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We study the non-equilibrium dynamics of a 1D Bose-Hubbard model in a gradient potential and
a superlattice, beginning from a deep Mott insulator regime with an average filling of one particle
per site. Studying a quench that is near resonance to tunnelling of the particles over two lattice
sites, we show how a spin model emerges consisting of two coupled Ising chains that are coupled
by interaction terms in a staggered geometry. We compare and contrast the behavior in this case
with that in a previously studied case where the resonant tunnelling was over a single site. Using
optimized tensor network techniques to calculate finite temperature behavior of the model, as well
as finite size scaling for the ground state, we conclude that the universality class of the phase
transition for the coupled chains is that of a tricritical Ising point. We also investigate the out-of-
equilibrium dynamics after the quench in the vicinity of the resonance and compare dynamics with
recent experiments realized without the superlattice geometry. This model is directly realizable in
current experiments, and reflects a new general way to realize spin models with ultracold atoms in
optical lattices.

I. INTRODUCTION

In recent years, ultracold atoms in optical lattices have
proven to be a flexible testing ground for phenomena in
strongly interacting systems [1, 2]. These experimental
platforms both allow us to implement and explore models
that have been developed theoretically as models for com-
plex condensed matter systems, and inspire us to consider
physics that is motivated by these experiments and has
no direct analogue in other physical systems. Particular
interest lies in the time-dependent control of parameters,
and especially immediate quantum quenches, leading to
out-of-equilibrium dynamics that can be tracked in real
time [3–5].

Recent experimental work demonstrated many-body
dynamics of bosons in a tilted optical lattice [6–8] far
away from regimes of a simple quantum walk of a sin-
gle particle [9, 10]. Following a theoretical proposal by
Sachdev et al., Ref. [11], a regime of resonant tunnelling
was explored where the energy to tunnel over one site
in the lattice, E, is equal to the on-site energy shift be-
tween two atoms U . This system exhibits a quantum
phase transition to a density-wave-ordered state, in which
empty sites alternate with doubly occupied sites. This
system also exhibits interesting and non-trivial many-
body dynamics in out-of-equilibrium situations [7, 12].

The theory has been extended to higher dimensions
[13], but has up to now been applied to one-site reso-
nant tunnelling only. However, experiments have shown
out-of-equilibrium resonant dynamics over multiple sites,
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when E = U/n for positive integer n [8]. Here and in
Ref. [14] we introduce a superlattice into this system,
in order to cleanly extend these studies to the case of
general n. We focus here on n = 2, comparing and con-
trasting the critical behavior and the dynamics observed
for n = 1 and n = 2. We derive effective spin models
for each of the cases and analyze the dynamics of atoms
from this perspective. In contrast to Ref. [14], here we
analyse the behaviour of the structure factor of the spin
model, as well as details of the collective excitations in
the coupled spin chains. This is specifically relevant for
measurements that could be performed in quantum gas
microscopes. In addition, we present a general technique
for the analysis of projects Hamiltonians with tensor net-
work methods.

This article is organized as follows: In Sec. II we start
by reviewing the effective skew-field Ising model describ-
ing resonant tunnelling over one site (n = 1). We then de-
rive the effective spin model in regime of two-site (n = 2)
resonant tunnelling, as arises in the superlattice geome-
try. In Sec. III we consider elementary excitations in each
model, comparing and contrasting the dynamics in the
n = 1 and n = 2 cases. We then study more closely the
critical behavior of each of the models in Sec. IV, mak-
ing use of numerical calculations with finite size scaling
at critical points. We confirm the Ising criticality of the
n = 1 model and then determine that the scaling of the
order parameter of the second model is compatible with
a tricritical Ising point [15]. We conclude our investiga-
tion with comparison of the specific heat capacity in both
cases in Sec. V, and provide a summary and outlook in
Sec. VI.
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II. THE SPIN MODELS

In this section we derive effective spin models for mo-
tion of bosons on the optical lattice described by the
one-dimensional Bose-Hubbard Hamiltonian

H = −J
∑
〈i,j〉

b†i bj +
U

2

∑
i

ni(ni − 1)−
∑
i

Vini, (1)

where J is the hopping matrix element, 〈·, ·〉 implies sum-
mation only over neighboring sites, U is the on-site inter-
action between bosons, and the site-dependent external
potential

Vi = E · i+ (−1)i
µ

2
, (2)

which has two contributions. The first is the external
linear field E that creates a constant gradient potential,
which can be generated by either a gravitational force
(if the optical lattice sites are oriented vertically) or an
external field (electric or magnetic). The second contri-
bution to Vi is the energy offset µ between even and odd
sites of the optical lattice, defining the superlattice. The
model preserves the total number of particles N and we
will be considering the case of the unit filling, when the
number of sites M = N .

In the presence of a linear tilt E 6= 0 the energy of the
Hamiltonian (1) for the infinite lattice is not bounded
from below, hence the ground state cannot be properly
defined. It means that the stationary state is the one in
which all particles have fallen down the potential ladder
and left the system.

Instead we focus on the regime deep in the Mott insu-
lator (MI) phase, i.e. J � U , and consider the dynamics
of atoms on typical experimental timescales. However,
the system can be tuned to a situation in which there
are very different time scales, so that starting from a cer-
tain initial state, for short enough time (this scale will
be explained below for particular examples of tilts), the
system will only visit certain states in the vicinity of the
initial state, and only on much longer time scales the
particles will eventually fall out of the lattice.

The experiment we have in mind thus would start with
the unit filled MI state,

∏
i |1〉i, and Vi = 0, then the ex-

ternal potential is quenched on, Vi 6= 0, allowing particles
to tunnel to other sites more effectively. This experiment
has already been realized in a number of laboratories [6–
8], and the MI phase has been observed to be resilient for
generic values of the linear tilt E on the duration of the
experiment, due to the strong interactions U . Despite the
tilt the bosons are trapped for long times at their initial
positions, this phenomenon was expected, since as first
discussed in [16], even without interactions a linear tilt
supports localization of the energy eigenstates on single
sites.

