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Over the last few years it was pointed out that certain observables of time-evolving quantum
systems may have singularities at certain moments in time, mimicking the singularities physical
systems have when undergoing phase transitions. These were given the name of dynamical phase
transitions. They were shown to exist in certain integrable (exactly solvable) quantum systems,
and were seen numerically and experimentally in some models which were not integrable. The
“universality classes” of such singularities were not yet convincingly established, however. We argue
that random field Ising models feature singularities in time which may potentially be present in
a wider variety of quantum systems, in particular in those which are many body localized, and
describe these singularities in detail analytically.

Recently it has been proposed that some quantum sys-
tems evolving in time can have certain observables whose
dependence on time is not analytic1. One such observable
is the “return probability” related to the Loschmidt echo.
Given an initial state |ψ0〉 which is a ground state of a
Hamiltonian H0, one could define the following observ-
able

Z(t) = 〈ψ0| e−iHt |ψ0〉 , (1)

where H 6= H0. It is closely related to the trace of the
evolution operator tr e−iHt, and to the partition function
of the system tr e−H/T . Indeed, expanding in the eigen-
states of the Hamiltonian |ψ0〉 =

∑
α cα |ψα〉, such that

H |ψα〉 = Eα |ψα〉, we find

Z(t) =
∑
α

e−iEαt |cα|2 . (2)

For some choice of |ψ0〉 the coefficients cα may happen to
be all equal to each other. Even if not, the sum in Eq. (2)
closely resembles that in the definition of thermal parti-
tion functions (in fact, Eq. (2) can be shown2,3 to be
always equivalent to a partition function of some related
system upon identifying t = −i/T ). Partition functions
are known to be non-analytic in T , signifying presence
of phase transitions. It was proposed that Z(t) may like-
wise be non-analytic in t. The physical significance of
these singularities can be debated, but by now there is
no doubt that they exist and can be measured4,5. The
“universality classes” of these singularities have not yet
been convincingly established. Most of the singularities
discussed so far correspond to the discontinuities in the
derivate ∂ ln |Z|2 /∂t, resembling first order transitions in
statistical physics.

In this paper we demonstrate the existence of singu-
larities in certain random models, of the new universal-

ity class ∂
[
ln |Z|2

]
/∂t ∼ ln |t− t0|. We argue that they

should manifest themselves in a variety of random sys-
tems with Poisson level statistics, although probably not
in the most generic many body localized systems.

We begin the discussion by reviewing the established
facts, starting with the 1D classical Ising model6. Its

Hamiltonian is given by

H = −J
N∑
n=1

σznσ
z
m+1, (3)

with σzN+1 ≡ σz1 (here and below, σx,y,z denote Pauli
matrices, while σ = ±1 will be the eigenvalues of σz).
We could imagine the quench scenario where the system
is initially in the state |ψ0〉 which is the ground state of
a different Hamiltonian

H0 = −γ
N∑
n=1

σxn. (4)

In other words,

|ψ0〉 =
1

2N/2

N∏
n=1

∑
σ=±1

|σ〉 . (5)

At a certain moment of time, the Hamiltonian suddenly
changes (is quenched) to become H of Eq. (3). Then Z(t)
can be calculated in a straightforward way

Z(t) =
1

2N

∑
σ=±1

eitJ
∑N
n=1 σnσn+1 =

(cos(Jt))
N

+ (i sin(Jt))
N
. (6)

In the large N limit F = ln
(
|Z|2

)
/N , the dynamical

equivalent of free energy of the system, exhibits a non-
analytic behavior

F =

{
ln
(
cos2(tJ)

)
, Jt ∈ [−π/4, π/4] + πm,

ln
(
sin2(tJ)

)
, Jt ∈ [π/4, 3π/4] + πm.

(7)

Here m is an arbitrary integer. Specifically, F has dis-
continuities in its derivative with respect to t at points
in time Jtm = π/4+πm/2, corresponding to a sort of the
“first order” singularities in Z(t) of the 1D Ising model.

