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The paradigm of Schrödinger’s cat illustrates how quantum states preclude the assignment of
definite properties to a macroscopic object (realism). In this work we develop a method to investigate
the indefiniteness of cat states using currently available cold atom technology. The method we
propose uses the observation of a statistical distribution to demonstrate the macroscopic distinction
between dead and alive states, and uses the determination of the interferometric sensitivity (Fisher
information) to detect the indefiniteness of the cat’s vital status. We show how combining the
two observations can provide information about the structure of the quantum state without the
need for full quantum state tomography, and propose a measure of the indefiniteness based on this
structure. We test this method using a cat state proposed by Gordon and Savage [Phys. Rev. A 59,
4623 (1999)] which is dynamically produced from a coherent state. As a control, we consider a set
of states produced using the same dynamical procedure acting on an initial thermal distribution.
Numerically simulating our proposed method, we show that as the temperature of this initial state
is increased, the produced state undergoes a quantum to classical crossover where the indefiniteness
of the cat’s vital status is lost, while the macroscopic distinction between dead and alive states of
the cat is maintained.

Superposition is at the heart of the many predictions
made by quantum mechanics that clash with everyday
intuition. It allows for the possibility of an experi-
ment in which we must conclude that some property of
an object can not be prescribed a definite value before
measurement. Instead, this indefiniteness of a property
must be modelled by a superposition of possible val-
ues and implies a statistical uncertainty that can not
be reduced by obtaining more knowledge about the uni-
verse. While plausible for microscopic properties, this
possibility directly conflicts with our everyday intuition
for macroscopic objects. The characteristic example is
the Schrödinger’s cat thought experiment[1], where a cat
ends up in a superposition of alive and dead by entan-
gling with the decayed or excited state of a radioactive
source.

When investigating these macroscopic states in an ex-
periment, we are naturally led to two questions: 1) How
do we know the cat’s life was an indefinite property before
measurement? 2) How do we quantify the macroscopic-
ity of the cat and thus, the extent to which it conflicts
with our intuition about the macroscopic world? The
first question is answered by Leggett-Garg[2], who con-
structed a set of inequalities on a set of different-time
correlation functions that would only be violated if the
cat was in an indefinite state at some intermediate time.
The second question has been answered by constructing
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measures of macroscopicity in two general ways[3]: ei-
ther by focusing on the structure of a macroscopic cat
state[4–10] or generalizing to any macroscopic quantum
state[11–18]. For many of these measures, a state is de-
clared macroscopic based on how the measures scale with
the number, N , of constituent particles. The experimen-
tal observation of these measures often leads to a way to
answer the first question[12, 18, 19].

In this paper we will work with a measure that is a
combination of the one proposed by Leggett[4, 5] and the
one proposed by Fröwis and Dür[14]. The measure pro-
posed by Leggett is quantified by two numbers: the ex-
tensive difference, Λ, which is the difference of the expec-
tation value for some observable A between the dead and
alive states of the cat, and the disconnectivity, a quantity
based on the entanglement entropy. The extensive dif-
ference describes how macroscopically different the dead
and alive cats are, while the disconnectivity quantifies
how indefinite the vital status of the cat is. The mea-
sure of Fröwis and Dür[14], Neff , is applicable to general
quantum states and is based on the experimentally quan-
tifiable, quantum Fisher information (QFI). The QFI has
been interpreted as a measure of entanglement[20], and
has stimulated a variety of work studying this type of
entanglement[14, 20–26]. The QFI has also been shown
to be connected with the resource theory of coherence[27]
and to be the maximum quantifier for the resource theory
of quantum invasiveness[28]. Inspired by the measure of
Fröwis and Dür, and by recent insights relating the QFI
to the convex-roof of uncertainty[29, 30](see Section II),
we replace the disconnectivity in Leggett’s measure by a
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function of the QFI and statistical variance.

This choice is further motivated by the fact that the
extensive difference and the QFI are both experimen-
tally accessible in bosonic interferometer experiments.
The kind of bosonic interferometer experiments discussed
here[21, 25, 31–40] can be understood as a way to es-
timate a phase encoded onto a macroscopic spin by a
projective measurement. The maximum sensitivity of
the interferometer to the encoded phase is given by the
classical Fisher information (CFI) via the Cramer-Rao
bound[41, 42] and is restricted by the phase encoding
method and the chosen projective measurement. The
QFI quantifies the sensitivity of the interferometer when
the best projective measurement is used and is bounded
from below by the CFI. The CFI and other measures of
sensitivity can be measured by experiments[25, 43] and
many proposals exist to optimize the bound the CFI puts
on the QFI[19, 26, 44]. The extensive difference can also
be obtained in an experiment from the counting statistics
of a single-particle observable[25, 43].

Various types of macroscopic states have been pro-
duced in these systems, ranging from squeezed states[23,
24] to non-Gaussian entangled states[25]. There also ex-
ists many proposals to create macroscopic cat states in
bosonic interferometers[22, 45–53]. In this article we
work with a cat state first proposed by Gordon and
Savage[51]. The method for creating this state can be
understood from the classical dynamics of the effective
collective spin. As we explain in Section I, the classical
dynamics exhibit two different kinds of trajectories sep-
arated in phase space by the separatrix. As pointed out
by Micheli et al.[47], the cat state is prepared by creating
an initial coherent state with a Wigner distribution that
spans the phase space region crossing the separatrix. The
quantum dynamics then separates the components from
either side of the separatrix into the macroscopically dis-
tinct alive (free oscillation) and dead (self-trapping) com-
ponents of the cat. They prove this by semi-classically
evolving the Wigner function and finding it produces
a double peak distribution in the z-component of the
macroscopic spin.

Similar arguments can be applied to mixed states, and
we show that initial thermal distributions also evolve into
a double peak state. We show that the higher the tem-
perature the less indefiniteness the state displays, and
we describe how an experimenter can observe this tran-
sition. These high temperature states are particularly
appealing because, despite increasing the temperature,
it is still possible to identify the dead and alive states of
the cat. Thus, as temperature increases, the vital status
of the cat becomes definite before the distinction between
dead and alive is loss.

Previous work has suggested the detection of indefinite
properties for similar states by using generalized Leggett-
Garg inequalities[54] or observation of many-body cor-
relation functions[55], but these methods rely on ex-
perimental tools that have yet to be implemented. In
this article, we study the possibility of currently avail-

able cold atom technology to experimentally detect the
macroscopic indefiniteness of these cat states, and dis-
tinguish them from the classical uncertainty of the high
temperature mixed states. The method we propose uses
the observation of a statistical distribution to demon-
strate the macroscopic distinction (extensive difference)
between dead and alive states and uses the interferomet-
ric sensitivity (QFI) to detect the indefinite vital status
of the cat. We show how these two types of observations
provide information about the nature of the possible pure
states which make up the density matrix, and how this
information is useful in observing the crossover from a cat
that is in a superposition of dead and alive to a cat that
is either dead or alive. Next, we numerically simulate the
method for the Gordon and Savage cat state and demon-
strate the quantum to classical crossover. Inspired by
the Schrödinger’s cat thought experiment, we conclude
by considering a cat state which is entangled with an
auxiliary qubit (representing the radioactive source) and
show that such a quantum to classical crossover is con-
trolled by the strength of entanglement with the auxiliary
qubit.