The situation changes for specific values of the linear
tilt E = U/n, where n is an integer number, as then the
MI state resonantly couples to a subset of other states.

The dynamics of bosons was observed experimentally in
Refs. [6–8]. The fact that only a small number of states
is in resonance with the parent MI state suggests the
existence of an effective model describing the behavior of
bosons in the vicinity of the resonance.

The case of the nearest-neighboring resonant tunneling
E = U has been extensively studied in Refs. [11, 13]
in the case of one and two dimensions. We revisit this
case in Sec. II A as it plays a role as a building block
for the case of the next-nearest-neighboring-site resonant
tunneling, E = U/2, considered in Sec. II B.

A. E = U regime

In the presence of the linear energy shift E = U and
µ = 0 the particles from the initial MI state (Fig. 1(a))
can hop to the nearest-neighboring site (down the tilted
potential) lowering the potential energy by E. Since the
simultaneous gain of the interaction energy U exactly
compensates this energy change the two states become
degenerate and it is said that they are resonantly con-
nected (Fig. 1(b)).

Once a boson has tunneled resonantly from its initial
site, the condition for resonant tunneling of its neighbors
has changed and they cannot move freely. In Fig. 1(b)
one can see an example of this constraint, which in gen-
eral means that states with two doubly occupied neigh-
boring sites are not allowed. In the regime J � U tran-
sitions into those states are suppressed in perturbation
theory by a factor ∝ J/U , and hence the occupation
of such states is suppressed as ∝ (J/U)2. Exactly the
same energy argument can be considered for other single-
tunneling processes between the states, for which the en-
ergy difference is proportional to U .

A small detuning from the resonance condition, i.e.
|U − E| � U , does not qualitatively alter the scenario
and thus bosons can resonantly tunnel only between two
sites: the initial one and its closest neighbor. The system
dynamics is then confined to the subspace of states res-
onantly connected by tunneling of the indistinguishable
bosons to the parent tilted MI state.

This fact is exploited to establish the following map-
ping with a spin- 12 chain: a boson on its initial position

on the ith site is mapped to a spin down |↓〉i, and a boson
that leaves the ith site via the resonant tunneling with a
spin up |↑〉i. Note that following this scheme, |↓〉i can be
associated with a site with one or two bosons on the ith

site of the lattice, but due to the constraint forbidding
tunneling from neighboring sites this mapping is actually
one-to-one and confusion is always avoided by checking
the occupation of the neighboring sites (see Fig. 1(a,b)).

Then in the regime of a small detuning

|U − E|, J � E,U, (3)

the behavior of bosons at relevant time scales can be
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FIG. 1. Schematic representation of the tilted unit filled
MI states and example states coupled to them in the regime
E = U (a,b) and E = U/2 (c,d). Mapping to spin chains
works on the site-wise basis and drawn underneath. For finite
lattices, sites at the bottom of the tilted potential do not
have mapping to spins because bosons on these sites cannot
resonantly tunnel away. In the regime E = U the initial state∏
i |1〉i is mapped to

∏
i |↓〉i (a), if the ith boson resonantly

tunnels away the ith spin changes to |↑〉 (b). Bosons from
neighboring sites cannot hop down the slope simultaneously
(b), which forbids configurations of two consecutive |↑〉. In the
regime E = U/2 the situation is similar if a boson stays at
the initial site, it is mapped to |↓〉 (c), and if a boson tunnels
two sites down the slope it is mapped to |↑〉 (d). Bosons
on next-nearest-neighboring sites cannot hop down the slope
resonantly, which forbids two consecutive |↑〉 on sites of the
same parity (d). The role of the superlattice offset µ (not
shown here) is explained in the main text.

mapped to the effective spin model

HU =
∑
i

(−
√

2σxi + λ̃σ↑i +Wσ↑i σ
↑
i+1), (4)

where

λ̃ =
U − E
J

(5)

denotes the deviation from the resonance, σ↑ = (σz+1)/2
is a projector on spin-up, and W → +∞ is the constraint
term that forbids two neighboring spin-ups. Note that
the Hamiltonian (4) is dimensionless as it is rescaled by
the first order tunneling amplitude J . It should be men-
tioned that a very similar Hamiltonian describes quan-
tum dynamics of the ensemble of Rydberg atoms [17, 18],
which was proposed back in [19].

B. E = U/2 regime

Analogously to the regime E = U , we now build the ef-
fective spin model that describes the behavior of the unit
filled MI state, but with a linear tilt E = U/2. Besides
this mapping will require a superlattice geometry µ� J ,
which will confine bosons to sites of the same parity, i.e.

bosons from initial odd sites will always move only to
odd sites, and the same for bosons on even sites. Hence
the resulting effective model in this regime will resemble
two spin chains E = U that are coupled.

Once the tilt is set exactly at E = U/2 the initial MI
state becomes degenerate with a set of other states, for
instance in Fig. 1(c) one can see that if a boson moves
two sites down the slope, the new state will be degener-
ate with the initial MI state. The tunneling part of the
Hamiltonian (1) will play the role of a perturbation that
couples the states of this energy manifold. The reader
can see that in order to couple two resonant states at
least two tunneling processes are required, which means
that the construction of the effective Hamiltonian [20]
will require second order processes.

All the non-trivial resonant transitions in the energy
manifold of interest can be categorized in three types.

The first type of transitions couple resonant states via
tunneling of a boson over two sites down the slope of the
tilted potential. In this case the amplitude of the tran-
sition will depend on the occupations of the initial and
final sites as well as the intermediate site. For instance,
the initial MI site is coupled with∏

i

|1〉i ↔ |0〉j |2〉j+2

∏
i 6=j,j+2

|1〉i , (6)

where a single boson tunnels twice ending up on a next-
nearest-neighboring site. This process can go via two
channels: when the boson on site j tunnels to j + 1 and
then from j + 1 to j + 2, or the boson from j + 1 first
tunnels to j + 2 and then the boson from j tunnels to
j + 1. The resulting matrix element of this transition
equals 3

√
2J2/U . For each process of this type, there

is the opposite, where a particle from a doubly occu-
pied site tunnels uphill to the empty site. Analogous to
the regime E = U one can notice that states with two
doubly occupied sites on next-nearest-neighboring sites
are not in the resonance manifold with the original MI
state (Fig. 1(d)), i.e. the occupation of such states is
suppressed as ∝ (J/U)4.