One should note that the thermal equivalent of Eq. (3)
gives

Z(T ) =
∑
σ=±1

e
J
T

∑N
n=1 σnσn+1 =



2

(2 cosh (J/T ))
N

+ (2 sinh(J/T ))
N
. (8)

This quantity is analytic in t at large N , because
|cosh(J/T )| > |sinh(J/T )|, signifying the absence of con-
ventional thermal phase transitions in a one dimensional
Ising model (or in any other one dimensional system).

Quite remarkably, Z(t) defined for more general quan-
tum systems also appear to have singularities at certain
moments in time. For example, given a 1D transverse
field Ising model1

H = −J
N∑
n+1

σznσ
z
n+1 − γ

N∑
n=1

σxn, (9)

choosing H0 to be H with some choice of the parameters
J , h, with |ψ0〉 its ground state, and evolving this state
with the Hamiltonian H with some other values of these
parameters, Z(t) can be shows to have singularities at
certain moments of time tm as long as the initial and
final values of J and γ belong to two different phases of
the 1D transverse field Ising model. The example of the
1D classical Ising model then becomes a particular case
of this with the initial J = 0 and the final γ = 0.

Furthermore, given that 1D transverse field Ising
model is equivalent to free fermions by Jordan-Winger
transformation, this construction was generalized to
other free fermion systems7 with their Z(t) shown to have
similar singularities at certain times tm under the right
parameter quench. All such solvable systems however are
examples of exactly solvable (integrable) models.

One can wonder if the singularities of Z(t) in the ex-
amples above survive if the system considered is not in-
tegrable. Indeed, the moments in time tm where the sin-
gularities occur are related to level spacing J−1 in the
example worked out above. A generic quantum system
with N degrees of freedom (such as N spin-1/2’s) will
have level spacing of the order of e−N , leading to sin-
gularities, if any, occurring at enormous times t ∼ eN ,
becoming unobservable for large systems N →∞. Never-
theless, nonintegrable generalizations of (9) were studied
numerically and found to still have the singularities in
time8–11. Furthermore, these singularities were measured
in an experiment4 for 1D transverse field Ising model
with nonlocal interactions in space, which is also not in-
tegrable.

As an example of a very generic non-integrable
(chaotic) quantum model we could consider random ma-
trix theory12 (RMT). The quantity of interest to us is
nothing but the spectral form factor of RMT

|ZRMT(t)|2 =
∑
αβ

eit(Eα−Eβ), (10)

where Eα are energy levels of a random matrix. The
derivatives of the RMT form factors over t are known
to have a discontinuity at a critical value12 of t of the
order of level spacing, just as argued above. One should
note however that usually one studies the average form
factor, while we are interested in the typical form factor

which could be represented as the average of the loga-
rithm of this quantity. The form factor is known not to
be self-averaging in RMT13, and its typical structure is
not completely understood. Recent studies also looked
at this and related quantities in quantum chaotic models
such as the SYK model14.

Instead of a most generic quantum system with the
Wigner-Dyson level statistics, let us consider a system
with a Poissonian level statistics. Those models routinely
appear in the context of many body localization15. The
simplest such model is 1D the random field classical Ising
model, with the Hamiltonian

H = −J
N∑
n=1

σznσ
z
n+1 −

N∑
n=1

hnσ
z
n. (11)

Here hn are random independent variables distributed
uniformly on the interval h ∈ [−J, J ] (precise form of the
probability distribution, as well as disorder strength, as
we argue below, turns out not to be important). The ther-
modynamics of this model was extensively studied in the
past and was arguably found to be unremarkable16. Here
we are not interested in its thermodynamics, however.
We again envision putting the system in the ground state
Eq. (5) of the Hamiltonian Eq. (4), and then quenching it
to Eq. (11). The Loschmidt echo is again proportional to
the imaginary temperature partition function of Eq. (11),
to give

Z =
1

2N

∑
σ=±1

eitJ
∑N
n=1 σnσn+1+it

∑N
n=1 hnσn . (12)

|Z|2, when averaged over random fields, is time indepen-
dent at large enough time. Indeed,〈

|Z|2
〉

=
1

22N

∑
σ=±1
µ=±1

∫ J

−J

N∏
n=1

[
dhn
2J
×

eitJ(σnσn+1−µnµn+1)+ithn(σn−µn)
]
. (13)

When tJ � 1, the integrals over hn give Kronecker
deltas δσnµn , resulting in the time-independent Z(t),〈
|Z(t)|2

〉
= 2−N . Its Fourier transform with respect to

t reflects the fact that the energy levels of Eq. (11) are
not correlated (compare with Eq. (10)), indicative of the
Poisson statistics of the levels.

