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We explore the recently introduced concept of a generalized Hanbury Brown-Twiss

effect (HBT) as applied to the focal plane of a lens that is used to focus a random

electromagnetic beam. We find that the strength of the HBT correlation can be

increased by the lens. Furthermore, the associated Stokes scintillations of the focused

field display a surprisingly complicated spatial behavior. We illustrate, using the sum

rules for scintillations and correlations, how focused fields can be tuned for different

applications.
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I. INTRODUCTION

The Hanbury Brown–Twiss effect (HBT), named after its two discoverers, was originally

applied to astronomy [1–3]. From the observed correlation of the intensity fluctuations at

two detectors the angular size of radio stars could be determined. The original application

assumed scalar fields originating from distant sources. Since then, other researchers have

extended the HBT effect to vector fields and to observation points that are not necessarily

in the far zone [4–13]. Recently, a polarization-resolved version of the HBT effect was

studied in [14]. There it was found that the effect is just one manifestation of many possible

correlations of fluctuations of the four Stokes parameters. In a similar vein, the concept of

scintillation was also extended using the more general notion of Stokes fluctuations. This

framework has since been used to study these new correlations in random electromagnetic

beams [15].

The classical treatment of the focusing of light assumes a deterministic wave field [16].

However, when the field is random, the intensity distribution [17, 18], the state of coher-

ence [19, 20], and the degree of polarization [21] in the focal region are strongly affected.

Moreover, the Stokes parameters, which describe the state of polarization of the focused

field, then become stochastic quantities. The first Stokes parameter, denoted S0, describes

the total intensity. That means that the correlation of the fluctuations of S0 are identical

with the HBT effect. Likewise, the variance of S0 is equivalent to the scintillation of the field.

Extending the notion of fluctuation correlations and variances to all four Stokes parameters,

as was done in [14], has led to the insight that a) these correlations can all be described by

a single formula, and b) the correlations and scintillations are not independent, but rather

satisfy certain sum rules. In this study we consider the HBT effect and the scintillation,

together with their generalized versions, for the case of a random electromagnetic beam that

is focused by a thin, paraxial lens. We find that the distribution of the Stokes scintillations

has a complicated structure, and show that whereas the HBT correlation can be increased

by the lens, the other Stokes fluctuation correlations can be decreased. Also, it is illustrated

how the sum rules can be applied to design focused fields in which certain scintillations or

correlations are suppressed.
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II. STOKES PARAMETERS AND THEIR FLUCTUATIONS

The state of polarization of an electromagnetic beam at position r and at frequency ω, can

be characterized by the four spectral Stokes parameters, denoted Sn(r, ω), with n = 0, 1, 2, 3.

A more complete characterization of such a beam, that also describes its two-point coherence

properties, is provided by the cross-spectral density matrix, which is defined as [22]

W (r1, r2, ω) =





Wxx Wxy

Wyx Wyy



 , (1)

where all the matrix elements are functions of the same three variables and are given by the

expression

Wij(r1, r2, ω) = 〈E∗

i (r1, ω)Ej(r2, ω)〉 (i, j = x, y). (2)

The angular brackets indicate an average taken over an ensemble of beam realizations. The

expectation value of the Stokes parameters can be expressed in terms of the cross-spectral

density matrix, evaluated at coincident points, as follows [22]:

〈S0(r, ω)〉 = Wxx(r, r, ω) +Wyy(r, r, ω), (3a)

〈S1(r, ω)〉 = Wxx(r, r, ω)−Wyy(r, r, ω), (3b)

〈S2(r, ω)〉 = Wxy(r, r, ω) +Wyx(r, r, ω), (3c)

〈S3(r, ω)〉 = i[Wyx(r, r, ω)−Wxy(r, r, ω)]. (3d)

The fluctuation of each Stokes parameter around its average value is defined as

∆Sn(r, ω) = Sn(r, ω)− 〈Sn(r, ω)〉, (n = 0, 1, 2, 3) (4)

where Sn(r, ω) is the spectral Stokes parameter pertaining to a single realization of the beam.