I. INTERFEROMETERS, CAT STATES AND
DOUBLE PEAK MIXED STATES

Interferometry in Bose Einstein condensates has led
to new measurement techniques for magnetic fields[31],
gravitational fields[39, 40] and rotational motion[38].
In the kind of interferometry that we are considering,
the experiment consists of the following four steps[21, 26]:

(1) State preparation: In the first step the state,
described by a density matrix ρ, is prepared. This step
often involves condensing particles into a single wave
function and performing entangling operations to allow
sensing at higher accuracy.
(2) Phase encoding: The unitary evolution of the in-

terferometer encodes a phase onto the state prepared in

the first step: ρ → ρψ = U†ψ,ΩρUψ,Ω. The Hamiltonian
of this unitary evolution is proportional to the parame-
ter to be measured, such as the magnetic field strength.
ψ is the phase encoded, and Ω represents the additional
parameters of the unitary transform.
(3) Read-out: An additional unitary evolution Ur is

applied to the state to prepare for an effective measure-
ment of an observable R.
(4) Projective measurement: A destructive measure-

ment of an observable X is modelled as a projection
onto the eigenvector |x〉 with measurement value x:

〈x|U†rU†ψ,ΩρUψ,ΩUr |x〉. Repeating this measurement
multiple times produces a distribution:

p(r, ψ,Ω) = 〈r|U†ψ,ΩρUψ,Ω |r〉 (1)

with |r〉 = Ur |x〉.
For simple set-ups, the expectation value of R is di-

rectly proportional to the phase encoded and Hamilto-
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nian parameter being estimated. In this paper, instead
of using the last 3 steps to estimate the phase, they are
used to verify the indefiniteness of some property of the
initial state ρ.

A. Phase encoding, read-out, projective
measurement

A simple form of interferometry involves two quanti-
zation modes that can interfere. These modes can be
external kinetic modes in which bosons move in two dif-
ferent guides, or the modes can be identified with the
two sites of a double well potential[34–40, 56]. These
modes could also be associated with two different inter-
nal states of the boson particles (e.g. hyperfine states
of the bosonic atoms[25, 31–33] that can be coupled by
lasers). A highly successful approximation[47, 57–59] as-
sumes that the bosons only occupy these two modes.
This limits the Hilbert space to that spanned by the Fock-
states of the two modes: |m1,m2〉, where m1 and m2

are the number of bosons in the first and second modes.
Counting the particles in the two modes constitutes the
projective measurement of step 4: |x〉 = |m1,m2〉

A single particle in two modes has a two dimensional
Hilbert space and is described by a spin half operator,
J = σ/2. The single particle observable in 2 modes, for a
system with N particles are described by linear combina-

tion of SU(2) generators of a N/2 spin, J =
∑N
i=1 σi/2:

J(θ, φ) = Jz cos θ + Jx sin θ cosφ+ Jy sin θ cosφ (2)

where these Cartesian components, Jz, Jx and Jy, satisfy
the standard commutation relations: [Ji, Jj ] = iεi,j,kJk.
By mapping the sum, m1 + m2 = 2j, and difference,
m1 −m2 = 2jz, onto the magnitude and z-projection of
a collective spin, one can connect the Fock representation
with this well-known SU(2) algebra for describing rota-
tions. The particle number difference is then mapped to
Jz and tunnelling between the two modes is described by
Jx(more generally J(π/2, φ)).

For internal modes, a Hamiltonian Jz can be created
by applying a magnetic field to split the hyperfine states
and a Hamiltonian Jx can be created by applying a Rabi-
coupling laser field. For external kinetic modes, these
Hamiltonians are controlled by shaping the external po-
tential.

The phase encoding and read-out operations, Uψ,Ω and
Ur discussed in this paper, are all linear single-particle
operations:

U(α, θ, φ) = e−iαJ(θ,φ) (3)

where Ur = U(Trεr/h̄, θr, φr) and Uψ,Ω = U(ψ, θΩ, φΩ)
and ε is the energy scale of the Hamiltonian. The col-
lective spin picture maps a projective two-mode number
difference measurement, m1 −m2, to a measurement of
the Jz observable. For single-particle read-out, the com-
bined steps 3 and 4 becomes equivalent to an effective
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FIG. 1. (Color online) Classical trajectories. The separa-
trix is shown in black (bold) and separates the circular free-
oscillation trajectories from the self-trapping ones. The green
dots mark the fixed point and the green arrows mark the un-
stable directions.

measurement on the spin in a new direction:Jz → Jz′ =
U†rJzUr. For example, a read-out rotation around the
x-axis (Tr = πh̄

2εr
, θr = π/2, φr = 0. i.e. J(θr, φr) = Jx)

produces an effective measurement of Jy.

B. State Preparation: Cat States and Mixed
Double-Peak States

In this paper, the state prepared in the first step of
interferometry is the Gordon and Savage cat state[51] or
a mixed state with a similar distinction between dead
and alive states. In this section, we describe these states
and how they can be prepared. In the next section we de-
scribe how the last 3 steps can be used to verify indefinite
properties of this state.

In bosonic interferometry, state preparation begins
with condensation into the ground state of some Hamil-
tonian ετJ(θ, φ). In this paper, we will describe partial
condensation using a thermal state:

ρ(β, z, φ) = eβετJ(cos−1(z),φ), (4)

where we have introduced the scaled difference: z =
jz/j = [m1 −m2] /N = cos (θ). States of this form have
been produced for kinetic modes for the Hamiltonian
Jx by Gross et al.[35], and thermal states of any other
Hamiltonian of the form J(cos−1(z), φ), can be produced
by rotations of the form in Eq. 3. For this paper, we will
focus on the states ρ(β, 0 = zc(π), π) and ρ(β, |zc(0)| , 0)
which we refer to as the π and 0 state at temperature
β−1. The critical imbalance, zc(φ), is given by the solid
black line in Fig. 1.

Following (partial) condensation, cat states can be pre-
pared by the method mentioned above by Gordon and
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Savage. We will describe this method using the explana-
tion provided by Micheli et al.[47]. There they explain
how the twist-and-turn[21] Hamiltonian:

H = tJx +
U

2
J2
z (5)

produces cat states via a semi classical analysis. The clas-
sical analysis assumes a set of variational states which are
the ground state of the Hamiltonian J(cos−1(z), φ). The
classical equations of motion describe the dynamics of im-
balance of particles between the two modes (projection
onto the axis), z and its conjugate variable φ.

