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We analyze the optical resonances of a dielectric sphere whose surface has been slightly deformed
in an arbitrary way. Setting up a perturbation series up to second order, we derive both the frequency
shifts and modified linewidths. Our theory is applicable, for example, to freely levitated liquid drops
or solid spheres, which are deformed by thermal surface vibrations, centrifugal forces or arbitrary
surface waves. A dielectric sphere is effectively an open system whose description requires the
introduction of non-Hermitian operators characterized by complex eigenvalues and not normalizable
eigenfunctions. We avoid these difficulties using the Kapur-Peierls formalism which enables us to
extend the popular Rayleigh-Schrödinger perturbation theory to the case of electromagnetic Debye’s
potentials describing the light fields inside and outside the near-spherical dielectric object. We find
analytical formulas, valid within certain limits, for the deformation-induced first- and second-order
corrections to the central frequency and bandwidth of a resonance. As an application of our method,
we compare our results with preexisting ones finding full agreement.

I. INTRODUCTION

In this paper we address the problem of determin-
ing the optical resonances of slightly deformed dielectric
spheres. Inside an almost spherical dielectric body em-
bedded in vacuum or air, light is confined by near-total
internal reflection and propagates with little attenuation
along the inner surface of the body. This form of propa-
gation is denoted as whispering gallery modes (WGMs),
which are typically characterized by a high quality fac-
tor Q [1]. For a perfect (ideal) dielectric sphere in air
or vacuum, the predicted Q can easily exceed 1020 at
optical frequencies. However, several physical processes
(amongst which scattering from surface roughness can be
the most prominent one), limit the effective value of Q
to less than 106 [2, 3]. Our goal is to develop a pertur-
bation theory that allows us to calculate the Q factor of
the optical resonances of dielectric spheres whose surface
is slightly deformed by different physical processes.

The study of light interacting with spherical or near
spherical dielectric bodies dates back to Aristotle who
first described (although incorrectly) the rainbow as due
to light reflection from raindrops [4]. In much more re-
cent times microscopic glass spheres have been widely
used as passive and active optical resonators in linear and
nonlinear optics regimes for numerous physical, chemical,
and biological applications (see, e.g., [5, 6] and references
therein). Lately, dielectric optical resonators of many di-
verse shapes have been regarded as optomechanical sys-
tems [7, 8]. Even more recently, optomechanical devices
consisting of drops of various liquid materials have been
proposed and demonstrated [9–11]. In these devices the
near-spherical free surface of the drop provides for both
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FIG. 1. Cartoon-like representation of the cross-section of
a dielectric sphere with its deformations. The non deformed
sphere is represented by a dark-blue disk of radius a. The cor-
rugated curve represents a generic quasi-spherical corrugated
surface and it is characterized by the surface profile function
g(r̂) (see sec. IV A for details).

the optical and the mechanical resonators. As an exam-
ple thereof, we have suggested the use of millimeter-scale
drops of superfluid He magnetically levitated in vacuum
as a novel type of optomechanical device [11]. The sur-
face of a levitated drop may differ from a perfect sphere
for several reasons, as shown in Fig. 1. For example, a
rotating liquid drop is squeezed along the axis of rotation
and takes the form of an oblate spheroid. On top of this,
thermally excited capillary waves (ripplons) will result in
corrugations upon the droplet’s surface.

All these optical and optomechanical devices are de-
scribable as open systems, that is physical systems that
leak energy via the coupling with an external environ-
ment [12]. The mathematical description of either classi-
cal or quantum open systems requires the use of non Her-
mitean operators, which are characterized by complex-
valued eigenvalues [13–15]. One important challenge with
non Hermitean operators is that they may not possess a
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set of orthonormal eigenfunctions. This implies that the
familiar Rayleigh-Schrödinger perturbation theory is no
longer applicable and different methods must be used.

Amongst these methods, the quasi-stationary states
approach and the Kapur-Peierls formalism are quite pop-
ular [16]. Quasi-stationary (Gamow or Siegert func-
tions [17, 18]) states are solutions of a wave equation
with purely outgoing boundary conditions and can be
used to build a perturbation theory called “resonant-
state expansion (RSE)” [19]. In optics, the RSE tech-
nique has been put forward in [20] and successfully ap-
plied to three-dimensional dielectric resonators in [21].
However, basically the same method was already used
in [22] to find optical resonances in microdroplets within
first-order perturbation theory. The main problem with
quasi-stationary states is that they are not orthonormal
in the conventional sense and the standard normalization
integral diverges [23, 24].

Conversely, Kapur-Peierls theory is not affected by
these normalization problems [25, 26] and automatically
furnishes a biorthogonal complete set of functions suit-
able for use in perturbation theory. This formalism was
originally developed in the context of nuclear scattering
theory and was recently applied to the study of the reso-
nances of one- and two-dimensional open optical systems
[27, 28].

In this work we use Kapur-Peierls formalism to de-
velop, for the first time, a perturbation theory of opti-
cal resonances of three-dimensional open optical systems
(near-spherical dielectric bodies), correct up to and in-
cluding second-order terms. We find analytic formulas
for the characteristic values (complex wave numbers) of
these resonances and we apply our theory to dielectric
spheres with various deformations.

The application we have in mind is a situation in which
the wavelength is much smaller than the sphere’s ra-
dius (e.g. 100 or 1000 times). In this case, which is
of great experimental significance, the use of numerical
techniques (like the ones routinely used in commercially
available finite element method (FEM) solvers) becomes
very challenging if not prohibitive. For this reason, we
do not present comparison to FEM results in the present
manuscript. However, we compare our results with the
analytical predictions (limited to first-order perturbation
theory), of previous works and find complete agreement.

The paper is organized as follows. In Sec. II we briefly
describe what we regard as “the unperturbed problem”,
namely the determination of the optical resonances of a
dielectric sphere using the formalism of Debye potentials
and scattering theory. Then, in Sec. III we furnish a re-
view of the Kapur-Peierls formalism, which sets the basis
for the remainder. In Sec. IV we apply this formalism to
develop a perturbation theory for the Debye potentials.
In Sec. V we use Rayleigh-Schrödinger perturbation the-
ory to achieve the main goal of this work, namely find-
ing the optical resonances of slightly deformed dielectric
spheres. In Sec. VI we show three different applications
of our theory. Finally, in Sec. VII we draw some conclu-

sions.

II. RESONANCES OF A DIELECTRIC SPHERE

The mathematical problem of the interaction of elec-
tromagnetic waves with dielectric spheres is more than
one century old and represents a vast literature. The
standard reference is still Stratton’s classic book [29].
However, a more modern and thorough exposition can
be found in [30]. In this section we briefly review the so-
called Debye potentials approach and establish the basic
notation that we shall use throughout this work.

A. Setting the problem

Consider a sphere of radius a made of a homogeneous
isotropic dielectric medium (medium 1) surrounded by
air or vacuum (medium 2).We use SI units with elec-
tric permittivity ε0, magnetic permeability µ0 and speed
of light c = 1/(ε0µ0)1/2 in vacuum. Let E1,B1,D1,H1

and E2,B2,D2,H2 denote the electromagnetic fields in
medium 1 and medium 2, respectively. For our purposes
it is sufficient to presume that all fields vary as exp(−iωt),
where ω = kc, k being the wave number of light in vac-
uum. These fields obey the Maxwell equations

∇ ·Dj = 0, (1a)

∇ ·Bj = 0, (1b)

iωDj + ∇×Hj = 0, (1c)

−iωBj + ∇×Ej = 0, (1d)

(here and hereafter j = 1, 2, unless stated otherwise) and
the constitutive equations

Dj = εjε0Ej , and Bj = µjµ0Hj , (2)

with µ1 = µ2 = 1 (we assume that both media are non-
magnetic) and ε1 = n21, ε2 = n22, where n1 > 1 is the
real-valued refractive index of medium 1 and n2 = 1 is
the refractive index of air or vacuum. The assumption
that the dielectric is nonmagnetic implies that there is
no physical difference between the magnetic strength H
and the magnetic induction B, so in the remainder we
shall consider B as the independent field.

Following [31], we express the solutions of the set of
equations (1) in terms of the transverse electric (TE) and
transverse magnetic (TM) Debye scalar potentials Ψj(r)
and Φj(r), respectively, as follows:

ETE
j = ik∇× (rΨj),

cBTE
j = ∇×

[
∇× (rΨj)

]
,

(3)

and

ETM
j =

i

n2j
∇×

[
∇× (rΦj)

]
,

cBTM
j = k∇× (rΦj).

(4)
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Equations (1) and (2) are automatically satisfied by the
fields (3) and (4) when the Debye potentials obey the
scalar Helmholtz equation

∇2U + k2n2jU = 0, (5)

where U denotes either Ψj or Φj . This equation must be
completed by the interface conditions which require the
continuity of tangential components of E and H (or, B)
across the surface of the sphere [32], that is

r̂× (E2 −E1)
∣∣
r= a

= 0,

r̂× (B2 −B1)
∣∣
r= a

= 0,
(6)

where r = |r| and r̂ = r/r.
Because of the symmetry of the problem imposed by

(6), it is convenient to solve the Helmholtz equation (5) in
spherical coordinates (r, θ, φ). Following [31] we rewrite
the Laplace operator ∇2 as

∇2U =
1

r

∂2

∂r2
(
rU
)
− L̂2

r2
U, (7)

where L̂2 ≡ L̂ · L̂ with L̂ ≡ −i r ×∇. Now, we look for
solutions of (5) of the form

Ψj(r, θ, φ) =
uj(r)

r
Ylm(θ, φ),

Φj(r, θ, φ) =
vj(r)

r
Ylm(θ, φ),

(8)

where Ylm(θ, φ) are the standard spherical harmonics [32]

satisfying L̂2Ylm = l(l + 1)Ylm, and uj(r), vj(r) denotes
the reduced radial Debye potentials. Substituting (8) into
(5) and using (7), we obtain the ordinary differential
equation

−ψ′′j (r) +

[
l(l + 1)

r2
− k2n2j

]
ψj(r) = 0, (9)

where ψj = uj for TE polarization, ψj = vj for TM

polarization and ψ′′j ≡ d2ψj/dr
2. This equation must

be supplied with the interface conditions for the reduced
radial potentials ψj(r). Substituting (3) and (4) into (6)
and using (8) we obtain

ψ1(a) = ψ2(a), ψ′1(a) = pψ′2(a), (10)

where ψ′j ≡ dψj/dr and here and hereafter p = 1 for

TE polarization and p = n21/n
2
2 for TM polarization. We

remark that in the literature equation (9) is often written
in a “quantum-like” form as

−ψ′′j (r) +

[
l(l + 1)

r2
+ Vj

]
ψj(r) = E ψj(r), (11)

where Vj = k2
(
1− n2j

)
and E = k2 (see, e.g., [31] and

[33]). We shall exploit this quantum-classical analogy in
the next section.