The 4 by 4 matrix C(r1, r2, ω), which describes all possible pairs of correlations between the

various Stokes fluctuations, is defined as [14]

Cnm(r1, r2, ω) ≡ 〈∆Sn(r1, ω)∆Sm(r2, ω)〉, (n,m = 0, 1, 2, 3). (5)

Under the assumption that the source that generates the beam is governed by Gaussian

statistics, the 16 elements of this Stokes fluctuation correlation matrix can be expressed in

terms of the cross-spectral density matrix as

Cnm(r1, r2, ω) =
∑

ab

∑

cd

σn
ab σ

m
cdWad(r1, r2, ω)W

∗

bc(r1, r2, ω), (a, b, c, d = x, y), (6)
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where σ0 denotes the 2 by 2 identity matrix, and the three Pauli spin matrices are defined

as

σ1 =





1 0

0 −1



 , σ2 =





0 1

1 0



 , σ3 =





0 −i

i 0



 , (7)

respectively. For example, we find for the element C23 that

C23(r1, r2) =
∑

ab

∑

cd

σ2
ab σ

3
cdWad(r1, r2)W

∗

bc(r1, r2) (8)

= i
[

Wxx(r1, r2)W
∗

yy(r1, r2) +Wyx(r1, r2)W
∗

xy(r1, r2)
]

− i
[

W ∗

xx(r1, r2)Wyy(r1, r2) +W ∗

yx(r1, r2)Wxy(r1, r2)
]

(9)

= −2 Im
[

Wxx(r1, r2)W
∗

yy(r1, r2) +Wyx(r1, r2)W
∗

xy(r1, r2)
]

(10)

= 2 Im[W ∗

xx(r1, r2)Wyy(r1, r2) +Wxy(r1, r2)W
∗

yx(r1, r2)], (11)

where for brevity the ω dependence of the various quantities has been suppressed. Likewise,

it is derived from Eq. (6) that the HBT coefficient, which describes the correlation of the

total intensity fluctuation ∆S0 at two points, is given by the expression

C00(r1, r2) = |Wxx(r1, r2)|
2 + |Wxy(r1, r2)|

2 + |Wyx(r1, r2)|
2 + |Wyy(r1, r2)|

2. (12)

Because of the nature of the Pauli spin matrices, all elements of the C matrix consist of a

sum of four, rather than sixteen, terms. We emphasize that while the correlations of the

fluctuations of the Stokes parameters are given by Eq. (6), the Stokes parameters themselves

are related by the inequality [22]

〈S1(r)〉
2 + 〈S2(r)〉

2 + 〈S3(r)〉
2 ≤ 〈S0(r)〉

2. (13)

The equal sign holds only for the case of a fully polarized beam.

When the two spatial arguments of the C matrix coincide, it reduces to the Stokes

scintillation matrix D, i.e.,

Dnm(r) ≡ Cnm(r, r). (14)

It is useful to introduce a normalized version of the C and the D matrices, both indicated

by the superscript N , by defining

CN
nm(r1, r2) =

Cnm(r1, r2)

〈S0(r1)〉〈S0(r2)〉
, (15)

DN
nm(r) =

Dnm(r)

〈S0(r)〉2
. (16)
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It was shown in [14] that the trace of the normalized C matrix has a clear physical meaning,

namely

3
∑

n=0

CN
nn(r1, r2) = 2 |η(r1, r2)|

2 . (17)

In Eq. (17) the quantity η(r1, r2) denotes the spectral degree of coherence, which is defined

as [22]

η(r1, r2) =
TrW(r1, r2)

√

TrW(r1, r1)TrW(r2, r2)
. (18)

(Notice that this definition of the spectral degree of coherence differs from the one presented

in [12]). The modulus of η(r1, r2) is related to the visibility of the interference fringes in

Young’s experiment with the two pinholes located at r1 and r2. Since η(r, r) = 1, it follows

immediately that the diagonal elements of the normalized D matrix are not independent,

but are related by the sum rule

3
∑

n=0

DN
nn(r) = 2. (19)

The first diagonal element, DN
00(r), is the usual scintillation coefficient or, equivalently, the

square of the scintillation index [23]. Under the assumption of Gaussian statistics, its bounds

are [24]

1

2
≤ DN

00(r) ≤ 1. (20)

Bounds for CN
00 were discussed in [13].

