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Recently, it was demonstrated both theoretically and experimentally on the D-Wave quantum annealer that
transverse-field quantum annealing does not find all ground states with equal probability. In particular, it was
proposed that more complex driver Hamiltonians beyond transverse fields might mitigate this shortcoming.
Here, we investigate the mechanisms of (un)fair sampling in quantum annealing. While higher-order terms can
improve the sampling for selected small problems, we present multiple counterexamples where driver Hamilto-
nians that go beyond transverse fields do not remove the sampling bias. Using perturbation theory we explain
why this is the case. In addition, we present large-scale quantum Monte Carlo simulations for spin glasses with
known degeneracy in two space dimensions and demonstrate that the fair-sampling performance of quadratic
driver terms is comparable to standard transverse-field drivers. Our results suggest that quantum annealing ma-
chines are not well suited for sampling applications, unless post-processing techniques to improve the sampling
are applied.

PACS numbers: 75.50.Lk, 75.40.Mg, 05.50.+q, 03.67.Lx

Quantum annealing (QA) [1–9] is a heuristic designed to
harness the advantages of quantum mechanics to solve opti-
mization problems. The performance of QA and, in particular,
QA machines such as the D-Wave Systems Inc. devices are
controversial to date [10–32]. Most studies have focused on
finding the minimum value of a binary quadratic cost function
(problem Hamiltonian), yet less on the variety of solutions
obtained when repeating the optimization procedure multiple
times. Important applications that rely on sampling, such as
SAT-based probabilistic membership filters [33–36], proposi-
tional model counting and related problems [37–39], or ma-
chine learning [40, 41] rely on ideally uncorrelated states.
This sought-after fair sampling ability of an algorithm, i.e.,
the ability to find (ideally all) states associated with a cost
function with (ideally) the same probability, is thus of impor-
tance for a variety of applications. Moreover, the ability of
an algorithm to sample ground states with similar probability
is directly related its ergodicity which strongly influences the
efficiency of optimization and sampling techniques.

Following small-scale studies [42], Ref. [43] recently per-
formed systematic experiments on the D-Wave 2X annealer.
The results demonstrated that quantum annealers using a
transverse-field driver are biased samplers, an effect also
observed in previous studies [13, 14, 44]. Matsuda et al.
[42] conjectured that more complex drivers might alleviate
this bias, something we test in this work.

Binary optimization problems can be mapped onto k-local
spin Hamiltonians. Without loss of generality we study prob-
lem Hamiltonians with N degrees of freedom in a z-basis of
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the form

HP = −
N∑

i,j=1

Jijσ
z
i σ

z
j , (1)

where σzi is the z-component of the Pauli operator acting on
site i. Note that local biases can also act on the variables. For
such a problem Hamiltonian, in principle, a driver of the form

Hx,N =

N∑
n=1

Γx,n[⊗σx]n (2)

would induce transitions between all states and therefore en-
sure a fair sampling, provided the anneal is performed slow
enough. Unfortunately, such driver is hard to engineer and, at
best, one can expect drivers of the formHx,2 = −

∑
j Γxσxj +∑

j,kK
x
j,kσ

x
j σ

x
k . Quantum fluctuations are induced by the

driver and then reduced to sample states from the problem
Hamiltonian, i.e.,H(t) = (1− t/T )Hx,n + (t/T )HP, where
t ∈ [0, T ], T the annealing time, and n the order of the interac-
tions in the driver. For an infinitely-slow anneal, the adiabatic
theorem [2, 45] ensures that for t = T a (ground) state of
the problem Hamiltonian is reached. It is therefore desirable
to know if after an infinite amount of repetitions, the process
results in all minimizing states, i.e., fair sampling.

Here we analyze the behavior of more complex drivers
of the form Hx,n (n > 1) on the fair sampling abilities of
QA. Following Ref. [42] we first study small systems where
the Schrödinger equation can be integrated using QuTiP [46].
We have exhaustively analyzed all possible graphs with up
to N = 6 with both ferromagnetic and antiferromagnetic in-
teractions and show in Fig. 1 paradigmatic examples that il-
lustrate different scenarios using drivers with n ≤ 2. Even
for some of these small instances, in some cases the inclusion
of higher-order driver terms does not remove the bias. If we
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anneal adiabatically, i.e., T large enough, the instantaneous
ground states is never left, which means towards the end of
annealing at T − λ (for a small λ > 0) the system is in the
ground state ofH(T − λ). This observation is key to predict-
ing the sampling probabilities for different degenerate ground
states. These probabilities are given by squaring the ampli-
tudes of the lowest eigenvector of H(T − λ), assuming for
now the small contribution from the driver lifts the degenera-
cies. Because H(T − λ) can be viewed as HP perturbed by
Hx,n, we analyze fair sampling using a perturbative approach
[47]. To better quantify the fair-sampling behavior of a given
system, we introduce the term “hard suppression” (i.e., total
suppression) if the sampling probability is 0 for a particular
ground-state configuration at the end of the anneal and the
term “soft suppression” if a particular state is undersampled
by a certain finite fraction in comparison to other minimiz-
ing configurations. Finally, we complement these studies with
quantum Monte Carlo simulations for large two-dimensional
Ising spin-glass problems following Ref. [43] and discuss the
effects of higher-order drivers. Our results show that QA is not
well suited for sampling applications, unless post-processing
techniques are implemented [48].