However, the typical values of F = ln
(
|Z|2

)
/N dis-

play a totally different and far more interesting behav-
ior. Fig, (1) shows this quantity plotted numerically for
N = 5000 spins, for a single realization of random hn. We
see that unlike the average spectral form-factor this func-
tion displays criticalities which superficially look similar
to the disorder-free case, but as we now verify are quali-
tatively different from it.

To understand the nature of these singularities we ob-
serve (and justify later) that at large enough times it is
sufficient to think of thn as being uniformly distributed
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FIG. 1: The typical value of F = ln
(
|Z|2

)
/N from Eq. (12)

computed for N = 5000 spins and random hn ∈ [−J, J ]
plotted as a function of Jt (lower curve). The upper curve
represents the disorder free 1D Ising model Eq. (6) shown

for comparison.

on the interval thn ∈ [−π, π]. To confirm this, we plot
the result of numerically evaluating

Z =
1

2N

∑
σ=±1

eitJ
∑N
n=1 σnσn+1+i

∑N
n=1 hnσn . (14)

where hn are now randomly distributed on the interval
hn ∈ [−π, π] in Fig. (2). The resulting curve coincides
with Eq. (12) for large enough t.

From Fig. (1 the singularities seem to occur at times
tm = πm/(2J). In fact, these are special times where
the term proportional to J in Eq. (12) can be set to

zero without changing the value of |Z|2. Choosing tm a
multiple of 2π/J for simplicity (the algebra is similar if
slightly different for other values of tm) we find

Z =
1

2N

∑
σ=±1

ei
∑N
n=1 hnσn =

N∏
n=1

cos (hn) , (15)

where from now on we take hn above to be uniformly
distributed on the unit circle hn ∈ [−π, π] and no longer
multiply them by t. We expect F to be a self averaging
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FIG. 2: Same as Fig. (1) but with the result of Eq. (14) also
shown.

quantity, based on its analogy with free energy of the
Gibbs ensemble. Averaging it over random hn gives

F =
1

N

∫ π

−π

N∏
n=1

[
dhn
2π

] n∑
n=1

ln cos2(hn) = − ln 4. (16)

This is consistent with the observed values of F at tm =
πm/(2J) as seen in Fig. (1).

Nearby these values of t, we substitute t = tm + J−1ε
and expand Z in powers of ε up to terms of the order ε2.
This gives

Z =
cosN (ε)

2N

∑
σ=±1

N∏
n=1

(1 + i tan(ε)σnσn+1) eihnσn ≈

n∏
n=1

cos(hn)

(
1− iε

N∑
n=1

tan(hn) tan(hn+1)−

ε2
∑

n−m≥2

tan(hn) tan(hn+1) tan(hm) tan(hm+1)+

ε2
N∑
n=1

tan(hn) tan(hn+2)

)
. (17)

This can be used to average F over random hn, accom-
plished by integrating it over dhn/(2π) over the inter-
val [−π, π] for each hn. A convenient change of variables
tan(hn) = xn brings the relevant expression to the form

F ≈ − ln 4 +
1

πN

∫ ∞
−∞

N∏
n=1

dxn
1 + x2n

×

ln

(
1 + ε2

N∑
n=1

(
x2nx

2
n+1 + 2xnxn+2 + 2xnx

2
n+1xn+2

))
.

(18)

So far everything appears to be analytic in ε. However,
the integral over xn makes the result nonanalytic. Indeed,
expanding the logarithm in ε2 under the sign of integral
we can easily see that the resulting integral is divergent,
indicating that the result should be larger than ε2. Note
that infinite x corresponds to h in the vicinity of ±π/2,
thus we predict that Jt ≥ π/2 for the singularities to
appear in Eq. (12).