We note that both the Stokes fluctuations and the Stokes scintillations can be measured

using a narrowband spectral filter together with a division-of-amplitude photopolarimeter,

see, for example, [25] and the references therein.

III. FOCUSING GAUSSIAN SCHELL-MODEL BEAMS

It is well-known that a thin, converging, paraxial lens acts like a Fourier transformer for

scalar fields. To be more precise, the field in the back focal plane is proportional to the

Fourier transform of the field in the front focal plane [26, Sec. 5.2]. A similar relation holds
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for the elements of the cross-spectral density matrix of an electromagnetic beam that is

focused by such a lens [27], i.e.,

W
(f)
ij (ρ1,ρ2) =

1

λ2f 2
W̃

(in)
ij (−kρ1/f, kρ2/f) (i, j = x, y). (21)

Here the superscripts (in) and (f) indicate the front focal plane and the back focal plane,

respectively, and the vectors ρ = (x, y) describe a position in a plane that is transverse to the

central axis, which is taken to be the z axis. Furthermore, the wavenumber k = 2π/λ, with

λ the free-space wavelength, and f denotes the focal length. The spatial, four-dimensional

Fourier transform is defined as

W̃
(in)
ij (p,q) =

∫∫

∞

−∞

W
(in)
ij (ρ′,ρ′′) exp[−i(p · ρ′ + q · ρ′′)] d2ρ′d2ρ′′. (22)

Recently Eq. (21) has been used to examine the effect of focusing on the degree of polariza-

tion [21, 27]. Here we will apply it to the case of a partially coherent Gaussian Schell-model

beam (GSM), and study the fluctuations of the various Stokes parameters and their correla-

tions in the back focal plane of a thin, paraxial lens. We assume that a source that generates

a GSM beam is located in the front focal plane of the lens. The elements of the cross-spectral

density matrix, which was introduced in Eq. (1), are then given by the expressions [22]

W
(in)
ij (ρ′,ρ′′) = AiAjBij exp

[

−

(

ρ′2

4σ2
i

+
ρ′′2

4σ2
j

)]

exp

[

−
(ρ′′ − ρ′)2

2δ2ij

]

. (23)

Here Ai denotes the spectral amplitude of Ei, and Bij describes the correlation of Ei and Ej.

The symbols σi and δij represent effective spatial widths and coherence radii, respectively.

The parameters have to satisfy several constraints, i.e.,

Bxx = Byy = 1, (24)

Bxy = B∗

yx, (25)

Bxy = |Bxy|e
iφ,with |Bxy| ≤ 1, and φ ∈ R, (26)

δxy = δyx. (27)

Furthermore, the so-called realizability conditions are [28]

√

δ2xx + δ2yy
2

≤ δxy ≤

√

δxxδyy
|Bxy|

. (28)
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The above expression implies an upper bound for the modulus of Bxy, namely

|Bxy| ≤
2

δxx/δyy + δyy/δxx
. (29)

We restrict ourselves to the case that the two effective widths are identical, i.e., σx = σy = σ.

Then the source will generate a beam-like field if [29]

1

4σ2
+

1

δ2xx
≪

2π2

λ2
, and

1

4σ2
+

1

δ2yy
≪

2π2

λ2
. (30)

On changing to sum and difference variables

R+ =
ρ′ + ρ′′

2
, (31)

R− = ρ′′ − ρ′, (32)

we find that the spatial Fourier transform of the cross-spectral density matrix (23) is given

by the expression

W̃
(in)
ij (p,q) = AiAjBij

∫

∞

−∞

exp
[

−R2
+/2σ

2
]

exp [−iR+ · (q+ p)] d2R+

×

∫

∞

−∞

exp
[

−R2
−
/2Ω2

ij

]

exp [−iR− · (q− p)/2] d2R−,

= 4π2AiAjBijσ
2Ω2

ij exp[−σ2(q+ p)2/2]

