qid‖22 ‖νid‖22 + ‖Q−Qid‖22 ‖ν − νid‖22 .

(B28)

Note that this expression is zero when both Q and ν are ideally implemented but is non-zero when either of them is
not. This behavior is in general unavoidable as we argue in the main text (section IV G). But first we will consider
the functions Hi(Q, ν) for i ∈ Z[S] ∪Z{S}. Note first that since supp(Pi) ⊂ Span{Sσ,σ′ ‖ σ, σ′ ∈ σq, σ 6= σ′} we must

have that Pi|ν⊗2
id 〉〉 = 〈〈Q⊗2

id |Pi = 0. This means we can write

Hi(Q, ν) = |〈〈Q⊗2|Pi|ν⊗2〉〉 − 〈〈Q⊗2
id |Pi|ν⊗2

id 〉〉| (B29)

= |〈〈Q⊗2
spam|Pi|νid⊗νspam+νspam⊗νid〉〉+ 〈〈Qid⊗Qspam+Qspam⊗Qid|Pi|ν⊗2

spam〉〉
+〈〈Q⊗2

spam|Pi|ν⊗2
spam〉〉+ 〈〈Qid⊗Qspam+Qspam⊗Qid|Pi|νid⊗νspam+νspam⊗νid〉〉|

(B30)

≤‖Pi‖2→2

(∥∥Q⊗2
spam

∥∥
2

∥∥ν⊗2
spam

∥∥
2

+ 2 ‖Qspam‖2 ‖Qid‖2
∥∥ν⊗2

spam

∥∥
2

+ 2 ‖νspam‖2 ‖νid‖2
∥∥Q⊗2

spam

∥∥
2

+ 4 ‖νspam‖2 ‖νid‖2 ‖Qspam‖2 ‖Qid‖2
) (B31)

which we can rewrite as

Hi(Q, ν) ≤ ‖Q−Qid‖2 ‖ν − νid‖2
(
‖Q−Qid‖2 ‖ν − νid‖2

+ 2 ‖ν − νid‖2 ‖Qid‖2 + 2 ‖Q−Qid‖2 ‖νid‖2 + 4 ‖νid‖2 ‖Qid‖2
) (B32)

which makes manifest that Hi(Q, ν) = 0 if Q and ν are ideal and moreover that this term actually scales with the
product of the deviations in Q and ν (as measured in the 2-norm). Hence we see that to lowest order in Qspam and
νspam the SPAM parameter η(Q, ν) is proportional to

η ≈ ‖Q−Qid‖2 ‖ν − νid‖2 + ‖Q−Qid‖22 + ‖ν − νid‖22 (B33)

with the exact expression being

η(Q, ν) ≤ 3
[
‖Qid‖22 ‖ν − νid‖22 + ‖Q−Qid‖22 ‖νid‖22 + ‖Q−Qid‖22 ‖ν − νid‖22

]

+ 5

[
‖Q−Qid‖2 ‖ν − νid‖2

(
‖Q−Qid‖2 ‖ν − νid‖2

+ 2 ‖ν − νid‖2 ‖Qid‖2 + 2 ‖Q−Qid‖2 ‖νid‖2 + 4 ‖νid‖2 ‖Qid‖2
)]

(B34)

where the factors 3 and 5 arise from the fact that |Zd| = 3 and |Z[S] ∪ Z{S}| = 5 respectively (this is for q ≥ 3, for
q = 1 we get the significantly better |Zd| = 2 and |Z[S] ∪ Z{S}| = 1 instead [27]).
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3. Sample complexity of iteratively reweighted least squares

In this section we analyze the sample complexity of the RB fitting procedure using iteratively reweighted least
squares, as outlined in section IV C. Given a set of sequence lengths M we will assume that N random sequences are
sampled for each sequence length. It is possible to let N be a function of the sequence length m and prove a more
general version of the theorem presented here but we will not pursue this here. We will also only be interested in the
uncertainty around the estimate for the depolarizing parameter f , it is straightforward to extend our analysis to also
include the uncertainty around estimate for the pre-factor A. The methods we use are all standard and can be found
in [29, 30]. See also [25] for an earlier calculation of this form in the context of randomized benchmarking (not taking
into account the heteroskedasticity of randomized benchmarking data).

Theorem 2. Let M be a set of integers denoting sequence lengths and let {km,N}m∈M be a set of RB data points
obtained by sampling N random sequences for each sequence length m ∈ M. Denote by f∗, A∗ the true values for the
RB fitting parameters and denote by fest, Aest their estimates as obtained by the iteratively reweighted least squares
procedure outlined in algorithm 1. We then have that

Pr [|f∗ − fest| ≤ ε] ≥ 1− δ (B35)

where δ is upper bounded by

δ ≤ 2H[Vfit, εfit]
N |M| (B36)

with H defined in eq. (15) and

Vfit =
1

|M|
∑

m∈M
Vm(f∗)w(fest,m) (B37)

εfit =
ε[JTJ ]

J1
(B38)

and

J =

[
− 1

|M|
∑

m∈M
mA∗f∗m−1w(f∗) ,

1

|M|
∑

m∈M
f∗mw(f∗,m)

]
(B39)

and J1 is the first entry of this vector.

Proof. The starting off point for this proof is given by Eq. 1.6.19 in [29, Page 45] which states that the outcome of
the IRLS procedure satisfies the following equality

1

|M|
∑

m∈M
(km,N −Aestf

m
est)w(fest,m) = 0 (B40)

where w(f,m) is the weight function given by the inverse of eq. (30) (we suppress the dependency on the unitarity
here for notational simplicity). We can rewrite eq. (B40) as

1

|M|
∑

m∈M
(km,N +A∗f∗m −A∗f∗m −Aestf

m
est)w(fest,m) = 0 (B41)

⇐⇒ 1

|M|
∑

m∈M
(A∗f∗m −Aestf

m
est)w(fest,m) = − 1

|M|
∑

m∈M
(km,N −A∗f∗m)w(fest,m). (B42)

We can now think of the LHS of eq. (B42) as a function of the vector [fest, Aest]. Assuming [fest, Aest] is close to
[f∗, A∗] we can expand the LHS of eq. (B42) to first order to get