The classical equations of motion have been solved
analytically[57] and have two fixed points for all param-
eters, t and U . Dynamical creation of a cat state takes
place at larger coupling strength (U > 4t/N), where one
of the classical fixed points is unstable. The classical tra-
jectories for 2J = N = 200, U = 0.1 and t = 1 are shown
in Fig. 1 and demonstrates a critical line, ±zc(φ), sep-
arating two distinct dynamical behaviours. Along one
set of trajectories the effective spin rotates around the
x-axis so that the variation of the azimuthal (φ)-angle is
confined to a finite interval. These trajectories, confined
to the middle region in Fig. 1, correspond to the Joseph-
son oscillations[34, 57, 60] observed in condensed matter
Josephson junctions and we refer to them as free oscilla-
tions. Along another set of trajectories, the spin rotates
around the z-axis so that the φ-variable increases indef-
initely. Along the latter type of trajectories the particle
imbalance (z) does not change sign and the corresponding
dynamics is known as self-trapping dynamics. The phase-
space (φ, z)- regions of the two types of trajectories are
separated by a critical line, zc(φ), called the separatrix,
indicated by the thick black line in Fig.(1). This line is
the classical trajectory of both the π and 0 states in the
classical analysis. The π state starts on the unstable fixed
point, while the 0 starts at (zc(0), φ = 0). All numeri-
cal calculations presented in this paper have been carried
out for the parameters used in Fig. 1: 2J = N = 200,
U = 0.1 and t = 1.

Focusing on pure states (β−1 = 0), the first quan-
tum approximation in a semi-classical analysis treats the
initial pure state as a finite width Gaussian probability
distribution. In the classical dynamics, the paths of the
free oscillation and self-trapping trajectories diverge near
the unstable fixed point(φ = π, z = 0). In the quantum
mechanical evolution of the π and 0 states, the trajecto-
ries of the Wigner-distribution amplitudes part ways near
the same phase space coordinate. After a time interval
during which the z-coordinates of the classically evolving
systems on either side of the separatrix have separated
maximally (a time Tπ = log(8N)h̄/[NU ] for the π-state
and 1.4Tπ for the 0-state), the quantum state evolves into
a superposition of two macroscopically separated (speci-
fied below) states. The corresponding self-trapping and
free oscillation components are the dead and alive com-
ponents of the cat state. In the case of the pure state
described above, we a priori know that the vital status is

indefinite.
For the case in which the initial state is at a high tem-

perature, the classical dynamics are the same, but un-
certainty in the evolved probability distribution reflects
our lack of knowledge about the classical phase-space po-
sition as opposed to the indefiniteness of the quantum
state. As we show below, the measure that we propose
indicates that the thermal states are definite.

We numerically compute both the thermal and pure
states using exact diagonalization of Eq. 5 followed by
a time evolution of the states ρ(β, z, φ). The probability
distributions for the Jz observable are shown in Fig. 2 for
the pure states and Fig. 3 for the high temperature states.
Both the pure states and the thermal states demonstrate
a double peak suggestive of a dead and alive labelling.
We make this labelling precise for a pure state |k〉 by
decomposing it into a dead and alive state|k〉 = (|alive〉+
|dead〉)/

√
2:

|alive〉 =
1√
NL

∑
jz

|jz〉 〈jz|k〉Θ(〈Jz〉 − jz) (6)

|dead〉 =
1√
NR

∑
jz

|jz〉 〈jz|k〉Θ(jz − 〈Jz〉)

Where NR and NL, are defined so the alive and dead
states are properly normalized. While this decomposi-
tion is always possible, it only make sense to call the
pure state |k〉 a cat state if the dead and alive states are
macroscopically distinct. In other words, the extensive
difference Λ(A) = 〈A〉alive − 〈A〉dead should scale with
the number of particles. For the decomposition above,
the extensive difference for the observable Jz can then
be computed by:

Λ(Jz) =
∑
jz

(PL(jz)− PR(jz))jz (7)

where PL(jz) are the re-normalized distributions corre-
sponding to the dead and alive states:

PL(jz) =
1

NL
P (jz)Θ(〈Jz〉 − jz) (8)

PR(jz) =
1

NR
P (jz)Θ(jz − 〈Jz〉)

where Θ(x) is the Heaviside-step function which is 1 for
x > 0 and 0 for x < 0.

Thus, any double peak distribution where the peaks
are macroscopically separated will have an extensive dif-
ference scaling with the number of particles. This is true
for the pure states in Fig. 2, where the extensive differ-
ence is 65 ≈ 200/3 = N/3. Eq. 7 can also be applied to
the mixed states in Fig. 3 and gives a similar extensive
difference ≈ N/3. Experimentally, counting statistics
provide the distributions P (jz) and Eq. 7 can be used
to determine if the observed state can be meaningfully
separated into macroscopically distinct dead and alive
cats. The next section describes how to determine the
vital status of the cat.
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FIG. 2. Distributions P (jz) for the state evolved from the π
and 0 coherent states (0 temperature) for a time Tπ and 1.4Tπ
respectively. These states were computed for N = 200 (spin
with size J = 100), and the x-axis, jz, are the eigenvalues of
the observable Jz.
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FIG. 3. Distributions P (jz) for the state evolved from the π
and 0 states at temperature 10ετ for the same time intervals
as in Fig. 2. As in Fig. 2, these states were computed for
N = 200 (spin with size J = 100).

II. INTERFEROMETER SENSITIVITY AND
INDEFINITENESS

To quantify how indefinite the vital status of the cat
is, we use the interferometer sensitivity quantified by the
quantum and classical Fisher information (QFI and CFI).
In this section, we introduce the interferometer sensitiv-
ity, convex roof of the variance, and explain how an ex-
periment can quantify the indefiniteness and obtain in-
formation about possible pure states which make up the
density matrix.

In the interferometry experiment discussed above, a
phase ψ = ε∆t

h̄ , is encoded on to a state via time evolution
by a Hamiltonian, HΩ = εJ (θΩ,ΦΩ), for a time ∆t. The
sensitivity to the phase ψ is given by the CFI:

Fc(R, ρψ,Ω) =
∑
r

p(r, ψ,Ω)[∂ψlog(p(r, ψ,Ω)))]2 (9)

where p(r, ψ,Ω) = 〈r|U†ψ,ΩρUψ,Ω |r〉(Eq. 1). The primary
use of the CFI, Fc, is that its value provides an upper
bound on the estimated phase ψ via the Cramer-Rao
bound[41, 42]:

∆ψ ≥ 2√
Fc(R, ρψ,Ω)

(10)

The CFI, Fc(R, ρψ=0,Ω), can be measured in
experiments[25]: repeating the four-step process to ob-
tain measurements of p(r, 0 + δ,Ω) for a range of small δ
allows the construction of the derivative with respect to
ψ evaluated at ψ = 0 and a direct use of Eq. 9. Other
methods exist to get more accurate values [19, 26, 44].