The result of evaluation of Eq. (18) for small ε gives17

F ≈ − ln 4 +
4

π
ε ln

1

ε
. (19)

This result is valid for t = πm/(2J) + ε for ε� 1/J .
To verify this we plot F as a function of log ε for small ε,

shown in Fig. (3). The result is consistent with Eq. (19).
Thus despite appearing qualitatively similar in

Fig. (1), the singularities of the random field 1D Ising
equation are much sharper than those for the nonrandom
1D Ising model, with the first derivative of F diverging
logarithmically as t approaches any of the singularities.

A natural question is whether these singularities sur-
vive the addition of quantum terms to the Hamiltonian.
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FIG. 3: Vicinity of singularity: (F + ln 4)/ε is plotted as a
function of ln |ε| for Eq. (14) at N = 5000. The straight line
has the slope of −4/π. Two sets of data correspond to the

two signs of ε.

For example, we could consider quenching Eq. (4) to the
Hamiltonian

H = −J
N∑
n=1

σznσ
z
n+1 −

N∑
n=1

hnσ
z
n − γ

N∑
n=1

σxn, (20)

with hn random as before. This model is not integrable
and no good analytic methods exist to study its behavior.
It is believed to have no quantum phase transitions at
zero temperature18 and to be many-body localized19. As
is well appreciated now, this implies that there exist a
number of operators, called l-bits, in terms of which the
Hamiltonian can be effectively diagonalized20,

H = −
N∑
n=1

J (1)
n τzn −

N∑
n=1

J (2)
n τznτ

z
n+1 + . . . (21)

where dots denote terms with a higher number of in-

teracting spins, and J
(1)
n , J

(2)
n all random. Such models

however, where spin-spin interactions are now random,
wash out the singularities studied above, as is clear from
Fig. (4). Thus a generic quantum random many-body lo-
calized model with energy levels obeying Poisson statis-
tics would not have singularities of the type discussed
here.

Therefore, the program to look for many body localized
systems which have singularities in their Loschmidt echo
Z(t) consists of looking for those models which, when
expressed in terms of l-bits, map into random field-type
models Eq. (11) as opposed to the random bond models
Eq. (21), as well as classifying all l-bit Hamiltonians with
singularities, going beyond just Eq. (11). This is possible
to do; the result of the investigation along these lines will
be reported elsewhere.

Nevertheless even in the absence of explicit examples
of quantum many-body localized Hamiltonians with sin-
gular Loschmidt echo, the behavior of the Loschmidt
echo found here can be argued to be fairly generic. From
Eq. (17) leading to Eq. (18) it should be clear that a
larger variety of classical models beyond 1D random field
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FIG. 4: Same as Fig. (1) but with additional line added
representing F for bonds J randomly and uniformly

distributed on the interval [−J0, J0] in addition to hn

uniform and random on the same interval.

Ising model should exhibit similar behavior. For exam-
ple, consider classical 2D or 3D Ising models which are
quenched from the initial paramagnetic state similar to
Eq. (5), and whose Loschmidt echo is simply their parti-
tion function computed at imaginary temperature. When
expanded in powers of ε, random field averaging of F
leads to an integral broadly similar to Eq. (18) which
should also produce the singularity ε ln(1/ε).

Even more generally, one could observe that a large
number of quantum systems can be thought of as con-
sisting of fermionic “quasiparticles” with the energy spec-
trum εα and quasiparticle occupation numbers nα = 0, 1.
The energy of such a system is

E =
∑
α

εαnα + J
∑
αβ

nαnβ , (22)

where J can be thought of as being quasiparticle type
independent. Fermi liquids could be examples of such
systems. Such systems have Poisson level statistics, as
opposed to other “more generic” quantum system whose
levels obey Wigner-Dyson statistics. It should be clear
from the preceding discussion that all such models should
have Loschmidt echo having the singularities of the type
described here, as long as J does not itself depend on α
and β in some random fashion. This construction gives a
rather generic realization of the models considered here.
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