1

|M|
∑

m∈M
(A∗f∗m −Aestf

m
est)w(fest,m) ≈ J [f∗ − fest, A

∗ −Aest]
T

(B43)

where J is the Jacobian associated to the LHS of eq. (B42), that is:

J =

[
− 1

|M|
∑

m∈M
mA∗f∗m−1w(f∗) ,

1

|M|
∑

m∈M
f∗mw(f∗,m)

]
. (B44)
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Taking the Moore-Penrose inverse JMP = (JTJ)−1JT of J and inserting this in the first entry of eq. (B43) we can
say that

f∗ − fest ≈ (JJT )−1J1
1

|M|
∑

m∈M
(A∗f∗m −Aestf

m
est)w(fest,m) (B45)

where J1 is the first entry of J . Now we can say that

Prob [|f∗ − fest| ≥ ε] ≈ Prob

[∣∣∣∣∣[JJ
T ]−1J1

1

|M|
∑

m∈M
(A∗f∗m −Aestf

m
est)w(fest,m)

∣∣∣∣∣ ≥ ε
]

(B46)

= Prob

[∣∣∣∣∣[JJ
T ]−1J1

1

|M|
∑

m∈M
(km,N −A∗f∗m)w(fest,m)

∣∣∣∣∣ ≥ ε
]

(B47)

Now note that km,N can be seen as a number drawn from a random variable Km with mean A∗(f∗)m and variance
Vm(f∗)/N2 where N is the number of random sequences drawn for each data-point km,N . Moreover km,N and kN,m′
for m 6= m′ are drawn from independent random variables Km and Km′ . Hence we can apply the concentration
inequality given in eq. (15) to eq. (B47) to get

Prob [|f∗ − fest| ≥ ε] ≤ 2H[Vfit, εfit]
N |M| (B48)

with Vfit, εfit given by

Vfit =
1

|M|
∑

m∈M
Vm(f∗)w(fest,m) (B49)

εfit =
ε[JJT ]

J1
(B50)

which completes the proof. �

Using eq. (9) or eq. (11) then gives an upper bound on total amount of data that needs to be gathered for rigorous
RB.

Appendix C: Technical lemmas

In this section we give proofs of all technical lemmas used in the main result theorem 1.

1. Projectors in the traceless symmetric subspace

In lemma 3 we prove a series of useful upper bounds on the trace overlap between the superoperator-projectors
associated to the traceless-symmetric representation of the Clifford group and the normalized Pauli matrices. The
saturated versions of these inequalities are critical to establishing the quadratic scaling with infidelity of the variance
bound in the case of SPAM-free RB.

Lemma 3. Let E :Md →Md be a quantum channel and consider the twirled operator TφTS(E⊗2) with respect to the
traceless-symmetric representation. This operator can then be written as (lemmas 1 and 2)

TφTS(E⊗2) =
∑

i∈Z

Tr(EPi)
Tr(Pi)

Pi (C1)

with Z = {tr, 1, 2, [1], [2], [3], {1}, {2}} and Pi the projector onto the spaces Vi ⊂M⊗2
d . Let I(x ∈ A) be the indicator

function for the set A (that is I(x ∈ A) = 1 if x ∈ A and I(x ∈ A) = 0 otherwise). We have the following statements

• For i ∈ Z and σ, σ′ ∈ σq we have that

|〈〈σ⊗2|Pi|σ′⊗2〉〉| = |〈〈σ⊗2|Pi|σ′⊗2〉〉|I(i ∈ Zd) ≤ Tr(Pi)I(i ∈ Zd)

d2 − 1
(C2)

with equality when σ = σ′ .
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• For i ∈ Z, τ, τ ′ ∈ σq and σ ∈ Cτ , σ
′ ∈ Cτ ′ we have that

|〈〈Sσ,σ·τ |Pi|Sσ′,σ′·τ ′〉〉| = |〈〈Sσ,σ·τ |Pi|Sσ′,σ′·τ 〉〉|I(i ∈ Z[S])δτ,τ ′ ≤
2 Tr(Pi)I(i ∈ Z[S])δτ,τ ′

(d2 − 1)(d2/2− 2)
(C3)

with equality when σ = σ′.

• For i ∈ Z, τ, τ ′ ∈ σq and σ ∈ Nτ , σ
′ ∈ Nτ ′ we have that

|〈〈Sσ,iσ·τ |Pi|Sσ′,iσ′·τ ′〉〉| = |〈〈Sσ,iσ·τ |Pi|Sσ′,iσ′·τ 〉〉|I(i ∈ Z{S})δτ,τ ′ ≤
2 Tr(Pi)I(i ∈ Z{S})δτ,τ ′

(d2 − 1)(d2/2)
(C4)

with equality when σ = σ′.

where the sets Zd,Z[S],Z{S} are defined in lemma 2.

Proof. We begin by proving the first claim. Let Pi be a projector as defined in the lemma statement with i ∈ Z and
take σ, σ′ ∈ σq. From lemma 2 we have immediately that

〈〈σ⊗2|Pi|σ′⊗2〉〉 = 〈〈σ⊗2|Pi|σ′⊗2〉〉I(i ∈ Zd). (C5)

Now consider i ∈ Zd. Note that since Pi is a projector it is a real matrix and we have that Pi ≥ 0, that is Pi is a
positive semidefinite matrix. This means that we have, by the Sylvester principal minor conditions, that

|〈〈σ⊗2|Pi|σ′⊗2〉〉| ≤
√
〈〈σ′⊗2|Pi|σ′⊗2〉〉〈〈σ⊗2|Pi|σ⊗2〉〉 (C6)

for all σ, σ′ ∈ σq. Now consider the case σ = σ′. Note that for all τ, σ ∈ σq there is a Gστ ∈ C such that Gστ (τ) = ±σ.
That is, the Clifford group acts transitively on σq [66]. This means we can write

〈〈σ⊗2|Pi|σ⊗2〉〉 =
1

d2 − 1

∑

τ∈σq

〈〈Gστ (τ)⊗2|Pi|Gστ (τ)〉〉

=
1

d2 − 1

∑

τ∈σq

〈〈τ⊗2|
(
Gστ
)†⊗2
Pi
(
Gστ
)⊗2|τ⊗2〉〉

=
1

d2 − 1

∑

τ∈σq

〈〈τ⊗2|Pi|τ⊗2〉〉

=
Tr(Pi)
d2 − 1

(C7)

where we used the fact that Pi commutes with G⊗2 for all G ∈ C and the fact that Vi ⊂ Vd (where Vd is defined in
lemma 2). This proves the first claim of the lemma.