× exp[−Ω2
ij(q− p)2/8], (33)

where

1

Ω2
ij

=
1

δ2ij
+

1

4σ2
. (34)

On substituting this into Eq. (21) we find that

W
(f)
ij (ρ1,ρ2) =

4π2AiAjBijσ
2Ω2

ij

λ2f 2
exp

[

−
σ2k2

2f 2
(ρ2 − ρ1)

2

]

× exp

[

−
Ω2

ijk
2

8f 2
(ρ1 + ρ2)

2

]

. (35)

We will use this result in Eq. (6) to obtain expressions for the correlation of the Stokes

fluctuations and the Stokes scintillations in the back focal plane.
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IV. STOKES SCINTILLATIONS

For the four diagonal elements of the Stokes scintillation matrix we have from Eq. (6)

and definition (14) that

D00(ρ) = |Wxx(ρ,ρ)|
2 + |Wxy(ρ,ρ)|

2 + |Wyx(ρ,ρ)|
2 + |Wyy(ρ,ρ)|

2. (36a)

D11(ρ) = |Wxx(ρ,ρ)|
2 − |Wxy(ρ,ρ)|

2 − |Wyx(ρ,ρ)|
2 + |Wyy(ρ,ρ)|

2. (36b)

D22(ρ) = 2Re
[

Wxx(ρ,ρ)W
∗

yy(ρ,ρ) +Wxy(ρ,ρ)W
∗

yx(ρ,ρ)
]

. (36c)

D33(ρ) = 2Re
[

Wxx(ρ,ρ)W
∗

yy(ρ,ρ)−Wxy(ρ,ρ)W
∗

yx(ρ,ρ)
]

. (36d)

On making use of Eq. (23) in these expressions, while setting σx = σy = σ, we find for the

normalized Stokes scintillations in the front focal plane of the lens the formulas

D
N (in)
00 =

A4
x + A4

y + 2A2
xA

2
y|Bxy|

2

(A2
x + A2

y)
2

, (37a)

D
N (in)
11 =

A4
x + A4

y − 2A2
xA

2
y|Bxy|

2

(A2
x + A2

y)
2

, (37b)

D
N (in)
22 =

2A2
xA

2
y [1 + |Bxy|

2 cos(2φ)]

(A2
x + A2

y)
2

, (37c)

D
N (in)
33 =

2A2
xA

2
y [1− |Bxy|

2 cos(2φ)]

(A2
x + A2

y)
2

. (37d)

We note that these four expressions are all uniform, i.e., the four Stokes scintillations are

independent of the transverse position ρ. It is easily verified that they obey the sum rule

expressed by Eq. (19), namely

3
∑

n=0

DN (in)
nn = 2. (38)

The Stokes scintillations in the back focal plane can be obtained by substituting from
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D
nn        

(   )rN   ( f )

r m(   m)
5 10 15 20 25 30

0.2

0.4

0.6

0.8

1.0

FIG. 1. The four scintillation coefficients D
N(f)
nn (ρ) in the back focal plane. The upper (at the

left-hand side of the plot) solid curve (blue) represents D
N(f)
00 (ρ), the upper dashed line (blue) is

its counterpart in the front focal plane, D
N(in)
00 . The solid green curve (second from top) is for

D
N(f)
11 (ρ), the dashed green line (second from top) is for D

N(in)
11 . The lowest curve (orange) depicts

D
N(f)
22 (ρ); and the lowest dashed line (orange) shows D

N(in)
22 . The third curve from top (red)

represents D
N(f)
33 (ρ), whereas the red dashed line (third from top) represents D

N(in)
33 . The dashed-

dotted black curve is the spectral density. In this example f = 25 cm, λ = 632.8 nm, Ax = 1,

Ay = 1.5, σ = 1 cm, |Bxy| = 0.3, φ = π/3, δxx = 2.5 mm, δyy = 4.0 mm, and δxy = 4.5 mm.
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Eq. (35) into Eqs. (36a)–(36d). This gives