B. Scattering solutions

The general solution of (9) can be written as

ψj(r) = C1 r jl(njkr) + C2 r yl(njkr), (12)

where jl(z) and yl(z) are spherical Bessel functions of
the first and second kind, respectively [34]. Using the

spherical Hankel functions h
(1)
l (z) = jl(z) + i yl(z) and

h
(2)
l (z) = jl(z)− i yl(z), we can rewrite (12) as

ψj(r) = C3 r h
(1)
l (njkr) + C4 r h

(2)
l (njkr), (13)

where C3 = (C1 − iC2)/2 and C4 = (C1 + iC2)/2. Since

jl(z) ∼ zl and nl(z) ∼ 1/zl+1 for z → 0, while h
(1)
l (z) ∼

(−i)l+1eiz/z and h
(2)
l (z) ∼ il+1e−iz/z for z → ∞, the

everywhere regular solutions to (9) are:

ψ1(r) = Al r jl(n1kr), r ≤ a,
(14)

ψ2(r) = I r h
(2)
l (kr) + Sl r h

(1)
l (kr), r > a,

where I is the amplitude of the incident wave and Sl
that of the scattered wave with azimuthal index l. Al is
the amplitude of the same wave inside the sphere. As-
suming only outgoing waves means setting I = 0. This
choice leads to the so-called “resonant-state” formulation
of scattering theory [20, 21]. These states, also known in
the quantum theory of scattering [16] as decaying, meta-
stable, Gamow [17], or Siegert [18] states, are nonphysical
because they are not normalizable in the standard man-
ner (that is, they are not square-integrable). Here we
choose instead I = 1, which means assuming an incident
wave of unit amplitude.

Substituting (14) into (10) we determine the interior
wave amplitude

Al(k) =
2 ip

ka

1

fl(ka)
, (15)

and the scattering amplitude

Sl(k) = −fl(−ka)

fl(ka)
, (16)

where we have defined the Jost function [35],

fl(z) =

p jl(n1z)
[
z h

(1)
l (z)

]′ − h(1)l (z)
[
(n1z)jl(n1z)

]′
, (17)

with the prime symbol (′) denoting the derivative with re-
spect to the argument of the function (e.g., [f(x)g(x)]′ =
(df/dx)g(x) + f(x)(dg/dx)). Using (A4) it is straight-
forward to show that for k real, fl(−ka) = f∗l (ka) and
we can write

Sl(k) = exp [2iδl(k)] , (18)

where δl(k) denotes the phase shift of the scattered wave
[30]. In the absence of the dielectric sphere n1 = n2 = 1
and evidently scattering does not occur. In this case the
equations above give δl = 0, Sl = 1 and Al = 2.
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C. Resonances and Q-factors

In equations (15) and (16) k is the real-valued wave
number of the ingoing wave. However, the resonances of
the sphere are associated with the poles of the analyti-
cal continuation of Sl(k) into the entire complex plane:
k ∈ R → k = k′ + ik′′ ∈ C, where here and hereafter
k′ = Re k and k′′ = Im k. The continuation of Sl(k) is
meromorphic, that is analytic except at its poles. The
latter are characterized by Im k < 0 and coincide with
the roots of the transcendental equation

fl(ka) = 0. (19)

This equation, where l is a fixed number, has
a denumerably infinite set of solutions denoted
{k1l, k2l, . . . , knl, . . .} whose determination is detailed in
appendix B. From (A4) it follows that f∗l (z) = fl(−z∗),
that is the resonance poles are located in the complex k-
plane in pairs symmetric with respect to the imaginary
axis. Therefore, if knl is a solution of (19), then −k∗nl
is also a solution. We label the poles with Re k < 0 by
the negative index −n, so that k−nl = −k∗nl. A “central”
pole labeled with n = 0 and characterized by Re k0l = 0,
Im k0l < 0, exists only for l odd (even) and TE (TM) po-
larization. A portion of the spectrum of TE resonances
of a dielectric sphere with refractive index n1 = 1.5, is
shown in Fig. 2.
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FIG. 2. Spectrum of the TE modes of a dielectric sphere
of radius a and refractive index n1 = 1.5. The values of
knl for 1 ≤ n ≤ 11 and 0 ≤ l ≤ 10 are shown as orange
bands. The vertical position of the center of each band is
equal to Re(knla) and the thickness equal to Im(knla). For the
first radial mode n = 1 (darkest orange bands) the imaginary
part of knl quickly decreases as l increases from left to right,
while it decreases slowly for n > 1 radial modes. Each mode
characterized by the pair of radial and azimuthal numbers
(n, l) is 2l + 1 times degenerate (see sec. IV).

Each resonance k = k1l, k2l, . . . , can be characterized
by the quality factor Q defined by

Q(k′, k′′) ≡ −1

2

Re k

Im k
= −1

2

k′

k′′
. (20)

From this equation it follows that

∂Q

∂k′′
= 2Q

∂Q

∂k′
. (21)

This means that Q is more sensitive to variations of losses
(∝ k′′) than of frequency (∝ k′), by a factor 2Q. This is
why also a tiny perturbation of k′′ may cause a relevant
variation of Q. This feature is relevant for the estimation
of the variation of Q due to a small perturbation of the
shape of the dielectric sphere.

The quality factor depends dramatically upon the
value of l. For example, solving equation (19) numeri-
cally for a 4He sphere with refractive index n1 ≈ 1.03
(superfluid He), p = 1 (TE polarization), l = 4000 and
l = 1000, we have found k1,4000a ≈ 4000/n1−i (2×10−10)
and k1,1000a ≈ 1000/n1−i (1×10−1), respectively, where
we have chosen in both cases the first resonance labeled
by n = 1. These values yield

Q(4000) = −1

2

Re(k1,4000a)

Im(k1,4000a)
≈ 1013, (22)

for l = 4000, and

Q(1000) = −1

2

Re(k1,1000a)

Im(k1,1000a)
≈ 5× 103, (23)

for l = 1000. Thus, although l changes only by a factor of
4, the corresponding Q changes by about 9 orders of mag-
nitude. This huge variation in Q is largely determined
by the imaginary parts of the resonances, because

Q(4000)

Q(1000)
=

Re(k1,4000a)

Re(k1,1000a)
× Im(k1,1000a)

Im(k1,4000a)

≈ 4000

1000
× (2× 109). (24)

III. KAPUR-PEIERLS FORMALISM

In the previous section we have presented the standard
theory of scattering from a piecewise constant spheri-
cally symmetric potential (dielectric sphere) and we have
written the equation (19) determining the resonances of
the system [34]. This approach, based on the continu-
ous (with respect to k) set of functions (14), is not very
convenient for perturbation theory where it is desirable
to deal with a denumerable set (a basis) of normalizable
functions. The Kapur-Peierls (KP) formalism, originally
developed in the context of nuclear physics [25] and re-
cently adapted to optical resonator theory [28, 36], natu-
rally yields a complete set of biorthogonal functions [37].

A. Preliminaries on Kapur-Peierls formalism

Before starting our discussion, it is useful to briefly out-
line the general approach of KP perturbation theory. In
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the standard quantum mechanics Rayleigh-Schrödinger
time-independent perturbation theory, one first finds the
full set of eigenstates of the Hamiltonian of the unper-
turbed system. Afterwards, the perturbative corrections
to any one eigenstate can be expressed generically as
sums over these eigenstates. In KP perturbation theory,
the setting is slightly changed: One first solves an auxil-
iary eigenproblem whose eigenvalues λ(k) are functions
of a continuous parameter, the complex scattering fre-
quency (here represented by the complex wavenumber k).
One then determines the discrete set of resonances in k by
imposing λ(k) = k2. Finally, the perturbative correction
for a given resonance is obtained by summing over the
previously obtained set of eigenstates that belongs to the
resonance’s particular value of k. This makes the whole
procedure more involved than Rayleigh-Schrödinger the-
ory, since for each resonance we are dealing with a dif-
ferent set of infinitely many eigenstates (which are still
loosely related to the whole set of resonances, but not
identical to those).

Kapur-Peierls dispersion theory is well known within
nuclear physics [38]. However, this formalism is much
less known in the optics community. A useful purpose
may therefore be served by shortly reviewing the Kapur-
Peierls approach to scattering theory [39]. As in the pre-
vious section, we consider again the scattering of a scalar
wave (any of the two Debye potentials) by a dielectric
sphere; this simple example illustrates the main features
of the theory and provides for the Kapur-Peierls eigenval-
ues and eigenfunctions characterizing the “unperturbed
problem”. When the scatterer is not perfectly spherical
the simple theory presented in this section is no longer
applicable and the use of perturbation theory becomes
necessary. This will be presented in the next section.