In the second type of resonant tunneling processes a
single boson hops to its neighboring site and then hops
back to the original site. In this case the configuration of
bosons does not change, but each state obtains an energy
shift depending on the occupation of neighboring sites.
For instance, the initial MI state obtains the energy shift
of −16J2/3U per boson, ignoring boundaries.

The third type of process occurs only for certain con-
figurations of bosons on the lattice. For these processes
two bosons from the same site tunnel in the opposite
directions, for instance the transition

|..., 0,
xy

1, 2, 0, 1, 2, ...〉 ↔ |..., 0, 2, 0, 1, 1, 2, ...〉 (7)

is resonant however it does not fit in the mapping scheme
(will be explained below).

For this reason we introduce the offset energy µ � J
between even and odd sites of the lattice, which means
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that the occupation of states achieved only via the third
type of processes will scale as ∝ (J/µ)4. For simplicity,
we also assume from now on that µ� U , which will make
the effective spin model independent on µ. In principle,
the flexible ratio µ/U can be exploited in the experiment,
but we will leave this discussion for future work.

The reader might also think that there is another type
of non-trivial processes when two bosons in different
parts of the lattice tunnel to their neighboring sites in
the opposite directions reaching another resonant state,
e.g.

|..., 0,
x

1, 2, 0, 1,
y

2, 1, ...〉 ↔ |..., 0, 2, 1, 0, 1, 1, 2, ...〉 (8)

However, these processes arises from two channels, de-
pending whether it is the boson from the left or right
site tunnels first. Hence, these channels will have differ-
ent intermediate states, more precisely the energy differ-
ence of these states and the energy of the MI state will
have the same amplitude, but different sign. Hence, the
amplitudes of this channels added together cancel each
other exactly.

The mapping between bosons and spins is similar to
the regime E = U . With only the first and second types
of transition left, the dynamics of each boson is confined
between the initial site of the parent MI state and the
resonantly connected site. That is why it is enough to
consider mapping to the spins- 12 chain, for each particle

located on its initial ith site of the MI state we assign a
spin down |↓〉i (Fig. 1(c)). Then if a boson from the site
i tunnels to the next-nearest-neighboring site down the
slope the corresponding spin becomes |↑〉i (Fig. 1(d)).
Note that in the case of open boundary conditions the
bosons on the last two sites can resonantly tunnel only
via the second type of process, but not the first one. That
is why their corresponding spins states are always |↓〉 and
they can be eliminated from the spin model.

With this mapping scheme, the first type of process
provides the tunneling part of the effective spin Hamil-
tonian

Htun
U/2 =

√
2
J2

U/2

∑
i

(σxi + 2σzi−1σ
x
i + 2σxi σ

z
i+1), (9)

where we have a new characteristic energy J2/(U/2) in-
stead of J for E = U . Another interesting thing is that
besides the first term corresponding to a simple spin flip-
ping, one can see additional terms that modify the am-
plitude of spin flipping depending on the orientation of
neighboring spins. This is directly connected to the fact
that tunneling of particles depends on the occupation of
the neighboring sites. The constraint part of the Hamil-
tonian in the spin language then will forbid two next-
nearest-neighboring spin-ups, i.e. the constraint is im-
plemented only between spins of the same parity.

The second type of process gives the interaction part
of the effective spin Hamiltonian

H int
U/2 = − 4

15

J2

U/2

∑
i

(5+7σzi +6σzi σ
z
i+1+6σzi σ

z
i+3), (10)

where besides neighboring interactions, spins at distance
three are coupled as well.

Adding together (9) and (10), and inverting σx → −σx
to resemble the regime E = U we obtain the effective
Hamiltonian in its final form

HU/2 =
∑
i

[
−
√

2σxi + λσ↑i +Wσ↑i σ
↑
i+2 +

8− 56σ↑i
15

−2
√

2(σxi σ
z
i+1 + σzi σ

x
i+1)− 8

5
(σzi σ

z
i+1 + σzi σ

z
i+3)

]
. (11)

where

λ =
U/2− E
J2/(U/2)

, (12)

denotes the detuning from the resonance in the regime{
|U/2− E| � U

J � µ� U
, (13)

and the weight W → +∞ implements the constraint
on spin configurations similarly to Eq. (4). Note that
the Hamiltonian (11) is dimensionless as it is rescaled
by a characteristic second order tunneling amplitude
J2/(U/2).

Note that the first three terms are just two copies of
Eq. (4), one for the even spins and one for the odd spins;
these would be the only terms if the tunnelling of bosons
did not depend on the occupation of neighboring sites.
The fifth and sixth terms represent the coupling between
the odd and even sublattices that arises from this de-
pendence (Fig. 1(c) in [14]). The remaining term just
shifts the entire energy spectrum along the energy and
detuning λ axes due to interactions between even and
odd spins.

III. MICROSCOPIC PICTURE

Essential points on the phase diagram for the spin
models (4) and (11) become clear if one first takes a
look at the cases of extremely large tilts, λ → ±∞ (and

λ̃→ ±∞). Here we consider the infinite constraint case,
W =∞, i.e. forbidden spin configuration are completely
removed from the Hilbert space.

Using a perturbative approach [20] we determine the
lowest excitations spectra and investigate similarities and
differences between the models. Both models have para-
magnetic (PM) and antiferromagnetic (AFM) phases in
the limit of large negative and positive tilts, respectively.
Each phase in both models has similar elementary exci-
tations, however the interaction terms σxσz and σzσz in
the regime E = U/2 (11) create new coupled excitations
that become relevant at small field λ.