A pure state with larger uncertainty, ∆J(θΩ, φΩ), (im-
plying, since the state is pure, a larger indefiniteness
in the observable J(θΩ, φΩ)), responds on a faster time
scale, ω−1 = h̄(ε∆J(θΩ, φΩ))−1 and may have a larger
CFI. Whether or not the CFI is larger depends on the ob-
servable R in step 3 of the 4 step process: the dependence
on the phase (ψ) cancels out if the {|r〉} basis consists of
eigenstates of J(θΩ, φΩ). To characterize the sensitivity
of the quantum state, independent of the choice of the
observable R, one must optimize over all Hermitian op-
erators R. The result of this optimization procedure is
the QFI[14, 61, 62]:

Fq(ρψ,Ω) = max
R

Fc (R, ρψ,Ω) (11)

Since the Cramer-Rao uncertainty bound on ∆ψ of
Eq.(10) is valid for every choice of the measurement ob-
servable, R, the tightest bound on ∆ψ is obtainable from
the QFI:

∆ψ =
ε∆t

h̄
≥ 2√

Fq (ρψ,Ω)
. (12)

For a pure state system, ρ = |k〉 〈k|, it was shown[61]
that

Fq (ρψ = |k〉 〈k| ,Ω) = 4 〈k| (∆J (θΩ,ΦΩ))
2 |k〉 (13)

where

〈k| (∆J)2 |k〉 = 〈k| J2 |k〉 − 〈k| J |k〉2 (14)

With ∆ψ = (ε∆t) /h̄, and ε∆J = ∆HΩ, the pure state
Cramer-Rao bound on the phase can be written as

∆t

√
〈k| (∆HΩ)

2 |k〉 ≥ h̄ (15)

in agreement with the Heisenberg energy-time inequality.
Here we have chosen to consider the sensitivity of the

state ρψ=0 with 0 phase encoded because we are inter-
ested in properties of the state evolved after the first-step,
not a different state with phase encoded onto it.

Since the state is pure, we know that any uncertainty
in an observed property of the state directly corresponds
to a quantum phenomenon of indefinite properties. For
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a mixed state ensemble, it is not immediately clear that
the QFI generalizes the statistical variance as a quantifi-
cation of indefiniteness. To address this, S. Yu[30] and
Toth et al.[29] proved the following illuminating expres-
sion for the QFI:

Fq(ρψ=0,Ω) = min
e

∑
k

PkeFq(|ke〉 〈ke| ,Ω) (16)

where the optimization over e is over all decomposition of
a density matrix, ρψ=0, into an ensemble of pure states
ρψ=0 =

∑
k Pke |ke〉 〈ke|, where the {|k〉}-states of this

decomposition are not necessarily orthogonal. This de-
composition is not unique because in the vector space
of density matrices, the set of all pure state density ma-
trices form an over-complete basis. Thus, e represents
one of these non-unique decompositions and ke labels the
pure states which make up that decomposition. The right
hand side of Eq. 16 is known as the convex-roof of the
variance[29, 30, 63].

Cast as a generalization of the concept of statisti-
cal variance, the QFI, Fq, can be seen to provide a
valid measure of indefiniteness. Indeed, the minimiza-
tion in the space of density matrices implies that a
portion of the sum,

∑
k Pke |ke〉 〈ke|, of significant Pke -

weight involves pure states, |ke〉, with a statistical vari-

ance 〈ke| (∆J(θΩ,ΦΩ))
2 |ke〉 that is comparable to the

convex uncertainty:

∆qJ(θΩ, φΩ) =
1

2

√
Fq(ρψ=0,Ω) (17)

This implies that, if we were given full knowledge of
the universe, and were able to sort the results based
on which pure state, |ke〉, was produced by the ex-
perimental apparatus, the majority of the distributions,
Pke(j) = |〈j(θΩ, φΩ)|ke〉|2, would have a statistical uncer-
tainty larger than ∆qJ(θΩ, φΩ). Since this uncertainty
can not be reduced by obtaining more information, it
must be due to the indefiniteness of the observed prop-
erty J(θΩ, φΩ).

Thus a measurement of large sensitivity, Fq(ρψ=0,Ω),
implies a large indefiniteness of the phase encoding
Hamiltonian εJ(θΩ, φΩ) in the initial state ρ. This was
pointed out by Fröwis and Dür[14], and was used to con-
struct a measure of indefiniteness ‘Neff ’ (defined below
in Eq. 20) by the way maxΩ Fq(ρψ=0,Ω) scales with the
number of particles. As discussed in the Appendix A,
this optimization over observables Ω can lead to mislead-
ing results when considering the indefiniteness associated
with the superposition of two macroscopically distinct
states. Instead, we use the extensive difference for an
observable JΩ as a measure of the size of the cat, and we
introduce the comparison of the convex uncertainty with
the statistical uncertainty

rq(Ω) =
∆q (JΩ)

∆s (JΩ)
=

∆q (JΩ)√
Tr[J2

Ωρ]− Tr[JΩρ]2
(18)

as a measure of the quality of indefiniteness. Since the
statistical uncertainty is always greater than the convex

uncertainty, r(Ω) ranges from 0 to 1. When rq(Ω) is 1,
any observed statistical uncertainty is due to indefinite-
ness, while for smaller rq, only a fraction of the uncer-
tainty is due to indefiniteness. The statistical uncertainty
can be obtained as part of the same interferometry exper-
iment: if the interferometric procedure is repeated with
ψ = 0, and with the effective observable as R = JΩ,
the statistical uncertainty follows from counting the pr-
distributions obtained after these steps.

We use r(Ω) and Λ(JΩ) because, with the additional
knowledge of a double peak distribution in the observable
JΩ, qualitative arguments can be made about the ampli-
tudes of pure states which could make up a representative
density matrix ensemble, e = {Pke , |ke〉}. If the convex
and statistical uncertainties are approximately equal to
each other, ∆s/∆q ≈ 1, we know the density-matrix en-
semble is, on average, composed of pure states with un-
certainty similar to that of the observed statistical dis-
tribution. In addition, since different pure states in the
ensemble can not destructively interfere with each other,
we know that the pure states in the density matrix have
small amplitude for the basis states that have small prob-
ability of occurrence in the full statistical ensemble. Thus
with the additional observation of a double peak, we can
conclude that any representation of the density matrix is
mostly composed of cat states with extensive difference
similar to the observed one.