We begin by rewriting (9) as(
D̂j − k2

)
ψj(r) = 0, (j = 1, 2), (25)

where we have defined the differential operator

D̂j ≡
1

n2j

[
− d2

dr2
+
l(l + 1)

r2

]
, (26)

associated with the boundary conditions (10) that we
rewrite as:

ψ′1(a)

ψ1(a)
= p

ψ′2(a)

ψ2(a)
, (27)

where p = 1 for TE polarization and p = n21/n
2
2 for TM

polarization. We know from the previous section that
the solution of (25) can be written for r > a as

ψ2(r) = I r h
(2)
l (kr) + Sl r h

(1)
l (kr), (28)

which implies,

ψ′2(r) = I
[
(kr)h

(2)
l (kr)

]′
+ Sl

[
(kr)h

(1)
l (kr)

]′
, (29)

where the prime symbol (′) denotes the derivative with
respect to the argument of the function.

Kapur-Peierls theory is based upon the observation
that using (28) and (29) we can express Sl and I via
ψ2(a) and ψ′2(a) to obtain

Sl
I

= −
h
(2)
l (ka)

h
(1)
l (ka)

ψ′2(a) + c l(−ka)ψ2(a)

ψ′2(a)− c l(ka)ψ2(a)
, (30)

where

c l(ka) ≡ 1

a

[
(ka)h

(1)
l (ka)

]′
h
(1)
l (ka)

. (31)

In Secs. II B and II C we have shown that the poles of
the analytic continuation of Sl(k), with k = k′ + ik′′,
determines the resonances of the systems. From (30)
it follows that these poles occur when the denominator
vanishes, that is when ψ′2(a) − c l(ka)ψ2(a) = 0. Evi-
dently, this happens when there is no incident wave, that
is I = 0 and the ratio Sl/I becomes singular. Using the
boundary conditions (27) we can transform the relation
ψ′2(a)− c l(ka)ψ2(a) = 0 into the equivalent one,

ψ′1(a)− p c l(ka)ψ1(a) = 0. (32)

This implies that we can determine the resonances of the
system by knowing the solutions ψ1(r) of the interior

problem
(
D̂1 − k2

)
ψ1(r) = 0 with boundary conditions

(32). We shall give a constructive proof of this statement
in subsection III C by deriving the so-called dispersion
formula for the scattering amplitude Sl(k). However,
first we need to prove some basic results.

B. The Kapur-Peierls eigenfunctions

Let us consider the auxiliary eigenvalue problem(
D̂1 − λnl(k)

)
φnl(k, r) = 0, r ≤ a, (33)

with boundary conditions

φnl(k, 0) = 0, φ′nl(k, a)− p c l(ka)φnl(k, a) = 0, (34)

where n is a discrete numerical index, φnl(k, r) are
the so-called Kapur-Peierls (right) eigenfunctions with
φ′nl(k, a) ≡ [dφnl(k, r)/dr]r=a, and c l(ka) is given by
(31). The (right) eigenvalues λnl(k) depend on the pa-
rameter k via the boundary conditions (34). Here and
hereafter k must be regarded as a fixed constant, the
same for all eigenvalues λ1l(k), λ2l(k), . . ., which are com-
plex numbers on account of the boundary condition (34).
The normalized solutions of (33) are

φnl(k, r) =
1√
Znl

r jl (n1qnlr) , (35)

where qnl =
√
λnl(k) and

Znl =
a3

2

[
j 2
l (n1qnla)− jl−1(n1qnla)jl+1(n1qnla)

]
. (36)
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The eigenvalues are given by λnl(k) = z2nl/(n1a)2, where
{z1l, z2l, . . . , znl, . . .}, are the complex roots of the k-
dependent transcendental equation Fl(z, ka) = 0, where

Fl(z, w) = p jl(z)
[
w h

(1)
l (w)

]′ − h(1)l (w)
[
z jl(z)

]′
. (37)

From (A2) it follows that if znl is a solution of (37), then
−znl is also a solution and both znl and −znl yield the
same eigenvalue λnl(k). Different values of k produce
different eigenvalues; typically λnl(k) 6= λnl(k

′) for k 6=
k′.

The operator defined by (33) and (34) is not self-
adjoint because c l(ka) is a complex number. This im-

plies that there exist left eigenfunctions φ̃n(k, r) and left

eigenvalues λ̃nl(k) defined by the so-called adjoint equa-
tion (

D̂1 − λ̃nl(k)
)
φ̃nl(k, r) = 0, r ≤ a, (38)

and the adjoint boundary conditions

φ̃nl(k, 0) = 0, φ̃′nl(k, a)− p c∗l(ka)φ̃nl(k, a) = 0. (39)

It is not difficult to show that λ̃nl(k) = λnl(k) =

[λnl(−k∗)]∗ and φ̃nl(k, r) = φ∗nl(k, r) = φnl(−k∗, r) [37].
Moreover, our normalization (36) yields∫ a

0

φ̃∗n′l(k, r)φnl(k, r)dr =

∫ a

0

φn′l(k, r)φnl(k, r)dr

= δnn′ . (40)

This equation shows that the normalized Kapur-Peierls
eigenfunctions φnl(k, r) belong to a biorthogonal set of
functions.

Typically the functions φnl(k, r) form a complete set
[26, 40], that is∑

n

φnl(k, r)φ̃
∗
nl(k, r

′) =
∑
n

φnl(k, r)φnl(k, r
′)

= δ (r − r′) , (41)

but usually this is not easy to prove (see, e.g., [41] for
a discussion). For our functions (35) we have not been
able to evaluate the left side of this equation analytically,
but numerical evaluation for some values of l and k con-
firmed the validity of (41). Therefore, we assume with-
out demonstration the completeness of the Kapur-Peierls
functions (35).

C. The Kapur-Peierls dispersion formula

From (27-29) it follows that the interior function ψ1(r)
obeys the boundary conditions

ψ′1(a)− p c l(ka)ψ1(a) = I
2 p

i ξ l(ka)
, (42)

where we have introduced the Riccati-Bessel functions
ξ l(x) ≡ xh

(1)
l (x) and ζ l(x) ≡ xh

(2)
l (x) [42]. These con-

ditions reduce to (32) when no incident wave is present
and I = 0. Consider then the auxiliary functions ϕ1(r)
and ϕ2(r) defined by

ϕj(r) ≡ ψj(r)−X(r), (j = 1, 2), (43)

where X(r) is any function satisfying the constraint

X ′(a)− p c l(ka)X(a) = I
2 p

i ξ l(ka)
. (44)

It is then evident that ϕ1(a) obeys the same boundary
conditions (34) satisfied by the Kapur-Peierls functions,
that is

ϕ′1(a)− p c l(ka)ϕ1(a) = 0. (45)

Therefore, using (41) and (43) we can write

ϕ1(r) =
∑
n

an φnl(k, r), (46)

where

an =

∫ a

0

φnl(k, r)
[
ψ1(r)−X(r)

]
dr

≡ bn − cn. (47)

From (25) and (26) and using ψ1(0) = 0 = φnl(k, 0), we
obtain

bn =

∫ a

0

φnl(k, r)ψ1(r)dr

=

∫ a

0

(
D̂1φnl(k, r)

)
ψ1(r)− φnl(k, r)

(
D̂1ψ1(r)

)
λnl(k)− k2

dr

=
1

n21

φnl(k, a)

λnl(k)− k2
[
ψ′1(a)− p c l(ka)ψ1(a)

]
. (48)

Subtracting X(a) from both sides of the matching con-
dition ψ2(a) = ψ1(a) we obtain ϕ2(a) = ϕ1(a). Using
(28,46) and (47) we can rewrite this equation as

1

k
[I ζ l(ka) + Sl ξ l(ka)]−X(a)

=
∑
n

bnφnl(k, a)−
∑
n

cnφnl(k, a). (49)

Substituting (48) into (49) and using (42), gives

1

k

[
I ζ l(ka) +Sl ξ l(ka)

]
=− I p

n21

2i

ξ l(ka)

∑
n

φnl(k, a)

λnl(k)− k2

+
[
X(a)−

∑
n

cnφnl(k, a)
]
. (50)
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Since X(r) is arbitrary and the condition (44) involves
both X(a) and X ′(a), we can always choose X(r) such
that X(a) =

∑
n cnφnl(k, a) to cancel the last term in

(50), and X ′(a) in a manner that (44) becomes an iden-
tity. Then, solving (50) for Sl, we obtain

Sl
I

= −ζ l(ka)

ξ l(ka)

[
1 + 2 i kR l(k)

]
, (51)

where

R l(k) =
p

n21

1

ξ l(ka)ζ l(ka)

∑
n

φ2nl(k, a)

λnl(k)− k2
, (52)

and p = 1 for TE polarization and p = n21/n
2
2 for TM

polarization. It should be noticed that the sum in (52) is
simply equal to −1 times the Green function Gl(k, r

′, r)
for the internal problem r′, r ≤ a, evaluated at r′ = r = a
[37]. We shall use this property later in Sec. V.

Equations (51-52) are an example of what is usually
called a “dispersion formula” in nuclear physics. They
give an explicit expression of the scattering amplitude
Sl in terms of its singularities (poles). In particular,
(52) provides for a practical recipe to find resonances:
first we calculate the Kapur-Peierls eigenvalues λnl(k) by
solving (often numerically) the transcendental equation

Fl(n1a
√
λnl(k), ka) = 0 to determine

√
λnl(k). Then,

we look for the roots of the fixed point equation√
λnl(k) = k. (53)

It is understood that the only physically acceptable
branch of the multi-valued function

√
λnl(k) is the one

with Im
√
λnl(k) < 0. It is evident that (53) reproduces

the resonance equation (19). To show this we must sim-

ply substitute, consistently with (53), n1a
√
λnl(k) with

n1a k in Fl(n1a
√
λnl(k), ka) = 0. This makes (37) coin-

cident with (19), that is Fl(z, z) = fl(z).
We remark that for a fixed value of the index n, there

may be several different solutions k1l, k2l, . . . , ksl, . . ., of
(53) such that λnl(ksl) = k2sl. An example thereof is
reported in [37]. However, in our case we found via nu-
merical evaluation of (53) that there is only one solution
for fixed n; this is illustrated in Fig. 3 for two partic-
ular cases. Therefore, in the remainder we choose the
natural numeration of the resonances so that s = n and
λnl(knl) = k2nl.