This replacement of the lowest excitations suggests
that the nature of the phase transition changes as well.
In Sec. IV we investigate both models at their quantum
critical points and confirm the prediction of this section
— different critical behaviors of the models.
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A. E = U regime

The analysis of this regime was partially presented in
Ref. [11] and as it plays a role of a building block for the
regime E = U/2 we present it here for the completeness
of our description. In the regimes of large tilts the spin
flipping terms σx in (4) are treated as perturbations.

1. PM phase

In the limit λ̃ → +∞ the model is in the PM phase,
where its ground state has all spins aligned along the
longitudinal field, i.e.

∏
i |↓〉i. In the language of bosons

this corresponds to the state where all particles stay at
the initial sites of the parent MI state.

The lowest elementary excitations are single spin-up
states |j〉 = |↑〉j

∏
i 6=j |↓〉i (Fig. 2(c)), the degeneracy of

which is lifted only in second order of the perturbation
theory in 1/λ̃ via the spin flipping terms σx. In order
for |j〉 to move the jth spin should be flipped down and
another spin flipped up, i.e. there are two possible chan-
nels depending on the order of these processes. In gen-
eral they cancel each other, however if the constraint for
nearest-neighboring spins forbids one of the channels the
excitation can move by one site.

In the thermodynamic limit, M → ∞, using the ef-
fective Hamiltonian theory [20] the lowest excited states
energies above the ground state energy up to the second
order read

ε+U (λ̃, k) = λ̃+
8 + 4 cos(ka)

λ̃
+O

(
λ̃−2

)
, (14)

where k is the single excitation momentum and a is the
spacial separation between spins.

The higher excited states have two elementary excita-
tions |j, j′〉 = |↑〉j |↑〉j′

∏
i 6=j,j′ |↓〉i, and its energy above

the ground state energy scales as

ε̃+U (λ̃) = 2λ̃+O
(
λ̃−1

)
, (15)

up to the first order corrections. The interactions be-
tween excitations complicate the second order correction,
but do not create any first order corrections, which will
become essential in the regime E = U/2.

2. AFM phase

In the limit λ̃→ −∞ the model is in the AFM phase,
where its ground state maximizes the total number of
spin-ups |↑〉, and in order to obey the constraint spins
are Neel ordered, i.e. |(↓↑)〉, where (...) implies period-
icity. In the language of bosons this corresponds to the
state where only particles on every second site resonantly
tunnel to their nearest-neighboring sites.

Note that for the systems of a finite size the degener-
acy of the ground state depends on the type of bound-
ary conditions as well as the parity of the number of
spins M . For instance, the ground state is twofold de-
generate if M is even and periodic boundary conditions
(PBC) are imposed on the system, or the ground state is
non-degenerate M is odd and open boundary conditions
(OBC). We define the total number of spin-ups in the
ground state as M↑gr, which in the thermodynamic limit
makes the boundaries and parity irrelevant and approach
M/2.

The lowest excited states have M↑gr − 1 spin-ups and
hence the Neel ordered phase should be broken some-
where. Then a domain of Neel ordered spins is inter-
rupted by a domain wall, which shifts one domain with
respect to the other by one site. Due to the constraint the
domains can touch each other only via two consecutive
spin-downs (Fig. 2(a)) and not two consecutive spin-up.
The state with M↑gr − 1 spin-ups can have two domain
walls and in thermodynamic limit they move indepen-
dently, i.e. without interaction.

In the thermodynamic limit, M → ∞, energies of
states with a single domain wall with respect to the
ground state energy up to the second order read

ε−U (λ̃, k) = |λ̃|+ 2− 8 cos(2ka)

|λ̃|
+O

(
λ̃−2

)
, (16)

where k and a are the single excitation momentum and
spacial separation between spins. Note that, compar-
ing with (14), here the dispersion relation has periodicity
two, which correctly reflects the order parameter (stag-
gered magnetization) appearing in the AFM phase.

Analogous to the PM phase the higher excited states
have two elementary excitations which energies above the
ground state energy scale as

ε̃−U (λ̃) = 2|λ̃|+O
(
λ̃−1

)
, (17)

up to the first order corrections. The interactions be-
tween excitations complicate the second order correction,
but the important part is that they do not create any first
order corrections.

One should note that energies of the elementary exci-
tations in both limits scale as ∼ λ̃, Eqs. (14) and (16).
Importantly, two elementary excitations do not couple
together as their energies are affected only in the second
order perturbation expansion, Eqs. (15) and (17). This
last point will become crucial for the regime E = U/2.

B. E = U/2 regime

The derivation of the perturbation Hamiltonian is sim-
ilar to the regime E = U , the main difference now is that
besides σx perturbative terms there are also σxσz and
σzσz terms which couple odd and even spins. In the
limit when perturbations are neglected completely the
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model is equivalent to two uncoupled spin chains of odd
and even spins in the regime E = U each.

However, a qualitative difference occurs in this model:
coupling of elementary excitations lowers their mutual
energy. This creates coupled excitations — new lowest
energy excitations, which is the first indicator that the
critical behavior of the model may be different from the
regime E = U . This prediction of microscopic consider-
ation will be confirmed in Sec. IV.

1. PM phase

In the limit λ → +∞ the ground state of Eq. (11)
is a non-degenerate paramagnetic state

∏
i |↓〉i and the

lowest elementary excitations are single spin-up states
|j〉 = |↑〉j

∏
i6=j |↓〉i like in the regime E = U .

In the thermodynamic limit, M → ∞, energies of the
elementary excitations above the ground state read

ε+U/2(λ) = λ+
64

5
+O

(
λ−1

)
, (18)

where the constant energy shift is acquired due to σzσz

terms in Eq. (11). The degeneracy of these states is lifted
only in the second order of the perturbation theory in 1/λ
via simple spin flipping σx and more complicated σxσz

terms.
Note that hopping of the elementary excitations in

this case happens between spins of the same parity, i.e.
second-neighbor interactions. As a result the total spin
chain in the regime E = U/2 can be treated as two spin
chains E = U , where elementary excitations move along
each chain independently (Fig. 2(c)).