D
N (f)
00 (ρ) =

[

A4
xΩ

4
xx exp(−Ω2

xxk
2ρ2/f 2) + A4

yΩ
4
yy exp(−Ω2

yyk
2ρ2/f 2)

+2A2
xA

2
yΩ

4
xy|Bxy|

2 exp(−Ω2
xyk

2ρ2/f 2)
]

/Λ2(ρ), (39a)

D
N (f)
11 (ρ) =

[

A4
xΩ

4
xx exp(−Ω2

xxk
2ρ2/f 2) + A4

yΩ
4
yy exp(−Ω2

yyk
2ρ2/f 2)

−2A2
xA

2
yΩ

4
xy|Bxy|

2 exp(−Ω2
xyk

2ρ2/f 2)
]

/Λ2(ρ), (39b)

D
N (f)
22 (ρ) = 2A2

xA
2
y

{

Ω2
xxΩ

2
yy exp[−(Ω2

xx + Ω2
yy)k

2ρ2/2f 2]

+ Ω4
xy|Bxy|

2 cos(2φ) exp(−Ω2
xyk

2ρ2/f 2)
}

/Λ2(ρ), (39c)

D
N (f)
33 (ρ) = 2A2

xA
2
y

{

Ω2
xxΩ

2
yy exp[−(Ω2

xx + Ω2
yy)k

2ρ2/2f 2]

− Ω4
xy|Bxy|

2 cos(2φ) exp(−Ω2
xyk

2ρ2/f 2)
}

/Λ2(ρ), (39d)

where

Λ(ρ) = A2
xΩ

2
xx exp(−Ω2

xxk
2ρ2/2f 2) + A2

yΩ
2
yy exp(−Ω2

yyk
2ρ2/2f 2). (40)

These scintillation coefficients are, in contrast to their counterparts in the front focal plane,

not uniform but clearly depend on the radial distance ρ. An example is shown in Fig. 1.

The four scintillation coefficients display strikingly different behavior. For example, the

‘traditional’ scintillation coefficient D
N(f)
00 , represented by the solid blue curve, is larger at

the geometrical focus (ρ = 0) than its twin in the front focal plane, D
N(in)
00 (dashed blue

curve), namely 0.84 vs. 0.61. The value of D
N(f)
00 gradually decreases to about 0.5 and then

increases to unity. This is in marked contrast to, for example, D
N(f)
33 , which is shown as the

solid red curve. This coefficient at the geometrical focus is less than D
N(in)
33 (0.29 vs. 0.44),

and it first increases before eventually tending to zero. In Eqs. (39a)–(39b) the third term

decreases much faster with increasing ρ than the first two terms. That means that when

ρ > 16µm the curves for D
N(f)
00 and D

N(f)
11 overlap. The same applies for the second term

that occurs in the expressions for D
N(f)
22 and D

N(f)
33 .

It is straightforward to verify that the scintillation coefficients in the back focal plane
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again satisfy the sum rule given by Eq. (19), namely

3
∑

n=0

DN (f)
nn (ρ) = 2. (41)

This sum rule opens up the intriguing possibility of what we might term, in analogy to a well-

known concept in quantum optics [30], scintillation squeezing. By changing the parameters

of the incident beam the scintillation of one particular Stokes parameter of the focused

field can be decreased while changing those of the others. In this process their total sum

remains fixed at two. It is to be noted that, under the assumption of Gaussian statistics,

the traditional scintillation coefficent D
N(f)
00 is bounded, namely [24]

1

2
≤ D

N(f)
00 ≤ 1, (42)

which obviously limits scintillation squeezing.

Table I illustrates the process of squeezing. The four Stokes scintillations at the geomet-

rical focus are shown for various values of |Bxy|, the modulus of the correlation coefficient

that was defined in Eq. (23). In the Table this modulus ranges from zero to the upper bound

given by Eq. (29). It is seen that D
N(f)
00 can be lowered significantly by decreasing |Bxy|.