IV. PERTURBATION THEORY FOR THE
DEBYE POTENTIALS

In the previous section we have described the Kapur-
Peierls formalism. This yields a biorthogonal and com-
plete set of basis functions defined in the interior region
of the dielectric sphere. The goal of this section is to de-
velop a perturbation theory for the Helmholtz equation
(5) using these functions.

z = k1 l

z = kn l

z = λn l (k1 l)

-5

0

5

Im
(z
a
)

z = k5 l

z = kn l

z = λn l (k5 l)

-20 -10 0 10 20

-5

0

5

Re(za)

Im
(z
a
)

FIG. 3. Resonances k of an unperturbed sphere, and discrete
eigenvalues of the Kapur-Peierls equation for two different
values of k. The top plot displays the location of the roots
{knl}, of (19) (open black circles) and (37) {

√
λnl(k1l)} (filled

blue circles) for k = k1l. The root denoted k1l (k0l is the
central root with Re k0l = 0, k1l is the right nearest root with
Re k1l > 0, k−1l is the left nearest root with Re k−1l < 0, et
cetera) is indicated by a blue open circle. It is evident that√
λnl(k1l) = k1l for only one value of n. Similarly, the bottom

plot displays the location of the roots of (19) (open black

circles) and (37) {
√
λnl(k5l)} (filled red circles) for k = k5l.

The root denoted k5l is marked by a red open circle. Also
here

√
λnl(k5l) = k5l for only one value of n. In both plots

the field has TM polarization, n1 = 1.5 and l = 10.

A. Description of the deformations of the surface
of a dielectric sphere

We assume that the sphere’s free surface can be de-
scribed in spherical coordinates (r, θ, φ) ≡ (r, r̂) by the
equation r − g(r̂) = 0, where

g(r̂) ≡ a+ ah(r̂), (54)

is the surface profile function and a |h(r̂)| describes the
distance, in the direction r̂, of the deformed sphere sur-
face from a reference unperturbed sphere of radius a. We
suppose that for a given fixed direction r̂, the equation
r − g(r̂) = 0 has only one solution. By definition, for a
perfect sphere of radius a the profile function is constant,
namely g(r̂) = a and h(r̂) = 0. Conversely, the surface
profile function of the deformed sphere is effectively de-
termined by

h(r̂) =

∞∑
L=2

L∑
M=−L

hLMYLM (r̂), (55)
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where

hLM =

2π∫
0

dφ

π∫
0

dθ sin θ Y ∗LM (r̂)h(r̂). (56)

The relative permittivity εr(r) of the deformed sphere
can be evidently described by the piecewise constant
function

εr(r) = n21H
(
g(r̂)− r

)
+ n22H

(
r − g(r̂)

)
, (57)

where H(x) denotes the Heaviside step function [43]. For

a perfect sphere of radius a we define εr(r) ≡ ε
(0)
r (r) =

n21H(a − r) + n22H(r − a). From H(x) + H(−x) = 1
it follows that we can rewrite εr(r) as the sum of the

unperturbed permittivity ε
(0)
r (r) and a perturbation term

∆εr(r):

εr(r) = ε(0)r (r) + ∆εr(r), (58)

where

∆εr(r) = −
(
n21 − n22

)
(59)

×
[
H
(
r − a+ a h(r̂)

)
−H

(
r − a

)]
. (60)

In the case of small deviations |h(r̂)| � 1 from the refer-
ence spherical surface, we can approximate (59) with

∆εr(r) ∼=
(
n21 − n22

)
(61)

× ah(r̂)

[
δ(r − a)− ah(r̂)

2
δ′(r − a)

]
, (62)

where δ′(r − a) = dδ(r − a)/dr and we have expanded
∆εr(r) to second order because we plan to calculate
quadratic corrections to the resonant wave numbers. Evi-
dently, there is a freedom in attributing the singular local
terms in (61) to either the internal (r ≤ a) or the external
(r > a) region [36]. We choose to define ∆εr(r) in the
internal region solely. This implies that we can define an
effective potential V (ε, r) as:

V (ε, r) =
∆εr(r)

n21
≡ ε V (1)(r) + ε2 V (2)(r), (63)

where ε ≥ 0 is a formal parameter serving to build a
perturbation series with V (0, r) = 0, and we have defined

V (1)(r) ≡− v(k) a h(r̂)δ(r − a),

V (2)(r) ≡ v(k)
a2h2(r̂)

2
δ′(r − a),

(64)

with

v(k) ≡ k2(n21 − n22)/n21. (65)

A caveat is in order here. The Debye potentials repre-
sentation presented in Sec. II A is valid for electromag-
netic fields in uniform dielectric media. This condition is

certainly satisfied by the physical dielectric bodies con-
sidered in this work. However, the use of the potential
(63) introduces an effective inhomogeneity at r = a. As
the Debye potentials representation is still valid inside
the dielectric body (r < a), in the spirit of perturbation
theory it is reasonable to extend this representation to
the whole region r ≤ a, keeping in mind that this is an
approximation.

B. Kapur-Peierls perturbation theory

According to the previous discussion, we consider now
a perfect sphere whose refractive index is modified by a
small perturbation V (ε, r) defined for r ≤ a only. It must
be put equal to 1 at the end of the calculations. Because
of the both radial and angular dependence of V we have
to generalize the radial equation (25) to(

D̂ − k2
)
Ψ(r) = 0, (66)

where

D̂ =
1

n21

(
− ∂2

∂r2
+
L̂2

r2

)
+ V (ε, r)

≡ D̂0 + V (ε, r). (67)

As we deal with fields in the interior region only, in
the remainder the index j will be omitted. The Kapur-
Peierls eigenvalue equation for the unperturbed operator
D̂0 reads as (

D̂0 − λnl(k)
)
Φnlm(k, r) = 0, (68)

where

Φnlm(k, r) = φnl(k, r)Ylm(θ, φ), (69)

and Φ̃nlm(k, r) = φ̃nl(k, r)Ylm(θ, φ), with n, l and m be-
ing the so-called radial, azimuthal and magnetic num-
bers. The radial eigenfunctions φnl(k, r) are defined as
before by (33-35). Since the boundary conditions (34) are
independent of the magnetic number m, each eigenvalue
λnl(k) is 2l + 1 times degenerate.

Now, suppose that ε 6= 0. In this case when a wave with
given radial, azimuthal and magnetic numbers n, l and
m impinges upon the inhomogeneous dielectric sphere, it
is scattered into many (possibly infinitely many) waves
with different numbers n′, l′ and m′. This occurs because
the non spherically symmetric potential V (ε, r) couples
different modes of the field [44]. Therefore, the “single-
channel” Kapur-Peierls theory developed in the previous
section is not directly applicable and the theory must
be generalized (see, e.g., [25, 38]). However, because of
the spherically-symmetric surface of the inhomogeneous
dielectric body, we still have well defined internal and
external scattering regions characterized by r ≤ a and
r > a, respectively. In this case it is not difficult to show
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[27] that the original Kapur-Peierls equation (33) can be
replaced by the new eigenvalue equation

(
D̂ − Λnlm(k)

)
Ψnlm(k, r) = 0, (70)

and the fixed-point equation (53) becomes

K2
nlm = Λnlm(Knlm), (71)

which must reduce to k2nl = λnl(knl) for ε = 0. However,
it is important to keep in mind that while (53) is an exact
relation, equation (71) rests upon the approximation of
replacing a near-spherical homogeneous dielectric body
with an inhomogeneous spherical one.

Now, according to Rayleigh-Schrödinger perturbation
theory suitably adapted to the case of a biorthogonal
basis [13, 15], we assume that Ψnlm(k, r) and Λnlm(k)
can be expanded in powers of ε:

Ψnlm(k, r) = Ψ
(0)
nlm(k, r)

+ εΨ
(1)
nlm(k, r) + ε2Ψ

(2)
nlm(k, r) + . . . , (72)

Λnlm(k) = Λ
(0)
nlm(k) + εΛ

(1)
nlm(k) + ε2Λ

(2)
nlm(k) + . . . , (73)

where Λ
(0)
nlm(k) = λnl(k). Similarly, we write

Knlm = K
(0)
nlm + εK

(1)
nlm + ε2K

(2)
nlm + . . . , (74)

with K
(0)
nlm = knl. Suppose that by using standard tech-

niques we have calculated the first two terms of the ex-
pansion (73). Substituting (74) into (71) and using (73),
we obtain

(
knl + εK

(1)
nlm + ε2K

(2)
nlm + . . .

)2
= λnl

(
knl + εK

(1)
nlm + ε2K

(2)
nlm + . . .

)
+ εΛ

(1)
nlm

(
knl + εK

(1)
nlm + ε2K

(2)
nlm + . . .

)
+ ε2Λ

(2)
nlm

(
knl + εK

(1)
nlm + ε2K

(2)
nlm + . . .

)
+ . . . (75)

Expanding the functions on the right side of this equation
in Taylor series around ε = 0 and equating the terms with
the same powers of ε on both sides we find, up to and

including second-order terms,

k2nl = λnl(knl), (76a)

K
(1)
nlm =

Λ
(1)
nlm(knl)

2knl −
dλnl(k)

dk

∣∣∣∣
k=knl

, (76b)

K
(2)
nlm =

1

2knl −
dλnl(k)

dk

∣∣∣∣
k=knl

×

{
Λ
(2)
nlm(knl) +K

(1)
nlm

dΛ
(1)
nlm(k)

dk

∣∣∣∣∣
k=knl

−
(
K

(1)
nlm

)2 [
1− 1

2

d2λnl(k)

dk2

∣∣∣∣
k=knl

]}
. (76c)

The two terms

dλnl(k)

dk

∣∣∣∣
k=knl

and
1

2

d2λnl(k)

dk2

∣∣∣∣
k=knl

, (77)

can be calculated substituting the Taylor expansion of
λnl(k) around k = knl, into Fl

(
n1
√
λ(k) a, ka

)
= 0,

and equating to zero the terms with the same power of
(k − knl). After a straightforward calculation we find:

dλnl(k)

dk

∣∣∣∣
k=knl

= − 2knl
n1

ρ(knl), (78)

and

1

2

d2λnl(k)

dk2

∣∣∣∣
k=knl

=
ρ2(knl)

n21
− knla

n1

1

∂Fl(z, knla)

∂z

∣∣∣∣
z=n1knla

×

[
∂2Fl(z, w)

∂w2
− 2

∂2Fl(z, w)

∂z ∂w
ρ(knl)

+
∂2Fl(z, w)

∂z2
ρ2(knl)

]
z=n1knla
w=knla

, (79)

where

ρ(knl) ≡

∂Fl(n1knla,w)

∂w

∣∣∣∣
w=knla

∂Fl(z, knla)

∂z

∣∣∣∣
z=n1knla

. (80)

Incidentally, we note that iterating this procedure it is
possible to calculate the function λnl(k) in the neighbor-
hood of any point knl with the desired degree of accuracy.