Next we consider the second claim of the lemma. Let τ, τ ′ ∈ σq and take σ ∈ Cτ and σ′ ∈ Cτ ′ . Again from lemma 2
we have immediately that

〈〈Sσ,σ·τ |Pi|Sσ′,σ′·τ ′〉〉 = 〈〈Sσ,σ·τ |Pi|Sσ′,σ′·τ ′〉〉I(i ∈ Z[S]). (C8)

Now consider i ∈ Z[S]. From lemma 2 we have that we can write

Pi =
∑

τ∈σq

Pτi (C9)

where Pτi has support in the space

V [τ ] = {Sσ,σ·τ ‖ σ ∈ Cτ}. (C10)

From this we immediately get

〈〈Sσ,σ·τ |Pi|Sσ′,σ′·τ ′〉〉 = 〈〈Sσ,σ·τ |Pi|Sσ′,σ′·τ ′〉〉δτ,τ ′ . (C11)
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Now consider τ = τ ′. Again from the Sylvester minor conditions we get for all σ, σ′ ∈ Cτ that

|〈〈Sσ,σ·τ |Pi|Sσ′,σ′·τ 〉〉| ≤
√
〈〈Sσ′,σ′·τ |Pi|Sσ′,σ′·τ 〉〉〈〈Sσ,σ·τ |Pi|Sσ,σ·τ 〉〉. (C12)

Now consider the case σ = σ′. From [66] we can see that the action of the Clifford group on the set A = {(σ, σ ·τ) ‖ τ ∈
σq, σ ∈ Cτ} is 2-transitive. That is, for all pairs (ν, µ) ∈ A there is a Gσ,τν,µ ∈ C such that

Gσ,τν,µ⊗2(Sσ,σ·τ
)

= Sν,ν·µ. (C13)

This implies we can make essentially the same argument as before, that is

〈〈Sσ,σ·τ |Pi|Sσ,σ·τ 〉〉 =
1

|A|
∑

(µ,ν)∈A
〈〈Sν,ν·µ|

(
Gσ,τν,µ

)†⊗2
PiGσ,τν,µ⊗2|Sν,ν·µ〉〉

=
1

|A|
∑

(µ,ν)∈A
〈〈Sν,ν·µ|Pi|Sν,ν·µ〉〉

=
2 Tr(Pi)

(d2 − 1)(d2/2− 2)

(C14)

where we have used the fact that G⊗2 commutes with Pi for all G ∈ C and also the definition of the space V[S] (given
in lemma 2). The factor of two appears from the fact that the set A counts the basis of V[S] twice since Sν,ν·µ = Sν·µ,ν
for all (µ, ν · µ) ∈ A. We have also used that |A| = |σq||Cτ | = (d2 − 1)(d2/2− 2). This proves the second claim of the
lemma.

The proof of the third claim of the lemma proceeds in the same way as the proof of the second claim with the
difference that anti-commuting, rather than commuting elements of the Pauli group must considered. We will not
write it down explicitly. �

2. Bound on sum of squares of the diagonal elements of a quantum channel

This lemma (lemma 4) proves that the diagonal elements of a CPTP map are generically quite close to their mean.
The key technique used here is the fact that the diagonal elements of a CPTP map are invariant under Pauli twirling.
This is a structural result about quantum channels on arbitrarily many qubits and might be of independent interest.
We use it to establish the quadratic scaling of the variance in the infidelity in the case of SPAM-free RB.

Lemma 4. Let E :Md →Md be a quantum channel with infidelity r and depolarizing parameter f = 1− dr
d−1 . The

quantity

1

d2 − 1

∑

τ∈σq
E2
τ,τ , (C15)

where Eτ,τ = 〈τ, E(τ)〉, has the following upper and lower bounds in terms of the infidelity r

f2 = 1− 2d

d− 1
r +

d2

(d− 1)2
r2 ≤ 1

d2 − 1

∑

τ∈σq
E2
τ,τ ≤ 1− 2d

d− 1
r +

2(d+ 1)

(d− 1)
r2. (C16)

Proof. We begin by noting that upper and lower bounds of the quantity eq. (C15) can be found by maximizing and
minimizing respectively the following optimization

max (min)
{Eττ}τ

∑

τ∈σq
E2
τ,τ

subject to
∑

τ∈σq
Eτ,τ = (d2 − 1)f

E a CPTP map.

(C17)

Here we maximize (minimize) the quantity eq. (C15) over all possible CPTP maps which have depolarizing parameter
f . Solving this optimization problem is not easy since it not clear how to express the CP condition in terms of the
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optimization parameters Eττ . We will therefore relax this problem to an easier one which we can solve. We begin by
noting that the optimization variables Eττ are invariant under the action of a Pauli channel, i.e. for all G ∈ P with P
the Pauli group, we have that

(G†EG)τ,τ = 〈τ,GE(G†τG)G†〉 = 〈G†τG, E(G†τG)〉
= [sgn(τ,G)]

2 〈G†Gτ, E(G†Gτ)〉 = 〈τ, E(τ)〉 = Eτ,τ ,
(C18)

for all τ ∈ σq ∪ σ0 where sgn(τ,G) is defined as

sgn(τ,G) =

{
−1 if {τ,G} = 0,

+1 if [G, τ ] = 0,
(C19)

which, since τ ∈ σq∪σ0 is a normalized element of the Pauli group, is well defined because elements of the multi-qubit
Pauli group can either commute ([., .]) or anti-commute ({., .}) with each other [33]. By eq. (C18) and linearity we
can now note that the optimization variables in the optimization eq. (C17) are invariant under twirling over the Pauli
group P, i.e.