However, this leads to an increase of the second coefficient, D
N(f)
11 . A similar trade-off occurs

for the other two Stokes scintillation coefficients. Changing |Bxy| is, of course, just one way

to squeeze the Stokes scintillations. Another example is presented in Table II, where the

on-axis scintillations are shown for selected values of the coherence radius δxx. It is seen

that whereas D
N(f)
11 can be changed substantially, this is not the case for D

N(f)
22 .

By tuning the various source parameters one can design a focused field in which the

fluctuations of a prescribed Stokes parameter are minimized. For example, partially coherent

light is sometimes used to reduce unwanted speckle (see [31, p. 260]). If such light is focused

onto a chiral object that is particularly sensitive to one type of circular polarization, it may

be advantageous to minimize the scintillation of S3.

Whereas the examples of the diagonal Stokes scintillations D
N(f)
nn (ρ) that we discussed so

far are all positive-valued, this is not always the case for the off-diagonal scintillations. For

example, from Eq. (11) we find, on setting r1 = r2 and using Eq. (35) that

D
N(f)
23 (ρ) = 2A2

xA
2
yΩ

4
xy|Bxy|

2 sin(2φ) exp(−Ω2
xyk

2ρ2/f 2)/Λ2(ρ). (43)
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TABLE I. Scintillation squeezing. In this example the parameters are taken as Ax = Ay = 1,

λ = 632.8 nm, σ = 5 mm, φ = π/3, δxx = 3.0 mm, δyy = 3.5 mm, and δxy = 5.0 mm.

Scintillation

at focus |Bxy| = 0.41 |Bxy| = 0.2 |Bxy| = 0

D
N(f)
00 0.88 0.60 0.51

D
N(f)
11 0.14 0.42 0.51

D
N(f)
22 0.31 0.45 0.49

D
N(f)
33 0.67 0.53 0.49

Sum 2 2 2

TABLE II. Scintillation squeezing. The parameters are taken as Ax = Ay = 1, |Bxy| = 0.5,

λ = 632.8 nm, σ = 5 mm, φ = π/3, δyy = 3.5 mm, and δxy = 5.0 mm.

Scintillation

at focus δxx = 4 mm δxx = 5 mm δxx = 6 mm

D
N(f)
00 0.83 0.75 0.73

D
N(f)
11 0.18 0.33 0.44

D
N(f)
22 0.33 0.35 0.34

D
N(f)
33 0.66 0.56 0.48

Sum 2 2 2

Clearly, this coefficient is negative whenever sin(2φ) < 0.

V. STOKES FLUCTUATION CORRELATIONS

In order to study the Hanbury Brown–Twiss effect in its generalized form, we use Eqs. (6)

and (15). We restrict ourselves to the four diagonal correlations. Taking the first reference

point to be on the z axis (ρ1 = 0) and setting σx = σy = σ, we find from Eq. (23) for the
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2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r
2
 (mm)

C
nn         

(0,     )N (in) r
2

FIG. 2. The four diagonal Stokes fluctuation correlations C
N(in)
nn (0, ρ2) in the front focal plane. The

upper (blue) curve represents C
N(in)
00 (0, ρ2). The green curve (second from top) shows C

N(in)
11 (0, ρ2).

The lowest (orange) curve is for C
N(in)
22 (0, ρ2), whereas the red curve (third from top) is for

C
N(in)
33 (0, ρ2). The parameters are the same as in Fig. 1. Notice that the horizontal scale is

now in millimeters rather than in microns.

HBT coefficients in the front focal plane the expressions

C
N(in)
00 (0, ρ2) =

[

A4
x exp(−ρ22/δ

2
xx) + A4

y exp(−ρ22/δ
2
yy)

+ 2A2
xA

2
y|Bxy|

2 exp(−ρ22/δ
2
xy)

]

/
(

A2
x + A2

y

)2
, (44a)

C
N(in)
11 (0, ρ2) =

[

A4
x exp(−ρ22/δ

2
xx) + A4

y exp(−ρ22/δ
2
yy)

− 2A2
xA

2
y|Bxy|

2 exp(−ρ22/δ
2
xy)

]

/
(

A2
x + A2

y

)2
, (44b)

C
N(in)
22 (0, ρ2) = 2A2

xA
2
y

{

exp

[

−
ρ22
2

(

1

δ2xx
+

1

δ2yy

)]

+ |Bxy|
2 cos(2φ) exp

(

−
ρ22
δ2xy

)}

/(A2
x + A2

y)
2, (44c)
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FIG. 3. The four Stokes fluctuation correlations C
N(f)
nn (0, ρ2) in the back focal plane of the lens.