Equations (76) are the main result of this section; they
formally solve completely our problem. The zeroth-order
equation (76a) simply reproduces the resonances of the
unperturbed system. The other two equations gives first-
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and second-order corrections in terms of the two func-
tions Λ

(1)
nlm(k) and Λ

(2)
nlm(k) that will be explicitly calcu-

lated in the next section. The physical meaning of the
denominator in (76b) is explained in [37]; it amounts to
a renormalization factor connecting Kapur-Peierls eigen-
modes with Gamow (i.e., decaying) modes. The second
and third term within the curly brackets in (76c) repre-
sent second-order corrections that, in general, should not

be neglected with respect to Λ
(2)
nlm(knl).

V. RAYLEIGH-SCHRÖDINGER
PERTURBATION THEORY

In this section we use Rayleigh-Schrödinger perturba-
tion theory to find the optical resonances of a deformed
dielectric sphere. The only (trivial) difference with re-
spect to familiar quantum perturbation theory is the use
of biorthogonal bases [13, 15].

Let us consider a specific unperturbed resonant
wavenumber knl where n and l have now fixed values.
The corresponding unperturbed Kapur-Peierls eigenvalue
is λnl(k), which we assume to be non-degenerate at the
interesting values of k. Here, with “non-degenerate” we
mean that there is single radial wavefunction φnl(k, r) de-
fined by (69) and associated with the eigenvalue λnl(k)
via the eigenproblem (68) [37]. However, there are 2l+ 1
different solutions of (68) associated with the same eigen-
value λnl(k), which are obtained by multiplying the
unique radial wavefunction φnl(k, r) by the 2l+1 angular-
dependent spherical harmonics Ylm(r̂):

{Φnlm(k, r)}
= {φnl(k, r)Yl,−l(r̂), . . . , φnl(k, r)Yll(r̂)}. (81)

These solutions span a (2l + 1)-dimensional degenerate
subspace, which we call Dnl. According to degenerate
perturbation theory, we build the new set of eigenfunc-
tions {ΦDnlm(k, r)} ∈ Dnl, defined by

{ΦDnlm(k, r)}
= {φnl(k, r)Yl,−l(r̂), . . . , φnl(k, r)Yll(r̂)}, (82)

where

Ylm(r̂) ≡
l∑

m′=−l

Cm
′

lmYlm′(r̂). (83)

As usual, the coefficients Cm
′

lm can be determined solving
the eigenvalue equation

l∑
m′′=−l

(
Φ̃nlm′ , V (1)(r) Φnlm′′

)
r
Cm

′′

lm

= Λ
(1)
nlm(k)Cm

′

lm , (84)

where here and hereafter we use the shorthand notation

(
u,w

)
r
≡

a∫
0

dr

2π∫
0

dφ

π∫
0

dθ sin θ u∗(r, θ, φ)w(r, θ, φ),

(
u,w

)
r̂
≡

2π∫
0

dφ

π∫
0

dθ sin θ u∗(θ, φ)w(θ, φ),

(85)

(note that the radial differential is dr and not r2dr.)
Substituting (69) and (64) into (84) and solving it for

Λ
(1)
nlm(k), we obtain the first-order correction to knl:

Λ
(1)
nlm(k) = −a v(k)φ2nl(k, a) `lm, (86)

where v(k) = k2(n21 − n22)/n21 and

`lm ≡
(
Ylm, h(r̂)Ylm

)
r̂
, (87)

with m = −l,−l + 1, . . . , l. This result allows us to

find the first-order corrections K
(1)
nlm by substituting (86),

evaluated at k = knl, into (76b).
It should be noted that although `lm is real by defini-

tion, Λ
(1)
νlm(k) may be not, because φ2nl(k, a) is, in general,

a complex number. However, using (19) and (35) it is not
difficult to show that for TE polarization,

−a v(knl)φ
2
nl(knl, a)

2knl −
dλnl(k)

dk

∣∣∣∣
k=knl

= −knl, (88)

and (76b) becomes

K
(1)
nlm(knl) = −knl `lm. (89)

Since `lm is a real number, from (89) and (20) it follows
that the Q factor of TE waves is not affected by first
order corrections. However, for TM polarization a simple
expression as (89) does not exist because the left side
of (88) displays a complicated functional dependence on
knl that will not be reported here. This implies that
the Q factor of TM waves may be affected by first-order
corrections.

The independence of `lm from the wave number k, the
polarization p, the refractive index n1 and from the radial
part of the radial function φnl(k, r), is a surprising result
of first-order perturbation theory, which was discovered
already in the nineties of last century [2, 22].

A. Discussion of the first-order corrections

From the definition (87) and (55) it follows that `lm is
a real number independent of k and coincides with the
m-th eigenvalue of the (2l+1)×(2l+1) Hermitean matrix
Hl defined by

[Hl]mm′ = (Ylm, h(r̂)Ylm′)r̂, (m,m′ = −l, . . . , l). (90)
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Moreover, for fixed l and m the coefficients Cm
′

lm in (83)

coincide with the components (C−llm, C
−l+1
lm , . . . , Cllm) of

the m-th eigenvector Clm associated with `lm, namely
HlClm = `lmClm.

The matrix elements (90) can be calculated from (55)
and expressed in terms of the Wigner 3j-symbols [45] as:

(Ylm, h(r̂)Ylm′)r̂ = (−1)m(2l + 1)

∞∑
L=2

√
2L+ 1

4π

(
l l L
0 0 0

) L∑
M=−L

hLM

(
l l L
−m m′ M

)

= (−1)m(2l + 1)

l∑
l′=1

h2l′,m−m′

√
4l′ + 1

4π

(
l l 2l′

0 0 0

)(
l l 2l′

−m m′ m−m′
)
, (91)

where the second expression follows from the properties
of the 3j-symbols requiring that only terms with L even,
L ≤ 2l and M = m − m′, contribute to [Hl]mm′ . This
means that at first-order level the resonance knl is not
affected by “rapid” surface fluctuations characterized by
L > 2l.

The matrix Hl can be huge. For a 4He droplet of radius
a = 1 mm, refractive index n1 ≈ 1.03 and illuminated by
light of wavelength λ = 1µm in vacuum, the value of l is
around l ≈ 2πan1/λ ≈ 6500 [1]. Diagonalizing a matrix

of dimension ∼ 104×104 with sufficient accuracy may be
a serious task depending on the distribution of the matrix
elements and on available computational resources. We
discuss a way to circumvent these problems in appendix
C.

B. Second-order corrections

Because of the form (63) of the perturbation, the

second-order correction Λ
(2)
nlm(k) contains two terms:

Λ
(2)
nlm(k) =

(
Φ̃Dnlm, V

(2)(r)ΦDnlm

)
r

+
∑

n′,l′,m′ /∈Dnl

(
Φ̃Dnlm, V

(1)(r)Φn′l′m′

)
r

(
Φ̃n′l′m′ , V (1)(r)ΦDnlm

)
r

λnl(k)− λn′l′(k)

≡ Am(k) +Bm(k). (92)

Using (64) and (82) we can rewrite the first term in the
equation above as:

Am(k) = −a2v(k)φnl(k, a)φ′nl(k, a)Tlm, (93)

where we have defined

Tlm ≡
(
Ylm, h2(r̂)Ylm

)
r̂
, (94)

and φ′nl(k, a) = dφnl(k, r)/dr|r=a. Similarly, after a
straightforward calculation we obtain for the second
term,

Bm(k) = a2v2(k)φ2nl(k, a)

×
∑
l′

′
[∑
n′

′ φ2n′l′(k, a)

λnl(k)− λn′l′(k)
T l′

lm

]
, (95)

where

T l′

lm ≡
l′∑

m′=−l′
|(Yl′m′ , h(r̂)Ylm)r̂|

2
, (96)

and the prime symbols above the sums in l′ and n′ dic-
tate the exclusion of the term with (n′, l′) = (n, l). These
sums are really formidable and, for high values of l, rep-
resent a hard numerical challenge. However, a huge sim-
plification can be made by noticing that after replacing
everywhere k with knl, the sum with respect to n′ with
l′ 6= l in (95) can be rewritten as

∑
n′

φ2n′l′(knl, a)

k2nl − λn′l′(knl)
= Gl′(knl, a, a), (97)

where (76a) has been used and Gl′(knl, a, a) ≡ Gl′(knl) is
the Green function defined in sec. III C. Comparing this
equation with (51) and (52) we obtain a closed expression
for the infinite sum (97):

Gl′(knl) =
an21 jl′(n1knla)h

(1)
l′ (knla)

fl′(knla)
, (98)
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where fl′(knla) is the Jost function defined by (17).
Therefore, we can eventually rewrite (95) as:

Bm = a2v2(k)φ2nl(k, a)

[∑
n′ 6=n

φ2n′l(knl, a)

k2nl − λn′l(knl)
T l
lm

+
∑
l′ 6=l

Gl′(knl)T
l′

lm

]
. (99)

Eventually, the awkward double sum in (95) was split in
two simpler single sums, one with respect to n′ 6= n and
the other with respect to l′ 6= l.