Perturbation theory.— In the following, we show how to
determine the sampling probabilities, as well as the influence
the driver has on it. In short, if we apply HD as a perturba-
tion of strength λ toHP, some degeneracies will be lifted, i.e.,
the perturbed ground-state-space is smaller. The ground-state-
space is never left during an adiabatic anneal, hence it will not
be possible to reach the entire ground-state-space of the un-
perturbed Hamiltonian by annealing in the generic case. This
analysis holds for any driver HamiltonianHD, not just the sto-
quastic Hx,n-type drivers we use in this work. In nondegen-
erate perturbation theory, the first-order corrected wave func-
tion |n〉 is given by |n〉 = |n0〉 + λ

∑
m 6=n

〈m0|HD|n0〉
E0

m−E0
n
|m0〉,

where |n0〉 are the eigenstates and E0
n the eigenvalues of the

unperturbed HamiltonianHP. If statesm 6= n are degenerate,
i.e., E0

m = E0
n, there is a singularity. To avoid it, degen-

erate perturbation theory requires linear combinations |α0〉
which satisfy 〈α0|HD|β0〉 ∼ δα,β in every degenerate sub-
space. This ensures that the corrected wave function does not
diverge due to singularities. We focus on the ground-state sub-
space, but the procedure is identical for any subspace. Given
k ground-states |n0gs〉 ofHP with energy E0

gs, we need to form
the k × k subspace matrix Vn,m = 〈n0gs|HD|m0

gs〉. Because
HD is hermitian, V is too. Every hermitian matrix can be di-
agonalized by a unitary transformation (U−1V U = D) and
we find the correct linear combinations |α0

gs〉 in the columns
of U . It satisfies 〈α0

gs|V |β0
gs〉 ∼ δα,β since D is diagonal. The

diagonal entries of D are the eigenvalues of V and also the
first order energy corrections E1

α. We need to pick the lowest
eigenvalue E1

α,low and find the corrected ground state energy
EGS = E0

GS +E1
α,low. The corresponding l eigenvectors |α0

gs〉
will now determine the sampling behavior, since the anneal-
ing state will be in their span. The following scenarios can
occur:

(i) l = 1 – In this case pi = 〈n0gs|φ0α,low〉2, because there
is a single state |φ0α,low〉. If sampling is fair, it will remain
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Figure 1. Toy problems with up to N = 6 variables and both
ferromagnetic (solid lines) and antiferromagnetic (dashed lines) in-
teractions of different strength (thickness of the lines) integrated us-
ing QuTiP [46]. Data for both transverse field (Hx,1) and quadratic
(Hx,2) drivers are shown. The data show the instantaneous probabil-
ity pGS to find different states that minimize the cost function (up to
spin-reversal symmetry) as a function of anneal time t. In all cases,
the first spin (labeled with 0) is in the state | ↑〉. (a) Toy problem stud-
ied in Ref. [42] where drivers with n = 2 sample the states fairly. (b)
Similar behavior to panel (a), however, the unfair sampling sets in
earlier in the anneal. (c) Even the inclusion of n = 2 drivers does
not remove the unfair sampling. As in (a) and (b) at least one state is
suppressed. Note that a driver Hamiltonian with n = 4 results in fair
sampling. (d) The sampling is not exponentially biased. However,
one state occurs twice as likely as the others. Note that the sampling
probabilities swap when going from n = 1 to n = 2.

fair, regardless of how much the higher energy eigenvalues of
HP change during the adiabatic anneal. If certain states have
pi = 0, |n0gs〉 will never be available at the end of the anneal.

(ii) l > 1 – Let A be the k × m matrix consisting of all l
|φ0α,low〉. If there is a vector x such thatAx = y and yi ·y∗i = 1
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for all i, then fair sampling is potentially possible according to
first order. If there exists an i such that yi = 0 for all x, then
that ground-state is never found. The same argument can be
made for biased sampling where there is no suppression but
certain states are over-sampled.