The top curve (blue) represents C
N(f)
00 (0, ρ2). The second curve (green) is for = C

N(f)
11 (0, ρ2). The

bottom curve (orange) shows = C
N(f)
22 (0, ρ2), and the one but lowest curve (red) is for C

N(f)
33 (0, ρ2).

The parameters are the same as in Fig. 1

C
N(in)
33 (0, ρ2) = 2A2

xA
2
y

{

exp

[

−
ρ22
2

(

1

δ2xx
+

1

δ2yy

)]

− |Bxy|
2 cos(2φ) exp

(

−
ρ22
δ2xy

)}

/(A2
x + A2

y)
2. (44d)

The Stokes fluctuation correlations in the front focal plane are shown in Fig. 2 for the same

values of the parameters as in Fig. 1. The first of these coefficients, C
N(in)
00 (0, ρ2), represented

by the blue curve, is the traditional Hanbury Brown–Twiss coefficient. That is, it describes

the correlation of the intensity fluctuations in the front focal plane between the central axis

and a point at a radial distance ρ2.

In order to see the effect of focusing on these correlations we substitute from Eq. (35) into

Eqs. (6) and (15) and again set ρ1 = 0. This gives us for the Stokes fluctuation correlations

in the back focal plane the four expressions

C
N(f)
00 (0, ρ2) =

[

A4
xΩ

4
xx exp

(

−2βxxρ
2
2

)

+ A4
yΩ

4
yy exp(−2βyyρ

2
2)

+2A2
xA

2
yΩ

4
xy|Bxy|

2 exp(−2βxyρ
2
2)
]

/Λ(0)Λ(ρ2), (45a)
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C
N(f)
11 (0, ρ2) =

[

A4
xΩ

4
xx exp(−2βxxρ

2
2) + A4

yΩ
4
yy exp(−2βyyρ

2
2)

−2A2
xA

2
yΩ

4
xy|Bxy|

2 exp(−2βxyρ
2
2)
]

/Λ(0)Λ(ρ2), (45b)

C
N(f)
22 (0, ρ2) = 2A2

xA
2
y

{

Ω2
xxΩ

2
yy exp[−(βxx + βyy)ρ

2
2]

+ Ω4
xy|Bxy|

2 cos(2φ) exp(−2βxyρ
2
2)
}

/Λ(0)Λ(ρ2), (45c)

C
N(f)
33 (0, ρ2) = 2A2

xA
2
y

{

Ω2
xxΩ

2
yy exp[−(βxx + βyy)ρ

2
2]

− Ω4
xy|Bxy|

2 cos(2φ) exp(−2βxyρ
2
2)
}

/Λ(0)Λ(ρ2), (45d)

where

βij ≡
k2

f 2

(

σ2

2
+

Ω2
ij

8

)

, (46)

and with the function Λ(ρ) defined above in Eq. (40). We note that, unlike the correlations of

the incident field given by Eqs. (44a)–(44d), the correlations in the focal plane depend on the

effective source width σ via the parameter βij . The first coefficient, C
N(f)
00 (0, ρ2), represents

the usual Hanbury Brown–Twiss coefficient in the focal plane. All four correlations are

illustrated in Fig. 3. In this example the HBT correlations are seen to drop off significantly

faster than the Stokes scintillations that are plotted in Fig. 1.