What can be said when rq is not very close to 1, but
still significant (e.g. rq > 0.1)? To answer this question
we introduce the product Λrq as the “reduced extensive
difference”, where the extensive difference Λ is given by
Eq. 7 . As long as the individual peaks have narrow
width (similar to the pure cat states, see Fig. 2) and the
reduced extensive difference is significantly larger than
the peak width, we can again qualitatively argue that
there exists pure states in the density matrix ensemble
with extensive difference similar to that of the observed
extensive difference Λ. If the reduced extensive differ-
ence is significantly larger than the width of the peak,
there must exist pure states, |ke〉 with variance signif-
icantly larger than the width of the peaks and are re-
alized with significant probability Pke . Since the peaks
are narrow and there is very low probability between the
two peaks, the only form these states can take is one
with double peak amplitudes similar to the observed dis-
tribution. Thus, we know the density matrix contains
a significant off diagonal contribution 〈m|ke〉 〈ke|m′〉Pke
for |m−m′| ≈ Λ(Jz), despite an imperfect quality of in-
definiteness, r1 < 1. This makes a connection with the
work done by Opanchuk et al.[55], who put bounds on
〈m| ρ |m′〉 using multi-particle correlation functions.
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FIG. 4. In this plot, the extensive difference (dashed lines,
left axis) and quality of indefiniteness (solid lines, right axis)
are plotted versus the time spent during the non linear evolu-
tion in step 1 of the interferometric process. The scale of the
extensive difference is set by the number of particles N = 200
(spin of size J = 100), in the evolving state. These quantities
are computed for the 0 state at temperature 0 and 10ετ . An
experimenter, testing these cat states shown, would compute
the statistical variance and extensive difference from the dou-
ble peak distributions shown in Fig. 2. They would perform
the interferometry process discussed above to compute the
bound on ∆q via the CFI.

III. RESULTS: DETECTION OF
INDEFINITENESS VIA INTERFEROMETER

SENSITIVITY

In this section, we describe how an experiment would
observe the measures discussed in the previous section
and what they would observe for the Gordon-Savage cat
state and the mixed states discussed in Section I. The
simplest step in such an experiment requires measuring
the probability distributions in Fig. 2. This requires the
state preparation described in Section I, followed by the
projective measurement without any phase encoding or
read-out. Repeating this reconstructs the distributions
for the observable Jz. The extensive difference can then
be computed by Eq. 7.

For completeness, we have plotted (Fig. 4) the de-
pendence of the extensive difference for the 0 thermal
state at β−1 = 0 and β−1 = 10ετ versus the time
spent during the non linear evolution that creates the
cat. The extensive difference reaches a maximum at
a time 1.4 ∗ Tπ = 1.4 log(8N)h̄/NU (β−1 = 0) and
1.1Tπ(β−1 = 10ετ ). The probability distributions P (jz)
at these times are shown in Fig. 2. An experimenter in-
terested in a specific cat does not need to measure the
extensive difference at all times. Rather, they can do
measurements at time 1.4Tπ for the 0 states or Tπ for
the π states[47].

This calculation shows that, for the parameters con-
sidered (N = 200, U = 0.1t), the extensive difference of

the 0 state is expected to peak at 1.4Tπ, and thus sug-
gests 1.4Tπ as a good time to end state creation (step
1) and begin the statistical and interferometric measure-
ments (steps 2-4). Measuring the distribution P (jz)
at this time, they will find an extensive difference of
65 ≈ 200/3 = N/3 particles (Fig. 4). For an experiment
performed for a fixed particle number, the difference in
expectation values between the dead and alive cats (i.e.
the extensive difference Λ) would be on the same order
of magnitude as the number of particles. An experiment
could then be repeated for different number of parti-
cles, and would find the extensive difference scales with
N [64], suggesting that if the trends continue, a macro-
scopic number of particles would yield a macroscopic cat
state.

The second step is to verify the indefiniteness of the
cat’s vital status. Here, one should compare the statis-
tical and convex uncertainty of the observable Jz, be-
cause this was the observable which demonstrated the
macroscopic difference (Λ(Jz)) between the dead and
alive cats. The statistical uncertainty can be computed
directly from the distributions in Fig. 2. The convex un-
certainty (computed from the QFI using Eq. 17) for Jz
is bounded by measuring the sensitivity (CFI) of a prob-
ability distribution for some observable Jr to a phase
encoding operation JθΩ,φΩ

= Jz. The single-particle ob-
servables that provide the best bounds will be the ones
that respond most to rotations around the z-axis: any
spin pointing in the x-y plane. We use Jr = Jy, since ro-
tations around the x-axis are easily implemented, as de-
scribed in Section I. Experimentally, the interferometric
process is repeated with Jr = Jy, JΩ = Jz and Tr = πh̄

2εr
for multiple small ψεΩ = 0+δ, such that the distribution
p(jy, 0, Jz) and its derivative can be computed and used
in the expression for the CFI(Eq. 9). With a measure-
ment of the CFI, one can bound the convex uncertainty
and quality of indefiniteness via Eq. 11:

rq(Jz) =
∆q(Jz)

∆s(Jz)
> rc(Jz) =

1
2

√
Fc(R = Jy, ρ, Jz)

∆s(Jz)
(19)

Using the statistical distribution for ∆s, and:

Fc(R, ρψ,Ω) = −
∑
r

1

p(r, ψ)
〈r| [ρψ, εJ(θΩ, φΩ)] |r〉2

for the CFI[65], we numerically compute (and plot in
Fig. 4) rc(Jz) for the 0 thermal state at β−1 = 0 and
β−1 = 10ετ versus the time spent during the non lin-
ear evolution which creates the cat. For the pure state
(β−1 = 0), rq = 1, and rc < 1 reflects the imperfect
bound the choice of the observable R = Jy puts on the
QFI. For the cat state produced after a non linear evolu-
tion for t = 1.4Tπ, the quality of indefiniteness measured
by an experiment is about 0.75(see Fig. 4). Further-
more, the reduced extensive difference, Λrc ≈ N/4 = 50
is significantly larger than the width of the peaks (ap-
proximately N/20 = 10). Thus, in good faith, an ex-
perimenter can believe that the density-matrix ensem-
ble which they are observing is mostly composed of pure
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FIG. 5. Quality of indefiniteness, rq, its experimental bound
rc, the extensive difference Λ(Jz) and the reduced extensive
difference Λ(Jz)r(Jz) are plotted versus the temperature of
the initial state. The solid lines are for the thermal states at
π, while the dashed lines are for the thermal states at 0. A
quantum to classical crossover is shown between temperatures
ετ and 10ετ . As in Fig. 4, the scale of the extensive difference
is set by the number of particles N = 100 in the evolved state.

states with double peak amplitudes. Furthermore, since
rq = 1, one can expect to be able to account for 100% of
the quantum variance by using a more optimal observable
R [19, 26, 43, 44].