The higher excited states have two elementary exci-
tations |j, j′〉 = |↑〉j |↑〉j′

∏
i6=j,j′ |↓〉i as well as in the

regime E = U , however if these excitations are on dif-
ferent subchains they can couple together (Fig. 2(d)) via
σzσz terms and lower their mutual energy. We will refer
to them as coupled excitations with energies

ε̃+U/2(λ) = 2λ+
96

5
+O

(
λ−1

)
. (19)

One can observe that the energy of the coupled excitation
is lower than the energy of two elementary excitations in
isolation from one another.

2. AFM phase

In the limit λ → −∞ the ground state maximizes the
total number of spin-ups in the system, but due to the
constraint spins of the same parity are Neel ordered, i.e.
|(↓↓↑↑)〉, where (...) implies periodicity.

Note that the degeneracy of the ground state depends
on the number of the spins M and type of the bound-
ary conditions, as well as it was in the regime E = U .
For instance, in the case of an even number of spins in

each subchain and PBC the ground state is fourfold de-
generate, in the case of an odd number of spins in both
subchains and OBC the ground state is non-degenerate.
The total number of spin-ups in the ground state M↑gr in
the thermodynamic limit approaches M/2 as well as in
the case E = U .

Similarly to the case E = U the lowest excited states
have M↑gr−1 spin-ups, which means that the Neel order of
one of the subchains is broken by a domain wall, whereas
the second chain is Neel ordered. In the thermodynamic
limit, M →∞, the lowest excited state energy above the
ground state energy reads

ε−U/2(λ) = |λ| − 16

5
+O

(
λ−1

)
, (20)

where the next order corrections include complicated
contributions of spin flipping σx and σxσz terms, which
are left outside the scope of this study. The important
part is the first order correction due to σzσz terms which
depend on the relative position of the domain wall with
respect to the Neel ordered state of the other subchain.

The higher excited states have two elementary excita-
tions and their mutual energy can be lowered by σzσz

terms. We refer to them as coupled excitations as well
with energy

ε̃−U/2(λ) = 2|λ| − 64

5
+O

(
λ−1

)
. (21)

One again observes that coupling of domain walls lowers
their mutual energy and makes them energetically favor-
able at low values λ.

C. Comparison

From comparison of elementary excitations in both
models in limits of large tilts λ (or λ̃) we note an im-
portant difference. In both regimes the lowest elemen-
tary excitations have the same nature (Fig. 2(a,c)). In
regime E = U/2 these elementary excitation are coupled
and form pairs (Fig. 2(b,d)) with lowered mutual energy
than in isolation from one another. This process is im-
possible in the regime E = U .

This difference suggests that coupled excitations might
become new lowest excitations as the model (11) ap-
proaches the phase transition at low values λ. Of course,
this perturbative consideration does not show the full
picture, however, it reveals for instance the coupling role
of σzσz terms.

We will see that the prediction of this section is cor-
rect, we confirm it from calculations of the energy gap
of Eq. (11) in Fig. 1(a) of [14]. One can see that the
substitution of the lowest excitations takes place as the
energy gap scaling changes from ∼ λ to ∼ 2λ. In the
next section we show that the critical behavior changes
as well.
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(a) (c)

(b) (d)

FIG. 2. Illustrations of elementary (a,c) and coupled (b,d)

excitations in the cases of extremely strong tilts λ̃→ −∞ (a),

λ→ −∞ (b), λ̃→ +∞ (c) and λ→ +∞ (d). The elementary
excitations (a,c) are present in both regimes E = U and E =
U/2. The coupled excitations (b,d) are present only in the
regime E = U/2 where elementary excitations pair up via the
interaction terms between even and odd spins.

IV. PHASE TRANSITION ANALYSIS

Traditionally, the existence in different regimes of the
same model of an ordered and disordered phase is the
smoking gun of the existence of a phase transition that
separates the two. The models described by the Hamil-
tonians (4) and (11) describe in different regimes AFM
and PM phases and we thus expect that the two phases
are separated by phase transitions. In order to confirm
our expectation, we perform a finite size scaling analysis
of the order parameter. In this way we can unveil the ac-
tual presence of a phase transition and locate the critical
point λcrit.

First, we revisit the case E = U . The existence of a
phase transition in the Ising universality class has already
been pointed out in [11]. Here we complete the identi-
fication by relating the model to the antiferromagnetic
Ising chain in skew field (AFISF) [21], which is known
to host a second order phase transition belonging to the
Ising universality class.

We extend the analysis to the regime E = U/2, where
we successfully locate a new critical point. Our detailed
finite-size scaling analysis suggests that the transition is
in the tricritical Ising universality class.

A. E = U regime

In this section we summarize the main aspects of the
model (4) along with its symmetry content, extending
the previous analysis in Ref. [11]. By rearranging terms
of the Hamiltonian it takes a more familiar form

H̄U =
∑
i

(
σzi σ

z
i+1 − hxσxi + hzσ

z
i

)
, (22)

where hx = 4
√

2/W → 0 is the amplitude of the trans-

verse field and hz = 2
(
λ̃/W + 1

)
→ 2 the longitudinal

field. The model (22) is referred in literature as the AF-
ISF model.