TP (E)τ,τ =
1

|P|
∑

G∈P
〈G†τG, E(G†τG)〉 =

1

|P|
∑

G∈P
Eτ,τ = Eτ,τ . (C20)

Note also that the “twirl” operation, for any group, preserves complete positivity [52]. This means we can relax the
optimization eq. (C17) to

max (min)
{TP(E)τ,τ}τ

∑

τ∈σq
TP(E)2

τ,τ

subject to
∑

τ∈σq
TP(E)τ,τ = (d2 − 1)f

TP(E) a CPTP map.

(C21)

Note that this is a relaxation of the previous optimization because while the twirl of a CP map will always be CP the
opposite need no be true. Now we use the following result due to Holevo [67] which states that any CPTP map E ,
twirled over the Pauli group, is of the form

TP(E)(X) =
∑

G∈P
pGGXG

† ∀X ∈ Cd×d, (C22)

where {pG}G is a probability distribution, i.e. pG ≥ 0,∀G ∈ P and
∑
G∈P pG = 1. Let us now rewrite the optimization

eq. (C21) in terms of this probability distribution. We begin by noting that since E is TP we have that Eσ0σ0 = 1 and
hence we can write the depolarizing constraint in eq. (C21) as

∑

τ∈σq
TP(E)τ,τ = (d2 − 1)f ⇐⇒

∑

τ∈σq∪σ0

TP(E)τ,τ = (d2 − 1)f + 1. (C23)

Now, using the form of the Pauli-twirled channel, we can write the RHS of this equivalence as

∑

τ∈σq∪σ0

TP(E)τ,τ =
∑

τ∈σq∪σ0

∑

G∈P
pG〈τ,GτG†〉

=
∑

G∈P
pG

∑

τ∈σq∪σ0

sgn(τ,G)

= pId
2,

(C24)

where in the last line we used that the identity Pauli element I commutes with all Pauli matrices τ ∈ σq∪σ0, whereas
every non-identity Pauli G commutes with exactly of the elements of σq ∪ σ0 and anti-commutes with the other half.
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We also used that |σq ∪ σ0| = d2. We can make a similar calculation for the objective of eq. (C21) which gives

∑

τ∈σq
TP(E)2

τ,τ =
∑

τ∈σq∪σ0

TP(E)2
τ,τ − 1

= (−1) +
∑

τ∈σq∪σ0

(∑

G∈P
pG〈τ,GτG†〉

)2

= (−1) +
∑

G,Ĝ∈P

pGpĜ

∑

τ∈σq∪σ0

sgn(τ,G)sgn(τ, Ĝ†)

= (−1) +
∑

G∈P
p2
G

∑

τ∈σq∪σ0

sgn(τ,GG†) +
∑

G,Ĝ∈P
G 6=Ĝ

pGpĜ

∑

τ∈σq∪σ0

sgn(τ,GĜ†)

= (−1) + d2
∑

G∈P
p2
G,

(C25)

where we have used that sgn(τ,G)sgn(τ, Ĝ) = sgn(τ,GĜ), that GG† = I, ∀G ∈ P and again that the Pauli identity I

commutes with all elements of σq ∪ σ0 while every non-identity Pauli GĜ†, G 6= GĜ commutes with exactly half of
the elements of σq ∪ σ0 and anti-commutes with the other half. We have now rewritten the optimization eq. (C21)
completely in terms of the probability distribution {pG}G. This becomes

max (min)
{pG}G

(−1) + d2
∑

G∈P
p2
G

subject to d2pI = (d2 − 1)f + 1
∑

G∈P
pG = 1

pG ≥ 0 G ∈ P.

(C26)

Noting that the element pI is essentially fixed we can eliminate this element from the optimization and obtain an
even simpler optimization

max (min)
{pG}G

(−1) + d2
∑

G∈P/{I}
p2
G + d2

(
d2 − 1

d2
f +

1

d2

)2

subject to
∑

G∈P/{I}
pG = 1− d2 − 1

d2
f − 1

d2

pG ≥ 0 G ∈ P/{I}.

(C27)

The above optimization is a well studied instance of a class of optimization problems called quadratic programs [68].
This problem has the minimum [68, Chapter 4, Section 4]:

pG,min =
1

d2 − 1

(
1− d2 − 1

d2
f − 1

d2

)
∀G ∈ P/{I}, (C28)

and has d2 − 1 degenerate maxima indexed by the non-identity Pauli elements G̃ of the form

pG,max =

{
1− d2−1

d2 f − 1
d2 if G = G̃

0 otherwise.
(C29)

This means we can lower bound the quantity eq. (C15), for any CPTP map E , by:

1

d2 − 1

∑

τ∈σq
E2
τ,τ ≥

d2

d2 − 1

(
d2 − 1

d2
f +

1

d2

)2

+
d2

(d2 − 1)2

(
1− d2 − 1

d2
f − 1

d2

)2

− 1

d2 − 1
. (C30)



34

By now using the relation f = 1 − dr
d−1 we can rewrite this lower bound in terms of the infidelity r. This process is

straightforward but rather tedious so we will not write it down. At the end of the calculation we obtain

1

d2 − 1

∑

τ∈σq
E2
τ,τ ≥ 1− 2dr

d− 1
+

d2r2

(d− 1)2
. (C31)

Similarly we can write for the upper bound

1

d2 − 1

∑

τ∈σq
E2
τ,τ ≤

d2

d2 − 1

(
d2 − 1

d2
f +

1

d2

)2

+
d2

d2 − 1

(
1− d2 − 1

d2
f − 1

d2

)2

− 1

d2 − 1
, (C32)

which, by essentially the same tedious but straightforward calculation yields

1

d2 − 1

∑

τ∈σq
Eττ ≤ 1− 2

dr

d− 1
+

2(d+ 1)

(d− 1)
r2, (C33)

which completes the lemma.
�

3. Eigenvalues of twirled quantum channels

Lemma 5 proves that the unitarity upper bounds the eigenvalues of the twirled superoperator TφTS
(E⊗2). This

resolves an open question posed in [24] and allows us to establish the long sequence length behavior of the variance
of RB.