For the state evolved (at t = 1.1Tπ) from the high
temperature distribution (β−1 = 10ετ ), the quality of in-
definiteness is 5% and the reduced extensive difference is
Λrq = 3 = O(1). This is smaller than width of the peak.
We must therefore conclude that there is no indefinite-
ness and that the cat is not dead and alive at the same
time. Even with the ideal bound (see Fig. 5), the reduced
extensive difference is still on the same size as the peak
width (Λrq = 10).

In the remainder of this section, we show how these
experiments are capable of detecting the crossover to a
classical mixture as the temperature of the initial state
is increased. Fig. 5 demonstrates that the quality of in-
definiteness, rq, and its experimental bound rc decay to
0 as the temperature is increased. The quantum to clas-
sical crossover occurs slowly between β−1 = ετ and 10ετ ,
where ετ sets the energy-scale of the spin Hamiltonian as
in Eq. 3. For β−1 << ετ , the initial state condenses into
the pure state and the quantum variance plateaus at its
pure state value. This system is particularly interesting,
in that the live and dead cat are still macroscopically dif-
ferent (Λ = O(N)) even at high temperature. Since the
extensive difference remains constant, the difference be-
tween the dead and alive states is still macroscopic, and
there are still two macroscopically distinct states which
can be labelled dead and alive. We can then interpret the
decay of the quality of indefiniteness to 0 when temper-
ature is increased as a crossover from a cat being dead
and alive at the same time to a cat being either dead or

0.5 0.0 1.0 2.0
log( )

0

5

10

15

20

25 Fq(Jz) for thermal 
Fq(Jz) for thermal 0
Fc(Jz, R = Jy) for thermal 
Fc(Jz, R = Jy) for thermal 0

FIG. 6. The QFI and its experimental bound for convex un-
certainty of Jz versus temperature. These are lower bounds
on the Fröwis and Dür measure (Eq. 20), which also demon-
strate the quantum to classical crossover. The y-axis is shown
in units of 1

4N
.

alive.
The metric for quantum macroscopicity proposed by

Fröwis and Dür[14], also shows this quantum-classical
crossover. This metric is given by:

Neff =
1

4N
max

Ω
Fq(ρ,Ω) (20)

In addition to other methods[19, 26, 44], this can be ex-
perimentally bounded from below using the CFI as done
above for rq (using rc). The bound provided by Fq(Jz)
and its experimental bound Fc(R = Jy, Jz) are plotted in
Fig. 6. The crossover region is the same for Fröwis and
Dür’s as for the measures above (rq and Λrq) because
the statistical variance ∆s and extensive difference Λ is
relatively constant through the crossover region. Thus,
the main difference is the size of the cat each quantify:
both are macroscopic in that they are O(N), but the
extensive difference is roughly twice as large. The dif-
ference stems from the difference in motivation of the
two measures. The extensive difference attempts to de-
scribe the difference between the dead and live cat, while
the measure by Fröwis and Dür aim to quantify a rela-
tive improvement in sensitivity from unentangled states
(such as those in Eq. 4). Furthermore, by focusing on
the indefiniteness in a specific observable Jz, the exten-
sive difference, Λ(Jz), and the quality of indefiniteness,
r(Jz), provide additional information about the stabil-
ity of the dead and alive states as the temperature is
increased.

Using this lower bound for Neff , a similar conclusion
about quality of indefiniteness is reached, but improving
the bound on Neff could lead to different conclusions.
In the appendix we show that the dead and alive states
of the cat have macroscopic indefiniteness independent
of their superposition. We can therefore imagine a situa-
tion where Neff is large, but the superposition between
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the dead and alive states is decohered and the vital sta-
tus of the cat is definite. This complication was known
to Fröwis and Dür[14], so they constructed the relative
Fisher information to identify macroscopic superposition.
The relative Fisher information involves finding Neff for
the dead and alive states, and therefore requires a com-
plicated projective measurement that may not be exper-
imentally feasible.

IV. EXPLORING INDEFINITENESS FOR A
CAT STATE ENTANGLED WITH AN

AUXILIARY QUBIT

In the above sections, we proposed, motivated and
tested a new measure for macroscopicity and indefinite-
ness on the Gordon-Savage cat state. The choice of the
Gordon-Savage cat was made due to its potential rele-
vance for ultra-cold atom experiment. However, we note
that the strategy of combining the extensive difference
Λ with the quality of indefiniteness rq is applicable to a
broader class of cat states. We demonstrate this by con-
sidering a cat state which is conceptually more similar
to Schrödinger’s cat in which the dead and alive states
are entangled with the decayed and excited states of a
radioactive source.

Here, we imagine a cat state entangled with an aux-
iliary qubit in which the entanglement with the qubit is
controlled by a parameter η in the following way:

1√
2
{|a〉 |↑〉+ |d〉 [|↑〉 cos(η) + |↓〉 sin(η)]} (21)

where |a〉 and |d〉 are the dead and alive states, and are
assumed to be 1) symmetric such that 〈jz|a〉 = 〈−jz|d〉
and 2) orthogonal with respect to the identity and Jz:
〈a|d〉 = 〈a|Jz|d〉 = 0. In the limit cos(η) = 1, tracing out
the qubit results in an indefinite, pure, cat-state, while
in the opposite limit, cos(η) = 0, the trace results in a
classical ensemble of definite alive and dead states.

Performing the analysis of indefiniteness discussed in
the previous section, we compute the QFI. While the
state in Eq. 21 is a pure state, we suppose we do not have
access to the qubit and can only perform measurements
on the cat’s Hilbert space. Therefore, we must trace out
the qubit and use the general formula for the QFI of
mixed states[61, 62]:

Fq[ρ, εJz] = 2
∑
l,l′

(pl − pl′)2

pl + pl′
|〈l| Jz |l′〉|2 (22)

where |l〉 and pl are the eigenvectors and eigenvalues of
the reduced density matrix respectively. Using this ex-
pression, one obtains the QFI (see Appendix C) as:

Fq(ρψ=0, Jz) = Λ(Jz)
2 cos2(η) + PW 2 (23)

and a reduced extensive difference as:

Λrq = Λ

√
1 + α2 cos2(η)

1 + α2
(24)

where PW is the peak width of the dead or alive(assumed

to be the same) states: PW = 2

√
〈a| J2

z |a〉 − 〈a| Jz |a〉2,

and α = Λ
PW > 1 is the ratio of the extensive difference

to the peak width.
Here we see that when the cat and qubit are not en-

tangled, the quality of indefiniteness, rq, quantifies a phe-
nomenon of perfect indefiniteness, rq = 1, and when it
is partially entangled there is imperfect indefiniteness,
rq < 1. In Section II, we argued that when rq < 1, and
not too small, a state can be classified as indefinite if
the reduced extensive difference is greater than the peak
width. For the state in Eq. 21, we find this to be the
case when cos(η) > cos(ηc) = α−2. If an experiment can
provide a good bound using the CFI and rq is “signif-
icant”, it will observe a quantum to classical crossover
when η ≈ ηc, in which the indefinite vital status of the
cat becomes definite.