(iii) V is zero – All eigenvalues E1
α = 0 and the sam-

pling probabilities are determined by second-order perturba-
tion, i.e., the probabilities depend on higher eigenvalues of
HP (see Fig. 3).

Hx,1 =



0 −1 −1 0 −1 0 0 0
−1 0 0 −1 0 −1 0 0
−1 0 0 −1 0 0 −1 0
0 −1 −1 0 0 0 0 −1
−1 0 0 0 0 −1 −1 0
0 −1 0 0 −1 0 0 −1
0 0 −1 0 −1 0 0 −1
0 0 0 −1 0 −1 −1 0


V =

 0 0 0
0 0 −1
0 −1 0

 =⇒ klow =
1√
2

 0
1
1


Figure 2. To obtain the sampling probabilities, the ground-state
eigenvectors |gi〉 need to be known, represented here as shaded rows
and columns in the matrix Hx,1, since the solution of the diagonal
HP is a classical one. One then needs to analyze the subspace V
that is formed by restricting the driver (here Hx,1) to space spanned
by the ground-states of HP. The lowest eigenvector(s) determine the
sampling probabilities. In this example, there is one lowest eigenvec-
tor and the first ground state corresponding to the top column (first
row) is suppressed (all spins up) and will never be sampled in an
adiabatic anneal.

The second-order perturbation terms only play a relevant
role if V is trivial. If l > 0, the sampling behavior is de-
termined by V which does not depend on HP. This means
that the sampling behavior is purely a property of the driver
Hamiltonian Hx,n and the ground-state eigenvectors of HP.
We have verified this on numerous small systems, as well as
structured and random-coupling systems with direct integra-
tion and were always able to predict the sampling probabilities
that correspond to the state found after the anneal.

Figure 1(a) is the example studied in Ref. [42], whereHx,2

lead to fair sampling. There are 6 degenerate ground states,
2 of which are suppressed. With a driver of the form Hx,1

we obtain l > 1, meaning that there are multiple |α0
gs〉 states

that determine the sampling. However, the suppressed states
have pi = 0. In Fig. 1(b) we show a more complex example
– the smallest problem we were able to find that has l = 1
and one state where pi = 0. It is a 12-fold degenerate sys-
tem with two states fully suppressed when Hx,1 is used as a
driver. The fact that l = 1 could be a reason why the suppres-
sion sets in earlier during the anneal. This case is problematic
for annealing schedules that are fast quenches, because there
is a much smaller window during the anneal where the total
ground-state probability is approximately unity and the sup-
pressed state has not yet reached zero probability. UsingHx,2

results in fair sampling. Figure 1(c) shows a system that has
6 ground states with 2 ground states in total suppression. Us-
ing Hx,1 as a driver, we obtain l = 1 and a unique |α0

gs〉 with
2 totally suppressed states with zero probability. For Hx,2,
l > 1 we obtain multiple |α0

gs〉 states. However, two states
are totally suppressed. Using Hx,3 as a driver results in l = 1
and a unique |α0

gs〉. However, there is a soft suppression of
two ground states (not shown). Finally, using Hx,4 we obtain
l = 1 and fair sampling. The case shown in Fig. 1(d) reveals
the undersampled states whenHx,1 is replaced byHx,2. More
precisely, it changes from l > 1 with 4 soft suppressed states
to l = 1 with the previously 2 oversampled state now being
undersampled. Using a driver Hx,3 results in l = 1 and fair
sampling.

Figure 3 shows a problem where by changing the strength
of J3,4 one can change the sampling bias arbitrarily. Note that
changing J3,4 = −1.2 to −1.8 does shift the relative energies
of the ground state and the various low exited states, but does
not change their order. In terms of perturbation theory, V is
trivial, and second-order perturbations dictate the behavior of
the system. Because there are terms ∝ 1/(Ei − EGS) with
EGS the ground state energy, shifting the energy levels Ei
will influence the sampling.
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Figure 3. Toy problem with N = 5 variables and both ferromag-
netic (solid lines) and antiferromagnetic (dashed lines) interactions
of different strength (thickness of the lines) integrated using QuTiP
[46]. Data for a driver Hx,1. By changing J3,4 one can change the
sampling bias arbitrarily.