VI. APPLICATIONS

Our results are in agreement with previous works
where first-order perturbation theory for leaking electro-
magnetic modes in open systems was developed [2, 22].
This is shown in the first two following examples. In
the third an last example we apply our perturbation the-
ory to the case of a dielectric sphere (glass) with surface
roughness.

A. Equatorial bulge

Consider a TE excitation of the droplet, this sets p = 1.
Suppose that h(r̂) describes an ellipsoid of revolution
with polar and equatorial radii aP and aE > aP , respec-
tively, with aP a

2
E = a3. The ellipticity (or, eccentricity)

of this ellipsoid is denoted e and defined by

e =

√
1−

a2P
a2E

. (100)

The surface profile function of the ellipsoid of revolution
is

a+ a h(r̂) =
aP aE√

a2E cos2 θ + a2P sin2 θ
, (101)

which, when e� 1, can be approximated by

h(r̂) ∼= −
e2

12

[
1 + 3 cos(2θ)

]
= −2

3

√
π

5
e2Y20(r̂). (102)

Then, from this equation and (91) it follows that

(Ylm, h(r̂)Ylm′)r̂ = δmm′
e2

3

l(l + 1)− 3m2

4l(l + 1)− 3
. (103)

Substituting (103) into (89) we obtain, for l� 1,

K
(1)
nlm(knl)

knl
= − e

2

12

[
1− 3m2

l(l + 1)

]
, (104)

which is in perfect agreement with [22] (note: because
of a different definition, the parameter e used in [22] is
equal to our e2/2).

B. Shrinking sphere

As a second example, consider as a perturbation the
change of the radius of the sphere from a to b < a, such
that a−b ≡ δa� a. Let znl be a root of the equation (19)
fl(z) = 0 with p = 1 (TE polarization) and denote with
knl(a) ≡ znl/a and knl(b) ≡ znl/b the two correspond-
ing resonances of the bigger and smaller cavity. Then,
trivially,

knl(b) =
knl(a)

1− δa

a

∼= knl(a)

(
1 +

δa

a
+
δa2

a2
+ . . .

)
≡ knl(a) +K

(1)
nlm +K

(2)
nlm + . . . (105)

The surface profile function (54) of the sphere of radius
b is evidently g(r̂) = b. This implies that h(r̂) = −δa/a.
The matrix Hl has elements [Hl]mm′ = −(δa/a)δmm′

and, therefore, `lm = −δa/a. A straightforward calcu-
lation shows that

Tlm = (δa/a)2 and T l
′

lm = (δa/a)2 δll′ . (106)

Then, (87) yields

K
(1)
nlm = knl(a)

δa

a
, (107)

in perfect agreement with (105). From (76) we obtain:

knl(b) ∼= knl(a)

(
1 +

δa

a
+Nnl

δa2

a2

)
, (108)

where Nnl is a finite complex-valued numerical coefficient
that can be calculated explicitly once n and l have been
fixed. Equation (108) is in agrement with (105) up to
O(δa2/a2) corrections.

C. Surface roughness

As we remarked in the introduction, typical systems
to which our theory can be applied are drops of different
kind of liquids ranging from water at room temperature
(think of, e.g., raindrops) to liquid helium at few hun-
dreds of millikelvin. As a matter of fact, raindrops or
any other kind of droplets are only approximately spher-
ical. For example, the shape of the millimeter-size drops
of liquid helium magnetically levitated in vacuum that
we considered in [11], deviates from the spherical one be-
cause of two different physical processes. First, rotation
of the droplet leads to an equatorial bulge; this changes
droplet’s free surface from spherical to oblate. The effects
of this kind of deformation upon the optical resonances
of a dielectric sphere have been already extensively inves-
tigated in [22]. Second, thermally excited capillary waves
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(ripplons) result in an effective stochastic surface rough-
ness of the droplet. Therefore, to further illustrate our
theory in this part we study the effects of surface rough-
ness upon the resonances of a dielectric sphere immersed
in vacuum.

To begin with, let us consider the deviation of a dielec-
tric particle from the spherical shape caused by a surface
roughness which is described by (54-55) with random co-
efficients hLM . These are generated as detailed in ap-
pendix D, with

gL = g
1

L(L+ 1)− 2
, (109)

where g determines the “strength” of the roughness. In
our numerical calculations we take g = 10−6. How-

ever, as Λ
(1)
nml ∝ g and Λ

(2)
nml ∝ g2, we have the free-

dom to adjust the value of g at our will after numer-
ical evaluations (we shall use this feature later). For
the sake of definiteness, we consider a single realiza-
tion of surface randomness obtained by generating one
set of (LMax − 1)(LMax + 3) random complex numbers
{hLM}. From (D1) it follows that the simplest deforma-
tion which breaks all rotational symmetries is achieved
taking Lmax = 3. This is just enough to split the de-
generate wavenumber knl into (2l + 1) distinct values:
knl → Knlm = {Knl,−l,Knl,−l+1, . . . ,Knll}. However,
as we shall show later, some wavenumbers remain close
in pairs, that is Knlm

∼= Knl,m+1 for some values of m.
Numerical explorations show that once the “optical” l is
fixed, we must take the “acoustic” Lmax & 2l to further
split the remaining quasi-degenerate pairs of wavenum-
bers.

The flow of calculations goes as follows: first, using
(90-91) we evaluate the (2l+ 1)× (2l+ 1) Hermitian ma-
trix Hl, whose elements are determined by the previously
generated random set {hLM} and we diagonalize it:

Hlui = λiui, (i = 1, . . . , 2l + 1). (110)

To perform this operation we write Hl according to (90)
as

Hl =


[Hl]−l,−l [Hl]−l,−l+1 · · · [Hl]−l,l

[Hl]−l+1,−l [Hl]−l+1,−l+1 · · · [Hl]−l+1,l

...
...

. . .
...

[Hl]l,−l [Hl]l,−l+1 · · · [Hl]l,l



≡


[Hl]11 [Hl]12 · · · [Hl]1,2l+1

[Hl]21 [Hl]22 · · · [Hl]2,2l+1

...
...

. . .
...

[Hl]2l+1,1 [Hl]2l+1,2 · · · [Hl]2l+1,2l+1

 . (111)

The above identification [Hl]mm′ ≡ [Hl]ij automatically
fixes the following invertible relations between the two
sets of indices {m,m′} and {i, j}:

{
i = m+ l + 1,

j = m′ + l + 1,

{
m = i− l − 1,

m′ = j − l − 1.
(112)

Then, from this result and (83) it follows that the new
basis functions Ylm for the degenerate subspace can be
written as

Ylm(r̂) ≡
l∑

m′=−l

[um+l+1]m
′+l+1Ylm′(r̂), (113)

where m = −l, . . . , l and [ui]
j denotes the jth component

of the ith eigenvector of Hl. Of course the (arbitrary)
sorting of these functions {Yl,−l,Yl,−l+1, . . . ,Yll} =
{Yl,1,Yl,2, . . . ,Yl,2l+1} is uniquely determined by the way
we sort the eigenvalues of Hl. In our calculations we fix
λ1 < λ2 < · · · < λ2l+1. The eigenvalue λi determines

the first-order correction {K(1)
nlm} according to (76b) and

(86), where

Λ
(1)
nlm(knl) = −a v(knl)φ

2
nl(knl, a)λm+l+1, (114)

with m = −l,−l + 1, . . . , l. So, the net result of first-
order perturbation is to split the (2l+ 1)-fold degenerate
wavenumber knl in 2l + 1 distinct values:

knl → {knl +K
(1)
nl,−l, . . . , knl +K

(1)
nl,l}. (115)

The successive step is the calculation of the 2l + 1 co-
efficients Tlm given by (94). Substituting (113) into (94)
we obtain

Tlm =

l∑
m′=−l

l∑
m′′=−l

[u∗m+l+1]m
′+l+1[um+l+1]m

′′+l+1

×
(
Ylm′ , h2(r̂)Ylm′′

)
r̂
. (116)

The calculation of the last factor involves the integral
over the unit sphere of the product of four spherical har-
monics and can be quite time-consuming. So, we found it
convenient to evaluate such expression analytically using
the Wigner 3j-symbols [45]:
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(Ylm′ , h2(r̂)Ylm′′)r̂ = (−1)m
′′ 2l + 1

4π

LMax∑
L=2

√
2L+ 1

LMax∑
L′=2

√
2L′ + 1

L∑
M=−L

L′∑
M ′=−L′

{
hLMhL′M ′

×
2l∑
l′=0

(2l′ + 1)

(
l l l′

0 0 0

)(
l l l′

−m′ m′′ m′ −m′′
)(

l′ L L′

0 0 0

)(
l′ L L′

m′′ −m′ M M ′

)}
. (117)

The last coefficients to calculate are the T l
′

lms given by
(96):

T l′

lm =

l′∑
m′=−l′

|(Yl′m′ , h(r̂)Ylm)r̂|
2
, (118)

where

(Yl′m′ , h(r̂)Ylm)r̂ (119)

=

l∑
m′′=−l

[um+l+1]m
′′+l+1 (Yl′m′ , h(r̂)Ylm′′)r̂ . (120)

The calculation of the term (Yl′m′ , h(r̂)Ylm′′)r̂ may look
not trivial because, in principle, l′ can take any nonneg-
ative integer value besides l′ = l. However, substituting
(55) into the expression above we find

(Yl′m′ , h(r̂)Ylm′′)r̂ = (−1)m
′

√
(2l + 1)(2l′ + 1)

4π

LMax∑
L=2

hL,m′−m′′
√

2L+ 1

(
l′ L l
0 0 0

)(
l′ L l
−m′ m′ −m′′ m′′

)
. (121)

From this equation and the symmetry properties of the
Wigner 3j-symbols, it follows that |L− l| ≤ l′ ≤ L + l.
Therefore, in (95) the sum