We may now consider the approximate location of
the crossover, ηc = acos(α−2) in two limits: 1) when
α = O(1) and 2) when α >> 1. In the first limit, the
crossover occurs for arbitrarily small values of η as α→ 1.
Comparing with the Leggett-Garg experiment discussed
in Appendix C, the Leggett-Garg inequality is violated
for cos(η) > 2

3 . Therefore, the Leggett-Garg experiment
is better at detecting the indefiniteness of the partially

entangled state for α <
√

3
2 . This implies that, in this

limit, the projective measurement onto a dead or alive
cat done in a Leggett-Garg experiment obtains more in-
formation about the mixed cat state than the Fisher In-
formation measurement does.

The opposite is true when α >> 1: by making α ar-
bitrarily large, we can push the approximate location of
the crossover to an arbitrarily amount of entanglement
with the auxiliary qubit. To make sense of this result
we consider a thought experiment where the auxiliary
qubit is measured and the result ignored before perform-
ing the sensitivity analysis. In the strongly entangled
limit, cos(η) << 1, the result of this measurement is to
produce a dead state 50% of the time and a superposition
state, |ψs〉 ≈ |a〉+ cos(η) |d〉, in which the amplitude for
the dead state is small with 〈d|ψs〉 ≈ cos(η), the other
50% of the time. In this limit, a simple application of
the indefiniteness condition Λrq > PW suggest that this
method is capable of detecting a phenomenon of indefi-
niteness even when the superposition produced has very
little amplitude in the dead state. A more careful con-
sideration would note that the quality of indefiniteness is
unreasonably small (notO(0.1) as discussed in Section II)
and its ability to restrict the possible state which could
make up a representative ensemble is severely limited.

Therefore, as noted above, we must set a bound on
the quality of indefiniteness. One way to get an intuition
at what such a bound might be, is by analogy to this
large α cat state entangled with an auxiliary qubit. If we
specify that we are only confident of a phenomenon of
indefiniteness when the amplitude of the dead cat in the
superposition state, 〈d|ψs〉 ≈ cos(η) ≈ rq, is greater than
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0.1, then we can set the threshold as rq > 0.1. One could
also set a more conservative threshold on the quality of
indefinites by comparison with the Leggett-Garg exper-
iment in Appendix C. There, the Leggett-Garg experi-
ment would fail to witness indefiniteness when cos(η) = 2

3

and our analogous bound would be rq >
2
3 .

V. CONCLUSION AND DISCUSSION

We have examined how the standard interferometric
process can be used to quantify the indefiniteness of cats
produced by the two-mode Hamiltonian Eq. 5. First, we
showed that states with a large extensive difference can
be produced for high temperatures initial states. This
allows an experimenter to prepare a state which, sim-
ilar to Schrödinger’s cat, has uncertainty between two
macroscopically different states without worrying about
coherence. We then described a possible experiment to
determine the source of this uncertainty and quantify the
quality of indefiniteness. We showed how the results of
this experiment can be used to infer the possible form
of the pure states which could make up a possible den-
sity matrix ensemble. This turned out to be particularly
useful when describing a quantum to classical crossover
where the indefinite superposition of a cat, in two macro-
scopically distinct states, undergoes a crossover to the
definite occupation of either dead or alive. We then fin-
ished by demonstrating the general applicability of the
method to a model for which the quantum to classical
crossover is controlled by the amount of entanglement
with an auxiliary qubit.

The experiment described above involves bounding the
QFI by the experimentally observable CFI and is thus
fallible to the same loopholes other Fisher Information
based methods are. In general, these loopholes can not
be tightened in the same way loopholes in Bell exper-
iment can because there is no assumption of causally
separated events: events in an experiment that measure
Fisher information could feasibly affect each other with-
out violating special relativity. Instead one must make
reasonable assumptions based on previous experiments,
a control experiment, or a comparison with simulation.

For example, in the bosonic interferometer experiment
described above, the measurement of the CFI relies on
the assumption that the Hamiltonian during the phase
encoding process (step 2) is proportional to the single
particle Hamiltonian encoding the phase (Jz in the exam-
ple considered in this paper). If this assumption was vi-
olated and the dynamics during the phase encoding pro-
cess were highly non-linear (e.g. J4

z , J
8
x), a stronger re-

sponse, mimicking the effects of an indefinite state, could
be observed in the distribution p(r, ψ,Ω). This assump-
tion can not be checked by a causality type argument, but
instead must rely on comparison with simulation or the
consistency of previous experiments using bosonic inter-
ferometer. Without the assumption of linearity, the re-
sults of high precision measurements[66, 67] that use the

same interferometers could not be accepted. One could
also check the assumption of linearity by directly simulat-
ing, as done above, the predicted change in distributions
p(r, ψ,Ω) and comparing with the experimental distribu-
tions. The tighter they match, the harder it would be to
come up with a non-linear Hamiltonian that reproduces
the exact same p(r, ψ,Ω). These simulations would also
verify the assumptions made during the interferometry
steps (3) and (4) after the phase has been encoded and
in which further loopholes may occur.

While simulations and references to previous experi-
ments do not rule out peculiar possibilities in the same
way the assumption of causally separated events does for
Bell experiments, they do make it hard to imagine simple
explanations alternative to the given assumptions. Thus,
the combined observation of a high quality of indefinite-
ness (rq ≈ 1) and a double peak distribution provides
reasonable evidence that a cat state, which could violate
a Leggett-Garg inequality, is produced by the apparatus.
In addition, these measures can be acquired with current
cold-atom technology and avoids the complications of the
other measures discussed above.

The interpretation of the reduced extensive difference
Λ(Jz)rq(Jz) and the arguments inferring the form of the
pure states which could make up a representative density
matrix ensemble can also be questioned when rq is small.
If rq is measured very close to one, then the observation of
the probability distributions in Fig. 2 can be interpreted
as observing the amplitudes of a pure state because rq is
equal to 1 only for pure states. On the other hand, when
rq < 1, it is a qualitative judgement when comparing Λrq
with the peak width. In Section IV, we discussed one
possible way to make such a qualitative judgement, but
it may be interesting for future work to more rigorously
investigate to what extent the combined observation of rq
and the probability distribution P (jz) limit the possible
states in a density matrix ensemble. Such future work
may find it useful to consider the relationship between the
QFI and the resource theory of quantum invasiveness[28]
which is closely connected to violations of the Leggett-
Garg inequalities. Future work will also include a study
of the effects of a thermal bath and loss mechanism to
identify requirements on loss, tunnelling and interaction
rates for producing a cat state.
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Appendix A: Cat States and Measure by Fröwis and
Dür

In this section we discuss the subtleties of using the
measure by Fröwis and Dür, Neff . As defined in Eq. 20,
Neff is defined by maximizing the quantum Fisher in-
formation over all single particle generators of the phase
encoding step 2 (labelled by Ω in Eq. 20). A naive ap-
plication of this formula may lead to a wrong assessment
of the indefiniteness of cat’s vital status. This is because
the indefiniteness of the cat’s vital status is in a specific
observable (Jz above), and the state of the system could
have a larger QFI for a different observable. If the con-
clusions where drawn directly from Neff one may mis-
takenly conclude the vital status of the cat is indefinite,
while, in fact, it is a different property of the cat that is
indefinite.