Quantum Monte Carlo results.—To corroborate our results
with larger systems, we perform a fair-sampling study analo-
gous to the one done in Ref. [43] for two-dimensional Ising
spin glasses on a square lattice with periodic boundary condi-
tions. The couplers are chosen from Ji,j ∈ {±1,±2,±4}.
This ensures that degeneracies are small. The coupler-
configuration space is mined for specific degeneracies as done
in Ref. [43]. Figure 4 shows representative rank-ordered prob-
abilities to find different minimizing configurations using sim-
ulated annealing (SA) [49–51], as well as transverse-field sim-
ulated quantum annealing (SQA-Hx,1) [5, 52–56] and simu-
lated quantum annealing with a stoquastic two-spins driver
(SQA-Hx,2) [57] [58]. The data are averaged over 100 dis-
order realizations. While the data for SA for this particular
problem show a fair sampling of all minimizing configura-
tions, neither a transverse-fieldHx,1 nor a more complexHx,2

driver can remove the bias. This suggests that even if QA ma-
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chines with more complex Hx,2 drivers are constructed, sam-
pling will remain unfair unless post-processing is applied [48].
The close connection between SQA and QA performances is
discussed in Refs. [53, 54].
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Figure 4. Rank-ordered probability pGS to find different degenerate
states for a two-dimensional Ising spin glass with N = 82 = 64
and a ground-state degeneracy of 32. The data are averaged over
100 disorder realizations. For each instances, 500 independent runs
are performed and the probability to find a given ground-state con-
figuration computed. While simulated annealing (SA) samples close
to fair, both SQA-Hx,1 and SQA-Hx,2 show a clear bias in the sam-
pling. In particular, there is no notable improvement of using a driver
of the form Hx,2 over a transverse-field driver Hx,1. We have also
simulated systems with up to N = 122 = 144 variables and ground
states with up to 96-fold degeneracy obtaining similar results. Note
that the bias becomes more pronounced for increasing system size N
(not shown).

Effects of more complex drivers.— The following section
shows that any driver (stoquastic or non-stoquastic) needs to
be sufficiently dense to sample fair for generic larger systems.
To predict the sampling probabilities it is sufficient to know V
(except when V is trivial). V can be constructed with only the
ground-state eigenvectors of HP (no eigen-energies needed)
and the driver Hx,n. This can be used to analyze different
drivers—without specifying a concrete problem Hamiltonian
HP—by merely sampling from possible ground-state combi-
nations. As an example consider a 2-fold degeneracy in a 5-
spin system. Because we want to test the driver for all possible
ground-state combinations, we can exhaustively generate all
the ground-state pairs, i.e., N(N − 1)/2, where N = 25 and
check V for each one pair, to analyze the sampling behavior.
For larger N , we sample instead of searching exhaustively.

Figure 5 shows how probable it is for a random degeneracy
and a ground-state combination to be sampled according to
the following categories:

fair – All ground states have the same probability.

soft – At least one ground state is soft suppressed with
a ratio smaller than 1 : 100 (least likely vs most likely).
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Figure 5. For each spin system all possible degeneracies are sampled
with 400 random ground-state combinations. For small systems, all
combinatorial possibilities of ground states can be checked, and the
random sampling approximates the exact result fast. For 4 spins,
fair sampling is reached for all possible problem Hamiltonians HP,
once the driver matrix is dense, i.e., all off-diagonal contain nonzero
entries,. For example, this is the case when using Hx,4 for a system
with 4 spins. Similarly, for 8 spins the system moves from hard
to soft, to fair sampling as more complex drivers are used. As the
system with 20 spins illustrates, below for any n < 7 in Hx,n there
is only a dependence on second-order perturbation (see Figure 3) or
hard suppression in the average case.

hard – At least one ground state is soft suppressed with
a ratio larger than 1 : 100 or not found at all, i.e., total
suppression. For better visibility in Fig. 5 we combine
these two cases. However, most of the time the suppres-
sion is total.

highord – The matrix V is trivial. Higher-order per-
turbation will determine the sampling behavior. In the
generic case of random couplings this leads to both soft
or hard suppression.

In all cases and for Hx,n with n ≤ 8 we use Γx,n = 1. Us-
ing different values for the different amplitudes leads to worse
sampling, because the matrix V has multiple different entries.
A random matrix has a unique eigenvector which is not paral-
lel to (1, 1, . . . , 1, 1) in the generic case. Hence, introducing
more variety into V leads to more unique (and unfair) |α0

gs〉.
How the ratio of soft to hard suppression is influenced by this
was not investigated, since it is unfair in the generic case. Re-
peating multiple annealing runs with individually randomized
Γx,n
i,j,... and averaging improves the sampling but, if not dense

enough, will not be able to remove all hard suppression in a
generic case.

Conclusions.— We have studied the necessary ingredients
needed for quantum annealing to sample ground states fairly.
From Fig. 5 we surmise that a fairly dense driver is needed to
obtain fair sampling. Carefully controlling the anneal with ad-
ditional parameters, for example as shown in Ref. [59] might
help mitigate the bias, however, this remains to be tested. We
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do emphasize, however, that a Hx,2 driver with the typical
annealing modus operandi used in current hardware will not
yield a fair sampling of states and performs comparably to a
vanilla transverse-field driver.
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