∑
l′
′

can be replaced by

∞∑
l′=0

′

→
L+l∑

l′=|L−l|

′

, (122)

where the prime symbol in both sums denotes l′ 6= l.
Having calculated the coefficients Tlm we can straight-

forwardly obtain Am(knl) from (93) evaluated at k =

knl. Next, the knowledge of T l′

lm permits us to evaluate
Bm(knl) from (99). For practical purposes it is conve-
nient to rewrite

Bm(knl) = B0(knl) [Bm1(knl) +Bm2(knl)] , (123)

where B0 ≡ a2v2(knl)φ
2
nl(knl, a), and

Bm1(knl) ≡ T l
lm

∑
n′ 6=n

φ2n′l(knl, a)

k2nl − λn′l(knl)
, (124)

Bm2(knl) ≡
L+l∑

l′=|L−l|

′

Gl′(knl)T
l′

lm, (125)

with m = −l,−l+1, . . . , l. The calculation of Bm2(knl) is
straightforward, but the sum in (124) requires numerical

evaluation of λn′l(knl). These quantities are obtained by
solving numerically with respect to z the transcendental
equation

n1zjl+1(n1)h
(1)
l (x)− x jl(n1z)h(1)l+1(x) = 0, (126)

for TE polarization and

n1zjl+1(n1)h
(1)
l (x) + jl(n1z)

×
[
(l + 1)

(
n21 − 1

)
h
(1)
l (x)− n21 xh

(1)
l+1(x)

]
= 0, (127)

for TM polarization. In these two equations x = aknl.
Let zn′ be a solution of one of these equations. Then
λn′l(knl) is simply determined from zn′ = a

√
λn′l(knl).

In principle the sum in (124) is extended to all the infi-
nite integer values of n′ that labels the solutions of either
(126) and (127). However, in practice, we must truncate
the sum to some finite value of n′. For our calculations
we have chosen max{n′} = 104 to guarantee a good ac-
curacy.

Finally, to calculate Bm1(knl) we need also to evalu-
ate φn′l(knl, a). From (35-36) it straightforwardly follows
that

φn′l(knl, a) =
1√
Zn′l

a jl (n1zn′) , (128)
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where

Zn′l =
a3

2

[
j 2
l (n1zn′)− jl−1 (n1zn′) jl+1 (n1zn′)

]
,

(129)

and, as previously defined, zn′ = a
√
λn′l(knl).

1. Numerical results and plots

For illustration we study here the effects of surface
roughness upon two optical modes with l = 5, l = 10
and both TE and TM polarizations, of a glass sphere of
refractive index n1 = 1.5, in vacuum.

A key step in the perturbation theory illustrated above
is the calculation of the eigenvalues of Hl. In Fig. 4 we
show the 11 eigenvalues of H5 averaged over 102 realiza-
tions of the random coefficients hLM , with Lmax = 3 (a),
and Lmax = 10 (b). Fig. 4 a) shows that for Lmax .
l the pairs of eigenvalues (λ1, λ2), (λ3, λ4), (λ8, λ9) and
(λ10, λ11) are almost degenerate, that is very close in
value but still unambiguously distinct within the numer-
ical precision. Therefore, we treat these eigenvalues as
non-degenerate. However, as shown in Fig. 4 b), when
Lmax > l all the eigenvalues become well distinct.

The perturbed wave numbers Knlm calculated from
(74) and (76a-76c) are shown in Figs. 5 and 6 for
l = 5 and TE and TM polarization, respectively. Sim-
ilarly, Figs. 7 and 8 depict the values of Knlm for
l = 10 and TE and TM polarization, respectively. Here
and hereafter ω = cReKnlm, ωnl = cRe knl and κ =
−2c ImKnlm, κnl = −2c Im knl. In these figures the diag-
onal orange lines divide the complex plane in two regions:
the upper part if made of points for which Q > Qnl,
where Q = ω/κ and Qnl = ωnl/κnl, and the lower part
consists of points such that Q < Qnl. For TE polar-
ization all the perturbed wavenumbers give Q < Qnl.
However, for TM polarization the values below the diag-
onal correspond to modes with Q < Qnl, but the values
located above the diagonal give Q > Qnl. The origin of
such different wavenumber distributions for TE and TM
waves is due to the different values taken by the left side
of (88). In the TE case, (88) is simply equal to −knl
which implies that Q = Qnl at first-order perturbation
theory, as shown by (89). However, in the TM case the
left side of (88) is a complex number different from −knl:

−a v(knl)φ
2
nl(knl, a)

2knl −
dλnl(k)

dk

∣∣∣∣
k=knl

'

{
5.68 exp(i π 0.94), l = 5,

5.89 exp(−i π 0.97), l = 10.
(130)

In parts b) of Figs. (5-8) we show the evolution of
the resonant wavenumbers when the strength of the sur-
face roughness increases from g to 25g. The light blue
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FIG. 4. a) Diagram showing the 11 eigenvalues of the
(2l + 1) × (2l + 1) matrix Hl, with l = 5, averaged over 102

realizations of the random coefficients hLM , for Lmax = 3.
These eigenvalues are calculated according to (110). Such
diagonalization in the (2l + 1)-fold degenerate subspace as-
sociated with the unperturbed wave number knl leads, via
(114), to the first-order splitting of knl. Inset: ten different
realizations of the eigenvalues of Hl illustrating their statisti-
cal variance. The random coefficients hLM are generated as
described in Appendix D with g = 10−6. b) Same as in a)
but for Lmax = 10. When Lmax substantially exceed l the
degeneracy is completely removed.

circles at the beginning of the continuous green curves
mark the wavenumbers evaluated at g (as in parts a) of
the figures). The dark blue circles at the end of the same
curves mark the wavenumbers evaluated at 25g. These
figures show that, as expected, when g increases the sep-
aration between adjacent wavenumber grows.

VII. SUMMARY

In this work we have used the Kapur-Peierls formal-
ism, originally developed in the context of nuclear scat-
tering theory, to find the optical resonances of almost
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a)

b)

FIG. 5. a) Light blue circles: Perturbed wavenumbers Knlm

for TE polarization, l = 5 and surface roughness strength
g = 10−6. In this figure ω = cReKnlm, ωnl = cRe knl,
κ = −2c ImKnlm, κnl = −2c Im knl, and the wave number
knl of the unperturbed sphere is located at the origin of the
coordinate system. The diagonal orange line divide the upper
region, characterized by Q > Qnl, from the lower one where
Q < Qnl, where Q = ω/κ and Qnl = ωnl/κnl. b) Light blue
circles: as in part a). Dark blue circles: as in part a) but for
surface roughness strength g = 25 × 10−6. The continuous
green lines show the “motion” of the perturbed wavenumbers
when g increases by a factor 25.

spherical dielectric objects, such as liquid drop. This
permitted us to develop a second-order perturbation the-
ory for the electromagnetic Debye potentials describing
the light fields. We have thus found analytical formulas
for the complex characteristic values of the resonances,
whose real and imaginary parts are proportional to, re-
spectively, the central frequency and the bandwidth of
the optical resonance. When limited to first-order per-
turbation theory, our results are in perfect agreement
with older results [22]. The present work provides the
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FIG. 6. As Fig. 5 but for TM polarization.

basis for applications of our technique to various optical
and optomechanical systems.

ACKNOWLEDGMENTS

This work was supported by the European Unions
Horizon 2020 research and innovation programme under
grant agreement No 732894 (FET Proactive HOT), (A.A.
and F.M.) A.A. is grateful to Carlos Viviescas for useful
discussions. J.H. acknowledges Charles Brown for his
contribution and support from the W. M. Keck Founda-
tion Grant No. DT121914, AFOSR Grant No. FA9550-
15-1-0270, DARPA Grant No. W911NF-14-1-0354, and
NSF Grant No. 1205861. This project was made possible
through the support of a grant from the John Templeton
Foundation.



17

a)

b)

FIG. 7. As Fig. 5 but for l = 10.

Appendix A: Spherical Bessel and Hankel functions

Spherical Bessel and Hankel functions are frequently
encountered in scattering theory. Many of their proper-
ties can be found in Appendix A of [30] and in Appendix
A.9 of [46]. Some properties utilized in this paper are:

1. Recurrence:

jl−1(z) =
2l + 1

z
jl(z)− jl+1(z). (A1)

2. Differentiation:

z jl+1(z) = (l + 1)jl(z)−
d

dz
[zjl(z)] , (A2)

a)

b)

FIG. 8. As Fig. 6 but for l = 10.

3. Parity:

jl(−z) = (−1)ljl(z), (A3a)

yl(−z) = (−1)l+1yl(z), (A3b)

h
(1)
l (−z) = (−1)lh

(2)
l (z). (A3c)

4. Analytic continuation:[
jl(z)

]∗
= jl(z

∗), (A4a)[
yl(z)

]∗
= yl(z

∗), (A4b)

jl(−z∗) = (−1)l
[
jl(z)

]∗
, (A4c)

yl(−z∗) = (−1)l+1
[
yl(z)

]∗
, (A4d)

h
(α)
l (−z∗) = (−1)l

[
h
(α)
l (z)

]∗
, (α = 1, 2), (A4e)[

h
(1)
l (z)

]∗
= h

(2)
l (z∗). (A4f)
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5. Integrals:∫ a

0

jl(x r)jl(y r) r
2dr

=
a2

x2 − y2
[
y jl(xa)jl−1(ya)− x jl−1(xa)jl(ya)

]
,

(A5a)

∫ a

0

j2l (x r) r2dr

=
a3

2

[
j 2
l (xa)− jl−1(xa)jl+1(xa)

]
. (A5b)

Relations 1. and 2. also hold for yl(z), h
(1)
l (z) and

h
(2)
l (z).