Lemma 5. Let E : Md → Md be a quantum channel with unitarity u and consider the twirled operator TφTS
(E⊗2)

with respect to the traceless-symmetric representation. This operator can then be written as (lemmas 1 and 2)

TφTS(E⊗2) =
∑

i∈Z
χiPi (C34)

with Z = {tr, 1, 2, [1], [2], [3], {1}, {2}}, Pi the projector onto the spaces Vi ⊂M⊗2
d and

χi :=
Tr(EPi)
Tr(Pi)

, (C35)

where the trace is taken over superoperators. We now have for all i ∈ Z that

χi ≤ u. (C36)

Proof. We begin by considering i ∈ Zd. Note first that for i = tr we have that

χi =
Tr(PtrE⊗2)

Tr(Ptr)
=

1

d2 − 1

∑

τ,τ ′∈σq

〈〈τ⊗2|E⊗2|τ ′⊗2〉〉, (C37)

where we have used the definition of Ptr (lemma 2). We can calculate

1

d2 − 1

∑

τ,τ ′∈σq

〈〈τ⊗2|E⊗2|τ ′⊗2〉〉 =
1

d2 − 1

∑

τ,τ ′∈σq

〈〈τ |E|τ ′〉〉2

=
1

d2 − 1

∑

τ,τ ′∈σq

〈〈τ |E|τ ′〉〉〈〈τ ′|E†|τ〉〉

=
1

d2 − 1

∑

τ,τ ′∈σq

〈〈τ |EuE†u|τ〉〉

= u(E)

(C38)
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where we have used the definition of the unitarity. Now consider i ∈ Zd. We have

χi =
Tr(PiE⊗2)

Tr(Pi)

=
1

Tr(Pi)
∑

τ∈σq

〈〈τ⊗2|PiE⊗2|τ⊗2〉〉

=
1

Tr(Pi)
∑

τ,τ ′∈σq

〈〈τ⊗2|Pi|τ ′⊗2〉〉〈〈τ ′⊗2|E⊗2|τ⊗2〉〉

(C39)

Where we have used that the support of Pi lies in Vd (defined in lemma 2). Now we can use lemma 3 to upper bound
this quantity. We have

χi ≤
1

Tr(Pi)
∑

τ,τ ′∈σq

Tr(Pi)
d2 − 1)

〈〈τ ′⊗2|E⊗2|τ⊗2〉〉

=
1

d2 − 1

∑

τ,τ ′∈σq

〈〈τ ′|E|τ〉〉〈〈τ |E†|τ ′〉〉

= u

(C40)

where we have again used the definition of the unitarity.
Next we consider the case of i ∈ Z[S]. We have

χi =
Tr(PiE⊗2)

Tr(Pi)
=

1

4

1

Tr(Pi)
∑

τ,τ ′∈σq

∑

σ∈Cτ
σ′∈Cτ′

〈〈Sσ,σ·τ |Pi|Sσ′,σ′·τ ′〉〉〈〈Sσ′,σ′·τ ′ |E⊗2|Sσ,σ·τ 〉〉 (C41)

where we have used that the support of Pi lies in V[S] (defined in lemma 2) and the factor of 1/4 accounts for the
fact that we are double counting the basis of V[S] since Sσ,σ·τ = Sσ·τ,σ (we double count twice: once in the definition
of the trace and once in the resolution of the identity on V[S]). From lemma 3 we can lose one of the sums and get

χi =
1

4

1

Tr(Pi)
∑

τ,τ ′∈σq

∑

σ∈Cτ
σ′∈Cτ′

〈〈Sσ,σ·τ |Pi|Sσ′,σ′·τ ′〉〉δτ,τ ′〈〈Sσ′,σ′·τ ′ |E⊗2|Sσ,σ·τ 〉〉

=
1

4

1

Tr(Pi)
∑

τ∈σq

∑

σ,σ′∈Cτ
〈〈Sσ,σ·τ |Pi|Sσ′,σ′·τ 〉〉〈〈Sσ′,σ′·τ |E⊗2|Sσ,σ·τ 〉〉.

(C42)

We can further use lemma 3 to upper bound this quantity as

χi ≤
1

4

1

Tr(Pi)
∑

τ∈σq

∑

σ,σ′∈Cτ
|〈〈Sσ,σ·τ |Pi|Sσ′,σ′·τ 〉〉||〈〈Sσ′,σ′·τ |E⊗2|Sσ,σ·τ 〉〉|

≤ 1

4

1

Tr(Pi)
∑

τ∈σq

∑

σ,σ′∈Cτ

2 Tr(Pi)
(d2 − 1)(d/2− 2)

|〈〈Sσ′,σ′·τ |E⊗2|Sσ,σ·τ 〉〉|

=
1

2

1

(d2 − 1)(d2/2− 2)

∑

τ∈σq

∑

σ,σ′∈Cτ
|〈〈σ|E|σ′〉〉〈〈σ · τ |E|σ′ · τ〉〉+ 〈〈σ · τ |E|σ′〉〉〈〈σ|E|σ′ · τ〉〉|

(C43)

where we have also used the triangle inequality for the absolute value. Using the triangle inequality again together
with the fact that 2|ab| ≤ a2 + b2 for all a, b ∈ R we can write

χi ≤
1

2

1

(d2 − 1)(d2/2− 2)

∑

τ∈σq

∑

σ,σ′∈Cτ
|Eσ,σ′Eσ·τ,σ′·τ |+ |Eσ·τ,σ′Eσ,σ′·τ |

≤ 1

4

1

(d2 − 1)(d2/2− 2)

∑

τ∈σq

∑

σ,σ′∈Cτ
E2
σ,σ′ + E2

σ·τ,σ′·τ + E2
σ·τ,σ′ + E2

σ,σ′·τ

(C44)
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Now since σ ∈ Cτ ⇐⇒ σ · τ ∈ Cτ we can roll the four sums in the above expression into one, that is

χi ≤
1

(d2 − 1)(d2/2− 2)

∑

τ∈σq

∑

σ,σ′∈Cτ
E2
σ,σ′

=
∑

σ,σ′∈σq

∑

τ∈Cσ∩Cσ′
E2
σ,σ′

≤ 1

(d2 − 1)

∑

σ,σ′∈σq

E2
σ,σ′

= u

(C45)

where we used the fact that σ ∈ Cτ ⇐⇒ τ ∈ Cσ, the fact that |Cσ ∩Cσ′ | ≤ |Cσ| = d2/2− 2 and the definition of
the unitarity. This means we have χi ≤ u for all i ∈ Z[S]. The argument for i ∈ Z{S} is conceptually the same as
that for i ∈ Z[S] so we will not write it down. �

Lemma 6 proves that the eigenvalues of the twirled superoperator TφTS
(E⊗2) are close to the depolarizing parameter

f . This fact is key in our analysis of the variance of RB in the presence of SPAM.