The previous numerical study of this model investi-
gated the phase diagram in great detail [21]. It can be

-1.865 -1.86 -1.855 -1.85 -1.845

0.82

0.84

0.86

FIG. 3. Scaling plot of the structure factor Sπ near the
QCP in the regime E = U for chains of M spins with PBC.
According to the standard scaling argument [22] it scales as

∼M2−η = M7/4 for the Ising exponent η = 1/4. Calculations
of eigenstates were performed using DMRG techniques and
converged with the MPS bond dimension D = 96.

mapped according to the behavior of the order parameter
operator

MU =
∑
i

(−1)iσzi , (23)

representing the staggered magnetization of the spin
chain. The Neel ordered AFM phase in case of weak
fields has 〈MU 〉 6= 0, in case of strong field the system is
in the PM phase with 〈MU 〉 = 0. When the transverse
field hx is exactly zero, the model becomes classical and
the phase transition between the two phases is of first
order. Otherwise the two phases are separated by a line
of second order phase transitions of the Ising universality
class.

The nature of the quantum critical point of second
order is tested, for instance, by confirming numerically
the anomalous scaling dimension of the order parameter
η that for the Ising universality class should be η = 1/4.
We focus of the scaling of the structure factor

Sπ =
∑
i,j

(−1)i+j 〈σzi σzj 〉 , (24)

which according to the standard scaling argument [22]
scales as ∼ M2−η at the critical point λcrit. Using this
we locate the critical point λ̃crit ≈ −1.853 (Fig. 3), which
is close to the asymptotic prediction (Eq. (70) in [21])

λ̃asymcrit = −4
√

2/3 ≈ −1.886.
Having confirmed the results of [11] about the nature of

the phase transition, we now proceed further and identify
the Z2 symmetry that characterizes the Ising universality
class and its breaking pattern. Consider the Hamiltonian
(22) in the absence of the longitudinal field hz, it is the
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standard transverse Ising model. In this specific case it
is easy to identify the symmetry operator as

GTI =
∏
i

σxi , (25)

that commutes with H̄U . At the phase transition, the
ground state of the system spontaneously breaks the
Z2 symmetry, which means that in the AFM phase the
ground state is two-fold degenerate and the symmetry
operator GTI maps one ground state into another invert-
ing the sign of the order parameter 〈MU 〉. On the other
side of the phase transition, in the PM phase, the ground
state is unique and invariant with respect to the symme-
try operator.

If hz 6= 0 the operator GTI does not commute with
the Hamiltonian anymore, i.e. [GTI, H̄U ] 6= 0. However
the system still can undergo a phase transition associated
with the Z2 symmetry breaking, hence there should be
another symmetry breaking operator G that commutes
with the Hamiltonian [G, H̄U ] = 0 and squares to identity
G2 = I. One can define G as a single site translation
operator

G[σi] = σi+1, (26)

which shifts the entire spin chain by one site. Another
way to define G is as an operator that inverts the entire
spin chain of the length M around the middle of a bond
between two neighboring spins:{

G[σi] = σM−i, mod (M, 2) = 0,

G[σi] = σM−i+1, mod (M, 2) = 1.
(27)

In the infinite chain limit, M → ∞, boundary effects
become irrelevant as well the position of the inversion
center, thus we get G2 = I for both cases.

The proposed above symmetry operators G exchange
even and odd spins, hence the two Neel ordered ground
states in the AFM phase are exchanged as well, whereas
the PM state is left unchanged. Thus G is the operator
that is spontaneously broken at the line of second order
phase transitions of the model (22).

B. E = U/2 regime

In Ref. [14] we have presented some results about the
identification of the phase transition and its nature. In
particular, in Fig. 2(a) in [14] we locate the phase tran-
sition point as the place where the energy gap closes.
Moreover one can clearly see that the scaling of the gap
changes from ∼ λ to ∼ 2λ near the phase transition,
which confirms the prediction of the microscopic consid-
eration from Sec. III B that coupled excitations dominate
elementary excitations near the phase transition.

The scaling of the energy gap can be used to determine
the exact location of the critical point λcrit as well as the
dynamical and correlation length critical exponents, but

requires calculations of the first two eigenstates of the
model with a high precision. Here we focus on alternative
methods using only the information obtained from the
ground state.

Assuming that the critical point is conformally invari-
ant we can use the results about the scaling of the en-
tanglement entropy in conformal field theories in order to
locate and characterize the critical point and predict scal-
ing [23–27]. Using ideas similar to those proposed in the
context of the phenomenological renormalization group
[28–31], and first suggested in [32], we determine the criti-
cal point λcrit ≈ −6.6676(1). Scaling of the entanglement
entropy at this point [14] is compatible with scaling of the
tricritical Ising model with the central charge c = 7/10
[15].

The term tricritical point was first used in discussions
of the two-fluid critical mixing point in He3 − He4 mix-
tures [33] and since then attracted a lot of attention both
theoretically and experimentally, which comprehensive
reviews can be found in Refs. [34, 35]. A tricritical point
is defined as the end point of a line where three distinct
phases coexist simultaneously, as contrasted with a crit-
ical point — the end point of a line where two distinct
phases coexist simultaneously.

A number of theoretical models have been confirmed
to have tricritical points, for example Ising model with
both ferro and antiferromagnetic interactions (metam-
agnets model) [36], Blume-Emery-Griffiths model [37],
Potts model [38], Ashkin-Teller model [39], and more
general n−state cubic model [40]. An example of the
model with the particular tricritical Ising point is the
Ising model with vacancies [35], which is a generalization
of the Ising model where spins can be absent.

One of the main features of a tricritical point is the
existence of two relevant symmetry breaking operators
that need to be simultaneously tuned to their critical
value in order to observe the desired critical behavior.

Here we support the results presented in [14] about the
presence of a tricritical Ising point in the regime E = U/2
by analyzing the finite size scaling behavior of the order
parameter

MU/2 =
∑
i

ei
π
2 iσzi , (28)

the staggered magnetization with a period of four spins.
This choice of the order parameter operator is based on
the microscopic consideration in Sec. III B. In the disor-
dered PM phase spins are aligned with the external field,
i.e. 〈MU/2〉 = 0, in the ordered AFM state spins of the
same parity are Neel ordered, i.e. 〈MU/2〉 6= 0. The sym-
metry breaking at the critical point λcrit implies that one
out of four possible states is chosen in the AFM phase.