Appendix B: TE and TM resonances of a dielectric
sphere

The complex-valued resonances of the sphere are gen-
erally associated with the poles of the scattering ampli-
tudes (16). These poles are found by solving with respect
to the complex variable z = a (k′ + ik′′) ≡ x + iy the
transcendental equation

fl(z) = p jl(n1z)
[
zh

(1)
l (z)

]′ − h(1)l (z)
[
(n1z)jl(n1z)

]′
= 0, (B1)

where p = 1 for TE polarization and p = n21/n
2
2 for

TM polarization. Equation (19) admits solutions only
for certain characteristic values of the complex vari-
able z. These characteristic values form a denumer-
able set {z0l, z±1l, z±2l, . . . , z±nl, . . .}, where Re znl =
−Re z−nl > 0 and Im znl < 0, for all n. We label the
poles with Re k < 0 by the negative index −n, so that
k−nl = −k∗nl. For l odd (even) and TE (TM) polariza-
tion there exists a pole denoted k0l such that Re k0l = 0
and Im k0l < 0. Figure 9 shows two typical distributions,
symmetric with respect to the vertical axis, for TE and
TM polarization, of the roots of fl(z) in the complex
k-plane for a glass sphere of radius a, refractive index
n1 = 1.5 and azimuthal number l = 10. Filled and open
black circles mark, respectively, characteristic values zr

and znr associated with resonant and not resonant modes
of the field. The latter are very leaky modes that are
sometimes called external whispering gallery modes [47].
Grandy [30] suggested that to distinguish between res-
onant and not resonant characteristic values one should
evaluate, (i) the phase shift δl, (ii) the scattering strength
sin2 δl, (iii) the interior wave amplitude |Al|, and (iv) the
specific time delay

τl ≡
1

a

dδl
dk

=
1

2 i

d

d(ka)
logSl. (B2)

Out[115]=

-20 -10 0 10 20

-8

-6

-4

-2

0

2

4

Re(ka)

Im
(k
a
)

TE

-20 -10 0 10 20

-8

-6

-4

-2

0

2

4

Re(ka)

Im
(k
a
)

TM

FIG. 9. Contour plots in the complex k-plane of the zeros
of fl(z) for TE (top) and TM (bottom) polarization. Points
on the red curves are solutions of the equation Re fl(z) =
0 and points on the blue curves are solutions of Im fl(z) =
0. The characteristic values znl are those points where red
and blue lines cross each other. Filled circles mark resonant
values zr, open circles indicate non-resonant values znr. In
this figure, n1 = 1.5 and l = 10. Values of k with larger real
part correspond to higher radial quantum number, where one
expects the modes to become more lossy.

However, it is possible to show that these conditions are
almost equivalent [48] and that, for example, it is suf-
ficient to verify the presence of a sharp peak in τl per
each value of ka = Re zr, as shown in Fig. 10. In prac-
tice, we wish zr1l to be the pole with Re zr1l ∼ l/n1 and
the smallest imaginary part (the subsequent resonant val-
ues will be ordered according to Re zr1l < Re zr2l < . . ., et
cetera.) Therefore, the resonant zrnl can be found by com-
paring the solutions of (19) with the characteristic values
of TE and TM modes of the same dielectric sphere but
embedded in a medium of infinite conductivity (closed
sphere), having these values null imaginary parts. They
are the real-valued solutions {x1l, x2l, . . . , xnl, . . .}, with
x1l < x2l < . . ., of [29]:

{
jl(n1x) = 0, TE polarization,[
(n1x)jl(n1x)

]′
= 0, TM polarization.

(B3)
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FIG. 10. Plot of the specific time delay (B2) for a glass sphere
of radius a, refractive index n1 = 1.5 and azimuthal number
l = 10. Red curve: TE polarization, blue curve: TM polar-
ization. The peaks of these curves are located at ka = Re zr,
where zr denotes a solution of the equation (19) associated
with a resonant mode of the field.

Thus, we define zr1l as the solution of fl(z) = 0 closest to
the smaller root x1l of (B3), namely

zr1l = {z ∈ C| fl(z) = 0, Re z > 0, |z − x1l| = min}. (B4)

Then, given a solution z of fl(z) = 0, z = zr if either
Re z > Re zr1l or Re z < −Re zr1l, because z and −z∗ are
solutions of the same equation. This empirical rule is
illustrated in Fig. 11, which shows the location in the
complex k-plane a few solutions of (B1) (filled and open
red circles) and (B3) (blue squares on the real axis) for
a glass sphere of radius a, refractive index n1 = 1.5 and
azimuthal number l = 10.

Appendix C: Perturbative diagonalization of Hl

In many cases of practical interest (as, e.g., in He
droplets [11]), the “deformation” function h(r̂) is made
of two contributions. The first one is deterministic
and describe an equatorial bulge due to, for example,
the rotation of the droplet and is denoted with hrot(r̂).
The second contribution may be stochastic and gener-
ated by surface waves (ripplons) on the droplet. Let
us denote with hrip(r̂) this second term. As typically
|hrip(r̂)| � |hrot(r̂)|, we can diagonalize Hl using pertur-
bation theory after defining

Hl = H
(0)
l +H

(1)
l , (C1)

where

[H
(0)
l ]mm′ = (Ylm, hrot(r̂)Ylm′)r̂ = δmm′ `

(0)
l|m|,

[H
(1)
l ]mm′ = (Ylm, hrip(r̂)Ylm′)r̂,

(C2)

with `
(0)
l|m| defined by (103). If m 6= 0 each eigenvalue of

H
(0)
l is doubly degenerate and (87) can be approximately

rewritten as:

`lm ≈ `(0)l|m| + `
(1)
l,±|m|, (C3)

where `
(1)
l,+|m| and `

(1)
l,−|m| denote the eigenvalues of the

2× 2 matrix H
(1)
lm defined by

H
(1)
lm ≡

[ (
Ylm, hrip(r̂)Ylm

)
r̂

(
Ylm, hrip(r̂)Yl,−m

)
r̂(

Yl,−m, hrip(r̂)Ylm
)
r̂

(
Yl,−m, hrip(r̂)Yl,−m

)
r̂

]
,

(C4)

with m = 1, 2, . . . , l. Explicitly,

`
(1)
l,±|m| =

1

2

(
H11 +H22 ±∆

)
, (C5)
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FIG. 11. Characteristic values for eqs. (B1) (filled and open
red circles) and (B3) (blue squares on the real axis) as given
in Fig. 9 for Re(ka) > 0. Top: TE polarization; bottom: TM
polarization. The first two resonances of an open (zr1l and zr2l)
and a closed (x1l and x2l) sphere are marked. In this figure
we have chosen the same parameters as in Fig. 9, that is
n1 = 1.5 and l = 10. For the sake of clarity we have omitted
the index l in the plots.



20

where here and hereafter we use the shorthand notation
[H

(1)
lm ]ij ≡ Hij , (i, j = 1, 2), and

∆ =

√
(H11 −H22)2 + 4 |H12|2. (C6)

If m = 0 we can apply non-degenerate perturbation the-
ory to obtain

`l0 ≈ `(0)l0 +
(
Yl0, hrip(r̂)Yl0

)
r̂
. (C7)

Similarly, the functions Ylm(r̂) spanning the degenerate
subspace Dnl can be approximated by

Ylm(r̂) ≈ Ylm(r̂) + (1− δm0)Y(0)
l,±|m|(r̂), (C8)

where

Y(0)
l,±|m|(r̂) = C1±Yl|m|(r̂) + C2±Yl,−|m|(r̂), (C9)

with the superscript “(0)” marking the zero-order char-
acter of these corrections, and

C1± =

√
H12

2 |H12|

(
1± H11 −H22

∆

)
,

C2± = ±

√
H21

2 |H21|

(
1∓ H11 −H22

∆

)
.

(C10)

Appendix D: Description of the effective stochastic
surface roughness

We describe the surface roughness of the sphere by the
random function

h(r̂) =

LMax∑
L=2

L∑
M=−L

hLMYLM (r̂), (D1)

where the reality constraint h(r̂) = h∗(r̂) entails h∗LM =
(−1)MhL,−M . The value of LMax is determined by the
physical process generating the roughness. For example,
the roughness could be caused by a stationary, stochastic
process, characterised by

h(r̂) = 0, (D2a)

h(r̂)h(r̂′) =

LMax∑
L=2

gLPL(cos γ), (D2b)

where the over bar denotes statistical average over the
ensemble of realizations of the surface profile, PL(cos γ)
is the L-degree Legendre polynomial and cos γ = r̂ · r̂′

[49]. From (D2b) and PL(1) = 1, it follows that the
coefficients gL obey the sum rule:

h2(r̂) =

∞∑
L=2

gL ≡ ∆2, (D3)

where ∆ denotes the standard deviation and quantifies
the magnitude of the surface roughness. The coefficients
gL actually determine the properties of the rough surface
and must be such that the sum (D3) converges to a finite
value. For example, if the dielectric sphere represents a
4He droplet at temperature T with random deformation
induced by thermally excited ripplons we have, according
to [2],

gL =
kBT

γS a2
1

L(L+ 1)− 2
, (D4)

where γS the surface tension of the liquid and kB is the
Boltzmann constant. In this case a straightforward cal-
culation shows that

∞∑
L=2

gL =
kBT

γS a2
11

18
. (D5)

Substituting (D1) into (D2) we determine the statis-
tical properties of the real random variables ULM =
Re (hLM ) and VLM = Im (hLM ). After a straightforward
calculation we obtain ULM = 0 = VLM , and

ULMUL′M ′ =
2π

2L+ 1
gL (1 + δM0) δLL′ δMM ′ , (D6a)

VLMVL′M ′ =
2π

2L+ 1
gL δLL′ δMM ′ , (D6b)

ULMVL′M ′ = 0. (D6c)

For numerical simulations, we found it convenient to
model ULM and VLM as Gaussian random variables dis-
tributed according to the probability density function

f(x;µ, σ) =
1√
2πσ

exp

[
− (x− µ)

2

2σ2

]
, (D7)

with µ = 0 and

σ2 =

{
U2
LM , if x = ULM ,

V 2
LM , if x = VLM ,

(D8)

where (D6) have been used. Once these numbers have
been generated we write:

hLM =


ULM + iVLM , M > 0,

UL0, M = 0,

(−1)M (UL,−M − iVL,−M ) , M < 0.

(D9)
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