Lemma 6. Let E :Md →Md be a quantum channel with infidelity r and depolarizing parameter f = 1 − dr
d−1 and

consider the twirled operator TφTS(E⊗2) with respect to the traceless-symmetric representation. This operator can then
be written as (lemmas 1 and 2)

TφTS(E⊗2) =
∑

i∈Z
χiPi (C46)

with Z = {tr, 1, 2, [1], [2], [3], {1}, {2}}, Pi the projector onto the spaces Vi ⊂M⊗2
d and

χi :=
Tr(EPi)
Tr(Pi)

, (C47)

where the trace is taken over superoperators. We now have for all i ∈ Zd

|χi − f2| ≤ 2dr

d− 1
, (C48)

and for all i ∈ Z[S] ∪ Z{S}

|χi − f2| ≤ 2dr

d− 1
. (C49)

subject to the constraint r ≤ 1
3

Proof. From lemma 5 we have that χi ≤ u for all i ∈ Z. And since u ≤ 1 for all quantum channels [19] we certainly
have that

χi − f2 ≤ 1−
(

1− dr

d− 1

)2

≤ 2dr

d− 1
. (C50)

Hence we are only interested in upper bounding f2 − χi, and thus lower bounding χi for all i ∈ Z. First consider
i ∈ Zd. We proceed in much the same way as lemma 5. We have

χi =
Tr(PiE⊗2)

Tr(Pi)

=
1

Tr(Pi)
∑

τ,τ ′∈σq

〈〈τ⊗2|Pi|τ ′⊗2〉〉〈〈τ ′⊗2|E|τ⊗2〉〉

=
1

Tr(Pi)
∑

τ∈σq

〈〈τ⊗2|Pi|τ⊗2〉〉E2
τ,τ +

1

Tr(Pi)
∑

τ,τ ′∈σq

τ 6=τ ′

〈〈τ⊗2|Pi|τ ′⊗2〉〉E2
τ ′,τ

(C51)
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We begin by considering the first term in eq. (C51). Using lemma 3 we can say

1

Tr(Pi)
∑

τ∈σq

〈〈τ⊗2|Pi|τ⊗2〉〉E2
τ,τ =

Tr(Pi)
(d2 − 1) Tr(Pi)

∑

τ∈σq

E2
τ,τ ≥ f2 (C52)

where we have also used the lower bound from lemma 4. Now let us consider the second term in eq. (C51). We have

1

Tr(Pi)
∑

τ,τ ′∈σq

τ 6=τ ′

〈〈τ⊗2|Pi|τ ′⊗2〉〉E2
τ ′,τ ≥ −

1

Tr(Pi)
∑

τ,τ ′∈σq

τ 6=τ ′

|〈〈τ⊗2|Pi|τ ′⊗2〉〉|E2
τ ′,τ

≥ − 1 Tr(Pi)
(d2 − 1) Tr(Pi)

∑

τ,τ ′∈σq

τ 6=τ ′

E2
τ ′,τ

= − 1

d2 − 1

∑

τ,τ ′∈σq

E2
τ ′,τ +

1

d2 − 1

∑

τ∈σq

E2
τ,τ

≥ −u+ f2

(C53)

where we have again used lemma 3, the lower bound from lemma 4 and the definition of unitarity. We can now see
that for i ∈ Zd we have

f2 − χi ≤ f2 − 2f2 + u = u− f2 ≤ 1−
(

1− dr

d− 1

)2

≤ 2dr

d− 1
. (C54)

Now consider i ∈ Z[S] (note that we are implicitly taking d ≥ 4 for this part of the proof, this is justified as the set
Z[S] is empty for q = 1). From lemma 5 and in particular eq. (C42) we get

χi =
1

4

1

Tr(Pi)
∑

τ∈σq

∑

σ,σ′∈Cτ
〈〈Sσ,σ·τ |Pi|Sσ′,σ′·τ 〉〉〈〈Sσ′,σ′·τ |E⊗2|Sσ,σ·τ 〉〉. (C55)

We can rewrite this a little bit as follows

χi =
1

4

1

Tr(Pi)
∑

τ∈σq

∑

σ,σ′∈Cτ
〈〈Sσ,σ·τ |Pi|Sσ′,σ′·τ 〉〉(Eσ′,σEσ′·τ,σ·τ + Eσ′,σ·τEσ′·τ,σ) (C56)

=
1

4

1

Tr(Pi)
∑

τ∈σq

∑

σ,σ′∈Cτ
〈〈Sσ,σ·τ |Pi|Sσ′,σ′·τ 〉〉Eσ′,σEσ′·τ,σ·τ

+
1

4

1

Tr(Pi)
∑

τ∈σq

∑

σ,σ′∈Cτ
〈〈Sσ,σ·τ |Pi|Sσ′,σ′·τ 〉〉Eσ′,σ·τEσ′·τ,σ

(C57)

=
1

4

1

Tr(Pi)
∑

τ∈σq

∑

σ,σ′∈Cτ
〈〈Sσ,σ·τ |Pi|Sσ′,σ′·τ 〉〉Eσ′,σEσ′·τ,σ·τ

+
1

4

1

Tr(Pi)
∑

τ∈σq

∑

σ,σ′∈Cτ
〈〈Sσ,σ·τ |Pi|Sσ′·τ,(σ′·τ)·τ 〉〉Eσ′·τ,σ·τE(σ′·τ)·τ,σ

(C58)