In order to test scaling of the order parameter we com-
pute a real part of the structure factor

Sπ/2 =
∑
i,j

(−1)i+j 〈σz2iσz2j + σz2i−1σ
z
2j−1〉 . (29)
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The two symmetry breaking operators have scaling di-
mensions η = 3/20 (primary field) and η̃ = 7/4 (sub-
leading field) [15, 35, 41, 42]. Hence the structure factor
Sπ/2 scaling at the phase transition point λcrit should

have two contributions as well, in particular ∼ M2−η

and ∼ M2−η̃. The existence of two symmetry breaking
operators at the tricritical point makes its scaling anal-
ysis substantially harder than in cases of a critical point
with a single symmetry breaking operator. In particu-
lar only in the limit of large system sizes M the primary
contribution dominates the scaling and the lack of per-
fect collapse should be attributed to the presence of the
the subleading operator.

In Fig. 4 we present the structure factor Sπ/2 scaling.
As the system size M increases we see a slow conver-
gence toward λcrit (dashed line), which shows compati-
bility with the tricritical Ising scenario.

Our last test of the phase transition is based on the
Binder cumulant [43], which allows us to define λcrit with-
out a prior knowledge of the universality and critical ex-
ponents. For that we calculate

UM = 3
〈
(∆MU/2)2

〉2
M
−
〈
(∆MU/2)4

〉
M
, (30)

where ∆MU/2 = MU/2 − 〈MU/2〉M and the index M
indicates the length of the spin chain. At the critical
point UM approaches a constant value.

The method works in the following way: for each pair
of lines UM and UM+4 we find the intersection point
λ× and define the corresponding average system size as
M× = M + 2. In the inset of Fig. 4 one can see the
convergence of λ×(M×) towards λcrit (red square) found
form the von Neumann entanglement scaling [14]. This
shows a good agreement between both methods, and that
the method using the entanglement scaling allows us to
define λcrit with a higher precision.

Finally we note that without σxσz and σzσz interac-
tions in Eq. (11) the critical behavior is completely iden-
tical to the case of decoupled E = U chains with Z2⊗Z2

symmetry, i.e. two copies of the standard Ising transi-
tion. However, the presence of the interactions σxσz and
σzσz changes the criticality of the model to the tricriti-
cal Ising phase transition, which is associated with a Z2

symmetry breaking. Due to the complicated form of the
Hamiltonian (11) we have not succeeded in identifying a
corresponding symmetry operator and leave this question
open.

V. FINITE TEMPERATURE BEHAVIOR

In the following section we compare the behavior of
models (4) and (11) at finite temperatures. A quantum
system near its criticality is especially sensitive to ther-
mal fluctuations because of rapid closure of the energy
gap. We investigate the specific heat capacity per spin

c(T, λ) =
1

T 2M

〈
∆H2(λ)

〉
T
, (31)

-6.672 -6.669 -6.666 -6.663 -6.66 -6.657
0.5

0.6

0.7

0.8

0 0.5 1 1.5 2

10-3

-6.67

-6.66

-6.65

-6.64

-6.63

-6.62

FIG. 4. Scaling plot of the structure factor Sπ/2 near the
QCP in the regime E = U/2 for chains of M spins with PBC.
Scaling is preformed for the leading magnetization exponent
η = 3/20 of the tricritical Ising point. The convergence is
much slower that in the case of the Ising critical point (Fig. 3).
Here the convergence is slowed down by a subleading magneti-
zation field corrections ∼M2−η̃, where η̃ = 7/4 for the tricrit-
ical Ising point. The dashed line denotes λcrit = −6.6676(1)
found via scaling of the von Neumann entropy in [14]. The in-
set shows crossings of the Binder cumulants UM (see the main
text) converging to the same critical point λcrit (denoted as a
red square). Calculations were performed using DMRG tech-
niques and converged with the MPS bond dimension D = 512.

which is a dimensionless measure of heat transfer between
eigenstates of the system. Here 〈∆H2(λ)〉T is the vari-
ance of the total energy in the system at temperature T ,
which is also a dimensionless parameter since the Hamil-
tonians (4) and (11) are made dimensionless by appro-
priate rescalings.

We find that behavior of c(T, λ) at critical points in
regimes E = U and E = U/2 have clear distinctions that
are compatible with investigations of the lowest excita-
tions in the system. The regime E = U has a simple
Ising critical point and addition of a finite temperature
T to the system washes away its position due to ther-
mal fluctuation (Fig. 5(a)). One can see two branches of
c(T, λ) diverging from the QCP as T increases.

In the regime E = U/2 the nature of the transition
seems to be more complicated (Fig. 5(b)). The specific
heat dependence changes on both sides of the transition,
i.e. it is not as symmetric as in regime the E = U .
One can also note a change in the curvature of branches
diverging from the QCP.

Another significant difference in the regime E = U/2
is the appearance of the third branch of c(T, λ). It can
be explained via the energy gap diagram from Fig. 2(a)
of [14], where the suppressed transition of elementary
excitations is still visible on the plot along with the true
quantum phase transition of coupled excitations.

Each phase transition point has two branches of spe-
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FIG. 5. Specific heat capacity per spin c(T, λ) near quan-
tum critical points in regime (a) E = U for M = 101 spins
(b) E = U/2 for M = 102 spins, both with OBC. (a) We
can see convergence of the specific heat peaks to the QCP
λ̃crit = −1.853, at T = 0 (red star). (b) The complicated
structure of the specific heat reflects the energy gap diagram
in Fig. 2(a) of [14], where one can see the suppressed transi-
tion of elementary excitations and the transition of coupled
excitations — true quantum phase transition. There are two
branches of specific heat peak diverging from each phase tran-
sition point. Presumably, two right branches merge together
and cannot be distinguished, that is why one can observe only
three branches. Two of those branches converge to the criti-
cal point of E = U/2 model, λcrit = −6.6676(1) (red square).
The third and forth branches correspond to the transition
of elementary excitations and vanish at finite temperatures
as the corresponding transition is suppressed and the energy
gap minimum stays finite. The results are obtained via TDVP
evolution of the infinite temperature density matrix with bond
dimension D = 128.

cific heat peaks diverging from it as the temperature in-
creases. We believe that Fig. 5(b) has four branches in
total, but two right branches merge together and cannot
be distinguished. Among those four, two branches con-
verge to the critical point of the E = U/2 model and two
other vanish at a finite temperature as the corresponding
suppressed transition at λ ≈ −1.853 always has a finite
energy gap.