On comparing Figs. 2 and 3, it is seen that whereas the width of the different correlations

in the front focal plane is on the order of millimeters, in the back focal plane they are on the

order of microns. That the action of the lens dramatically shortens the effective correlation

widths is, of course, to be expected. However, quite surprising is the effect on the maximum

value of the correlations that occurs on the z axis near ρ2 = 0. Whereas the first two

correlations, C
N(f)
00 and C

N(f)
11 are stronger after the focusing process, the opposite is true for

C
N(f)
22 and C

N(f)
33 . These are both weaker than their counterparts in the front focal plane.

This unexpected effect is due to the fact that each cross-spectral density matrix element is

affected differently by the lens, as can be seen from Eq. (21). The four HBT correlations,

which are combinations of these elements, are therefore all transformed differently by the

focusing.

The traditional HBT correlation in the focal plane, C
N(f)
00 , depends in a complicated

way on the different source parameters, as can be seen from Eq. (45a). This dependence is

illustrated in Fig. 4 where the normalized correlation coefficient is plotted for several choices
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FIG. 4. The classical HBT correlation C
N(f)
00 (0, ρ2) in the back focal plane for selected values of

the coherence radius δxx. The curves, from top to bottom, represent the case δxx = 2 mm (blue),

δxx = 3 mm (green), and δxx = 4 mm (orange), respectively. The other parameters are the same

as in Fig. 1

of the coherence radius δxx. It is seen that the correlation of the intensity fluctuations

decreases when this radius is increased.

Just like the generalized scintillations that were discussed in Sec. IV, the diagonal Stokes

fluctuation correlations also satisfy a sum rule, namely Eq. (17). According to this equation

the sum of the correlations is equal to two times the modulus of η(r1, r2), the spectral degree

of coherence. It is clear from the definition of this quantity that it is described only by the

diagonal elements of the cross-spectral density matrixW(r1, r2). Therefore it is independent

of the coefficient Bxy and the correlation radius δxy that are defined in Eq. (23). However, the

diagonal Stokes fluctuation correlations C
N(f)
nn (0, ρ2) do depend on these two parameters, as

is clear from Eqs. (45a)–(45d). This means that the strength of the four correlations can be

“distributed” by varying Bxy or δxy, while keeping their total sum fixed. This is illustrated in

Table III. We find that the traditional HBT coefficient, C
N(f)
00 , can be significantly increased

by varying |Bxy| from zero to its maximum value. This is accompanied by a strong decrease

to almost zero of C
N(f)
11 .
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TABLE III. Distributing correlations. The four diagonal Stokes fluctuation correlations

C
N(f)
nn (0, ρ2) in the focal plane at ρ2 = 2 micron. The parameters are taken as Ax = Ay = 1,

σ = 1 cm, f = 50 cm, λ = 632.8 nm, φ = π/3, δxx = δyy = 2.5 mm, and δxy = 3.0 mm. In this

example |η(0, ρ2)| = 0.925.

Correlations in

the focal plane |Bxy| = 0.00 |Bxy| = 0.40 |Bxy| = 0.69

C
N(f)
00 0.43 0.57 0.84

C
N(f)
11 0.43 0.29 0.01

C
N(f)
22 0.43 0.36 0.22

C
N(f)
33 0.43 0.49 0.64

Sum 1.71 1.71 1.71

VI. CONCLUSIONS

We have applied the recently developed framework of generalized Stokes fluctuation cor-

relations and Stokes scintillations to the case of a focused, random electromagnetic beam.

The scintillations in the back focal plane of the lens are found to be typically non-

uniform. Since they satisfy a sum rule, one particular Stokes scintillation may be suppressed

at the expense of others. Depending on the intended application, the source design can be

optimized to make use of this effect.

The generalized Hanbury Brown–Twiss correlations are also strongly influenced by the

focusing process. Their maximum value can either be lower or higher than that of the same

correlation in the front focal plane. Just like the generalized scintillations, the generalized

correlations are also related by a sum rule. This gives the possibility for a trade-off between

their relative strengths.

Our analysis shows that the state of coherence of the incident field significantly affects

the generalized HBT correlations and the scintillation of the four Stokes parameters. We

illustrated our results for the case of a Gaussian Schell-model beam. It will be useful to

extend the analysis to other types of beams such as vortex beams or Bessel-correlated beams.
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