=
1

2

1

Tr(Pi)
∑

τ∈σq

∑

σ,σ′∈Cτ
〈〈Sσ,σ·τ |Pi|Sσ′,σ′·τ 〉〉Eσ′,σEσ′·τ,σ·τ (C59)

where we used that σ′ ∈ Cτ ⇐⇒ σ′ · τ ∈ Cτ , that (σ′ · τ) · τ = σ′ and that Sσ′,σ′·τ = Sσ′·τ,σ′ . We can again separate
off the ‘diagonal’ terms to get

χi =
1

2

1

Tr(Pi)
∑

τ∈σq

∑

σ∈Cτ
〈〈Sσ,σ·τ |Pi|Sσ,σ·τ 〉〉Eσ,σEσ·τ,σ·τ (C60a)

+
1

2

1

Tr(Pi)
∑

τ∈σq

∑

σ,σ′∈Cτ
σ 6=σ′

〈〈Sσ,σ·τ |Pi|Sσ′,σ′·τ 〉〉Eσ′,σEσ′·τ,σ·τ . (C60b)
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We will analyze the terms eq. (C60a) and eq. (C60b) separately. We begin with eq. (C60a). We can use lemma 3 to
get

eq. (C60a) =
1

(d2 − 1)
(
d2

2 − 2
)
∑

τ∈σq

∑

σ∈Cτ
Eσ,σEσ·τ,σ·τ . (C61)

Now we use the generic statement 2ab = a2 + b2 − (a− b)2 for all a, b ∈ R to write

eq. (C60a) =
1

2

1

(d2 − 1)
(
d2

2 − 1
)
∑

τ∈σq

∑

σ∈Cτ
E2
σ,σ + E2

σ·τ,σ·τ

− 1

2

1

(d2 − 1)
(
d2

2 − 2
)
∑

τ∈σq

∑

σ∈Cτ
(Eσ,σ − Eσ·τ,σ·τ )2

(C62)

=
1

(d2−1)
(
d2

2 − 2
)
∑

τ∈σq

∑

σ∈Cτ
E2
σ,σ

− 1

2

1

(d2−1)
(
d2

2 −2
)
∑

τ∈σq

∑

σ∈Cτ
(Eσ,σ − Eσ·τ,σ·τ )2

(C63)

=
1

(d2 − 1)
(
d2

2 − 2
)
∑

σ∈σq

∑

τ∈Cσ
E2
σ,σ

− 1

2

1

(d2 − 1)
(
d2

2 − 2
)
∑

τ∈σq

∑

σ∈Cτ
(Eσ,σ − Eσ·τ,σ·τ )2

(C64)

=
1

d2 − 1

∑

σ∈σq

E2
σ,σ −

1

2

1

(d2 − 1)
(
d2

2 − 2
)
∑

τ∈σq

∑

σ∈Cτ
(Eσ,σ − Eσ·τ,σ·τ )2 (C65)

≥ f2 − 1

2

1

(d2 − 2)
(
d2

2 − 1
)
∑

τ∈σq

∑

σ∈Cτ
(Eσ,σ − Eσ·τ,σ·τ )2 (C66)

where we again used that σ ∈ Cτ ⇐⇒ σ · τ ∈ Cτ and that σ ∈ Cτ ⇐⇒ τ ∈ Cσ and also the lower bound from
lemma 4. It remains to bound the second term in eq. (C66). To do this we will maximize the quantity (Wν,ν−Wν·µ,ν·µ)2

for µ ∈ σq and ν ∈ Cµ subject to the constraint that W is a CPTP map with depolarizing parameter f . That is, we
will try to solve the maximization problem

max (Wν,ν −Wµ,µ)2

subject to
∑

τ∈σq
Wττ = (d2 − 1)f

W a CPTP map.

(C67)

As in lemma 4 we can restrict ourselves to W being a Pauli channel (since the optimization function is a function of
only the diagonal elements of W). That is we can consider W(X) =

∑
G∈P pGGXG

† where {pG}G is a probability
distribution over the Pauli group. We can write the optimization objective as

(Wν,ν −Wν·µ,ν·µ)2 =

[∑

G∈P
pG〈ν,GνG†〉 − 〈ν · µ,Gν · µG†〉

]2

=

[∑

G∈P
pG〈ν,GνG†〉 − 〈ν · µ, (GνG†) · (GµG†)〉

]2

=

[∑

G∈P
pGsgn(ν,G)

(
1− sgn(µ,G)

)
]2

(C68)

where the sgn(ν,G) (as defined in eq. (C19)) encodes the commutation relations of the elements of the Pauli group.
Note that the above quantity does not depended on p1 (the weight associated with the Pauli identity) since sgn(µ,1) =
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1 for all µ ∈ σq. Hence we can solve the optimization problem

max


 ∑

G∈P/{1}
pGsgn(ν,G)

(
1− sgn(µ,G)

)



2

subject to
∑

G∈P/{1}
pG = 1− d2 − 1

d2
f2 − 1

d2

pG ≥ 0 ∀G ∈ P.

(C69)

This problem has an easily spotted maximum in that we want to put all probability weight on a single G ∈ Cν ∩Nµ
and set all other pG to zero (subject to the constraint that the overall channel must have depolarizing parameter f ,
which is encoded in the first constraint of eq. (C69) ). Hence we have

[∑

G∈P
pGsgn(ν,G)

(
1− sgn(µ,G)

)
]2

≤
[
d2 − 1

d2
(1− f2)

]2

. (C70)

We can feed this back into eq. (C66) to obtain

eq. (C60a) ≥ f2 − 1

2

1

(d2 − 1)
(
d2

2 − 2
)
∑

τ∈σq

∑

σ∈Cτ

[
d2 − 1

d2
(1− f2)

]2

= f2 − 1

2

[
d2 − 1

d2
(1− f2)

]2

.