This possibility is manifested in the Gordon-Savage cat
discussed in this paper. In Fig. 7 we have plotted the
QFI for all single particle observables labelled by Ω =
(φ, θ). Here we see that the QFI is maximum for spin
pointing in the xy-plane. Fq(Jz) still indicates that the
cat is indefinite, but if one where to measure Neff they
would observe the sensitivity to rotations around a vector
perpendicular to Jz (Jy for the π state), and it would tell
them nothing about the indefiniteness of the cat’s vital
status. It would instead tell them they had a macroscopic
quantum state, but the macroscopic indefiniteness would
not be in a property with clear dead and alive states
distinguishable.

To see how this arises, we consider the Wigner distri-
bution of the 0 and π cats., The Wigner distribution,
W (z, φ), is the quasi-probability distribution function
representing a quantum state, |ψ〉:

W (z, φ) =

N 1−z
4∑
n

eiφn 〈 N z + 1

2
+ 2n |ψ〉 〈ψ|N z + 1

2
〉 ,

(A1)
where |N z+1

2 〉 are the Fock states |m1,m2〉 with m1 =

N z+1
2 m2 = N −m1. The Wigner distribution has the
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FIG. 8. These are the Wigner distributions and the proba-
bilities, P (z) and P (φ), (black lines) for the 0(Left) and π
(Right) cat states.

useful property that the partial integration of one vari-
able gives the probability distribution for the other (e.g.
P (z) = 1

2π

∫ π
−pi dφW (z, φ)) . By considering the Wigner

distributions for the 0 and π states (see Fig. 8), we can
understand the structure of the quantum state and why
Neff may give misleading results. The probability distri-
butions P (z) shown at the bottom of the figures indicate
that the two bright red lines highlight what might be
called the dead and alive cats. The red lines individually
have macroscopic uncertainty in φ and thus the xy-plane.
This implies that the dead and alive cat states are indi-
vidually macroscopic quantum states.

One can now easily imagine a situation where the co-
herence between the dead and alive states is lost, but
the dead and alive states themselves still have a large
value for Neff . Thus if an experiment measured Fq(Jx),
it would find the macroscopic indefiniteness of the dead
or alive cats. One might then wrongly conclude that the
vital status of the cat is indefinite when it is not. This
complication was known to Fröwis and Dür[14], so they
constructed the relative Fisher information to identify
macroscopic superposition. The relative Fisher informa-
tion involves finding Neff for the dead and alive states,
and therefore requires a complicated projective measure-
ment that may not be experimentally feasible.

Appendix B: Fisher Information for a Cat entangled
with a qubit

In this section we derive the expressions for the QFI of
a cat entangled with a qubit discussed in the text. The
cat state entangled with a qubit is written as:

1√
2

(|a〉 |↑〉+ |d〉 (|↑〉 cos(η) + |↓〉 sin(η))) (B1)

the dead and alive states are assumed to be 1) symmet-
ric such that 〈jz|a〉 = 〈−jz|d〉 and 2) orthogonal with
respect to the identity and Jz: 〈a|d〉 = 〈a|Jz|d〉 = 0.
These two assumptions imply 〈a|Jz|a〉 = −〈d|Jz|d〉 and
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a|J2

z |a
〉

=
〈
d|J2

z |d
〉
. From these assumptions we derive

a relationship between the variance of a (anti-)symmetric
cat state, the extensive difference and the peak width as:

PW 2 + Λ2 = 4 〈c±| J2
z |c±〉 (B2)

and can also write the extensive difference as:

Λ2 = 4 |〈c±| Jz |c∓〉|2 . (B3)

We can then derive the QFI from the following
expression[61, 62]:

Fq[ρ, εJz] = 2
∑
l,l′

(pl − pl′)2

pl + pl′
|〈l| Jz |l′〉|2 (B4)

where |l〉 are the eigenvectors of the reduced density ma-
trix and pl are the eigenvalues. When tracing out the
qubit we get two non-zero eigenvalues as 1

2 (1 ± cos(η))
which we will label l = ± for the symmetric and anti-
symmetric cat states and N − 1 zero eigenvalues for the
spin states orthogonal to the two cat states. If l = ±
and l′ = ∓ the sum yields cos2(η) |〈c±| Jz |c∓〉|2. If
l = ± and l′ 6= ± we can insert an identity and obtain
1±cos(η)

2 (
〈
J2
z

〉
± − |〈c±| Jz |c∓〉|

2
.

Putting everything together with Eq. B3 and Eq. B2:
we get

F (Jz) = Λ(Jz)
2 cos2(η) + PW 2 (B5)

This gives us an rq:

r2
q =

Λ(Jz)
2 cos2(η) + PW 2

PW 2 + Λ2
(B6)

Appendix C: Leggett-Garg violation of a cat state
entangled with a qubit

We imagine an Leggett-Garg experiment in which an
initial state is evolved with respect to a Hamiltonian H

h̄ =
|a〉 〈a| − |d〉 〈d|, and a measurement of whether the cat is
alive or dead is made at t1 = 0, t2 = 2π

3 , and t3 = 4π
3 .

From these measurements, correlation functions of the
form Kij = 〈HiHj〉 are calculated and if the inequality:

1 +K12 +K23 +K13 > 0 (C1)

is violated then the state must have been indefinite at
some time between t = t1 and t = t3[2]. If the initial state
is the symmetric cat, 1√

2
(|a〉+ |d〉), then the violation is

−0.5, while if the initial state is the partially entangled
state in Eq. 21, the violation is 1 − 3

2 cos(η). Thus the
Leggett-Garg experiment is not capable of witnessing the
indefiniteness of the entangled state for cos(η) < 2/3.
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Hume, L. Pezzé, A. Smerzi, and M. K. Oberthaler, Sci-
ence 345, 424 (2014).

[26] S. S. Mirkhalaf, S. P. Nolan, and S. A. Haine, Phys. Rev.
A 97, 053618 (2018).

[27] K. C. Tan, S. Choi, H. Kwon, and H. Jeong, Phys. Rev.
A 97, 052304 (2018).

[28] S. V. Moreira and M. T. Cunha, Phys. Rev. A 99, 022124
(2019).
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