(C71)

This is a suitable lower bound on eq. (C60a). Next we consider eq. (C60b). We have

eq. (C60b) ≥ − 1

(d2 − 1)
(
d2

2 − 2
)
∑

τ∈σq

∑

σ,σ′∈Cτ
σ 6=σ′

|Eσ,σ′Eσ·τ,σ′·τ |

≥ − 1

(d2 − 1)
(
d2

2 − 2
)
∑

τ∈σq

∑

σ,σ′∈Cτ
σ 6=σ′

1

2
(E2
σ,σ′ + E2

σ·τ,σ′·τ )

= − 1

(d2 − 1)
(
d2

2 − 2
)
∑

σ,σ′∈σq

σ 6=σ′

∑

τ∈Cσ∩Cσ′
E2
σ,σ′

= −
d4

4 − 3

(d2 − 1)
(
d2

2 − 2
)


 ∑

σ,σ′∈σq

E2
σ,σ′ −

∑

σ∈σq

E2
σ,σ′




≥ −
d4

4 − 3
d2

2 − 2
(u− f2)

(C72)

where we used an array of steps that have been used before: the triangle inequality and lemma 3 for the first inequality,
the fact that 2|ab| ≤ a2 + b2 for all a, b ∈ R for the second inequality, the fact that σ ∈ Cτ ⇐⇒ τ ∈ Cσ for the third
equality, the fact that |Cσ ∩Cσ| = d2/4− 3 for σ 6= σ′ [27] for the fourth equality and lemma 4 and the definition of
unitarity for the last equality. This is a good lower bound on eq. (C60b). We can now combine the lower bounds on
eq. (C60a) and eq. (C60b) to get

χi ≥ f2 − 1

2

[
d2 − 1

d2
(1− f2)

]2

−
d4

4 − 3(
d2

2 − 2
) (u− f2) (C73)

for i ∈ Z[S]. This gives a final bound (using u ≤ 1)

f2 − χi ≤ f2 − f2 +
1

2

[
d2 − 1

d2
(1− f2)

]2

+
d4

4 − 3
d2

2 − 2
(1− f2) (C74)
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which we can rewrite to yield

f2 − χi ≤
2dr

d− 1

(
d4

4 − 3
d2

2 − 2

(
1− 1

2

dr

d− 1

)
+

1

2

(d2 − 1)2

d4

2dr

d− 1

(
1− 1

2

dr

d− 1

)2
)

(C75)

Setting
(

1− 1
2
dr
d−1

)
≤ 1 and working out we get

f2 − χ ≤ 2d

d− 1
r (C76)

for

r ≤
(

1−
d4

4 − 3
d2

2 − 2

)
d3(d− 1)

(d2 − 1)2
. (C77)

This completes the proof for i ∈ Z[S]. The proof for i ∈ Z{S} is conceptually the same as that of i ∈ Z[S] and yields
the same bound so we will not write it down here. The only notable difference is the difference in size for the sets Nτ

and Nτ ∩Nτ ′ for τ, τ ′ ∈ σq which gives a different area of validity for the bound, namely

r ≤ 1

3
≤
(

1−
d4

4
d2

2

)
d3(d− 1)

(d2 − 1)2
. (C78)

Choosing r ≤ 1/3 satisfies both constraints for all d and thus completes the proof. �

4. Telescoping series

Lemma 7 and corollary 1 provide us with a powerful tool to break up the analysis of the variance of RB into
manageable pieces.

Lemma 7. For two arbitrary ordered lists of m elements {a1, . . . , am} and {b1, . . . , bm} of an algebra with associative
and distributed addition and multiplication we have,

am:1 − bm:1 =

m∑

j=1

am:j+1(aj − bj)bj−1:1. (C79)

where aj:k with j ≥ k is defined with respect to the list {a1, . . . , am} as

aj:k = ajaj+1 · · · ak−1ak. (C80)

Proof. We will prove this by induction. For m = 1 the statement is trivial. For m+ 1, we have

am+1:1 − bm+1:1 = am+1am:1 − am+1bm:1 + am+1bm:1 − bm+1bm:1

= am+1(am:1 − bm:1) + (am+1 − bm+1)bm:1

=

m+1∑

j=1

am:j+1(aj − bj)bj−1:1

by induction hypothesis. This proves the lemma. �

Corollary 1. For a, b, c ∈ C with c ≥ a, we have

am − bm = mbm−1(a− b) + (a− b)2am−2 (m− 1)(b/a)m −m(b/a)m−1 + 1

(1− (b/a))2

≤ mbm−1(a− b) + (a− b)2 (m− 1)bm −mcbm−1 + cm

(c− b)2
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Proof. Note first that the statement is trivial if a = b. Therefore assume a 6= b. We begin by applying lemma 7 to
am − bm. This gives

am − bm =

m∑

j=1

am−j(a− b)bj−1. (C81)

We now perform the following manipulation

am − bm =

m∑

j=1

am−j(a− b)bj−1

=

m∑

j=1

(am−j − bm−j + bm−j)(a− b)bj−1

= (a− b)
m∑

j=1

bm−j+j−1 +

m∑

j=1

(am−j − bm−j)(a− b)bj−1

= mbm−1(a− b) +

m∑

j=1

(am−j − bm−j)(a− b)bj−1.

(C82)

Note that be have used the fact that a, b ∈ C are commutative. Now we can apply lemma 7 again to the factors
(am−j − bm−j) in the second term in the above to obtain

am − bm = mbm−1(a− b) +

m∑

j=1

m−j∑

t=1

am−j−t(a− b)bj−t−1(a− b)bj−1

= mbm−1(a− b) + (a− b)2
m∑

j=1

m−j∑

t=1

am−(j+t)bj+t−2.

(C83)

Performing the substitution s = j + t and working out we obtain

am + bm = mbm−1(a− b) + (a− b)2
m∑

j=1

m−j∑

t=1

am−(j+t)bj+t−2

= mbm−1(a− b) + (a− b)2
m∑

j=1

m∑

s=j+1

am−sbs−2

= mbm−1(a− b) + (a− b)2
m∑

s=2

s−1∑

j=1

am−sbs−2

= mbm−1(a− b) + (a− b)2
m∑

s=2

(s− 1)am−sbs−2

(C84)

Now we can factor out am−1 from the second term to obtain

am + bm = mbm−1(a− b) + (a− b)2am−2
m∑

s=2

(s− 1)(b/a)s−2. (C85)

We can further rewrite this using the standard series identity

m∑

k=1

(k − 2)xk−2 =
(m− 1)xm −mxm−1 + 1

(1− x)2
. (C86)

The upper bound follows by upper bounding each term in the sum. �
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