VI. SUMMARY AND OUTLOOK

In this work we derived and investigated effective spin
models for the unit filled Bose-Hubbard model quenched
to regimes with a linear tilt enabling resonant tran-
sitions between nearest-neighboring and next-nearest-
neighboring sites. For the latter the superlattice geom-
etry is required to map the motion of atoms to effective

spin chains.

The first model (4) is derived for tilt values near
E = U , i.e. bosons resonantly tunnel to neighboring
sites. This model is equivalent to the antiferromagnetic
Ising chain in skew field (AFISF) with infinite, projective-
like interactions. Ordered and disordered phases in this
model are separated by a second order phase transition,
which belongs to the Ising universality class. We identify
a corresponding symmetry operator G that breaks the Z2

symmetry as the system undergoes the phase transition.

The second model (11) is derived for tilt values near
E = U/2 and superlattice geometry U � µ � J ,
i.e. bosons can resonantly tunnel only to next-nearest-
neighboring sites. This spin chain is equivalent to a pair
of spin chains in the regime E = U coupled to each other
via σxσz and σzσz interactions. Analogous to the first
model, a quantum critical point also separates ordered
and disordered phases, but the nature of the phase tran-
sition is different. The finite size scaling shows that the
critical point belongs to the tricritical Ising universality
class, which is associated with the Z2 symmetry break-
ing. The exact form of the symmetry operator in this
case stays unresolved though.

Besides universality classes of the phase transition the
underlying differences between the two models can be
seen from the analysis of effective models for extreme
values of the field λ (or λ̃). Without interaction terms
the E = U/2 model will be equivalent to two decoupled
E = U chains with independent spectrum of elementary
excitations in each chain. However, the σzσz interactions
couple these elementary excitations lowering their mutual
energy. As a result the role of elementary excitations at
the QCP is suppressed by coupled excitations, which we
directly observe in the energy gap diagram in Fig. 2(a)
of [14].

The presented result can be easily extended to the case
of not only unit filling, but any uniform integer filling.
The main difference in spin models then will be due to
the Bose enhancement factor of tunneling and a number
of two-body interactions at each sity. Also the superlat-
tice offset µ is a free parameter of the model and hence
can be exploited. In the generic case of J � µ . U ma-
trix elements for even and odd spins of E = U/2 model
will be different and depend on µ as well, then Eq. (11)
will be obtained in the limit µ/U → 0. The study of
µ−dependence has a potential interest as it can allow us
to modify the phase transition universality class, however
this question is left outside of this paper.

Currently, a number of experimental groups have al-
ready performed experimental investigations of bosonic
species in tilted optical lattices near resonances E = U/n,
with integer n. In this regimes the system dynamics truly
obey quantum many-body physics with minimal influ-
ence of the environment, which was the main motivation
for this paper. Now with deeper theoretical understand-
ing of the Bose-Hubbard model behavior near resonances,
via effective models, it will be even more interesting to
perform experiments with bosons in tilted optical lattice,
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but with superlattice geometry. Another way to realize
the Bose-Hubbard Hamiltonian (1), but without the ex-
ternal linear field, is to use time-dependent tunneling am-
plitudes Je−iωt in one direction of hopping and Je+iωt in
the other direction instead of time-independent J , here
ω is equivalent to the linear field E.
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Appendix A: Numerical methods

Our analysis of the critical behavior of the spin models
heavily relies on the numerical calculations of the eigen-
states and thermal states. The constraints on spin config-
urations in models (4) and (11) allows us to significantly
reduce the Hilbert space size. Following this trick one
can perform ED calculations with almost 30 spins on a
regular computer.

In order to go beyond one should use DMRG tech-
niques with tensor networks of matrix product states and
operators (MPS/MPO). The constraint terms in Eqs. (4)
and (11) can be implemented via taking a limit of large
W , which will not necessary keep numerical calculations
stable and instead add another numeral parameter. Then
the implementation of the constraints can be realized via
symmetrical tensors analogous to Refs. [44, 45].

Here we present an alternative way of implementing
the spin-restricting constraints via projectors on the re-
duced Hilbert space. The main advantage of this method
is that it is compatible with any non-symmetric tensor
network code and can be generalized for more compli-
cated symmetries and constraints.

We first present the general form projectors and then
give an example how these projectors can be embedded
into already existing methods on example of the ther-
mal state calculation. Using this approach we obtain the
system state time-evolution and eigenstates at QCP for

  

(a) (b)

(c)

(d)

FIG. 6. Examples of the spin-restricting projectors PU/n in
the MPO form. (a) Transfer matrix realizes the constraint on
two connected spins. (b) Rank-4 copy tensor. (c) Projector
PU implements the constraint in the regime E = U with PBC.
In case of OBC one needs to remove contraction of the first
and last tensors and the corresponding transfer matrix. (d)
Projector PU/2 implementing the constraint for the regime
E = U/2 with PBC and an even number of spins.

M = 300 spins (OBC) and M = 60 spins (PBC) with
convergence in the MPS bond dimension D = 512.

1. Realization of constraints via projectors

All forbidden spin states can be projected out from the
Hilbert space using the following operator

PU/n =
∏
i

(I − σ↑i σ
↑
i+n), (A1)

which explicitly forbids states with a pair of spin-ups at
distances n = 1 or 2, for models in the regime E = U
and E = U/2, respectively. In case of PBC imposed on
the system, cyclic conditions are used for spin indices.

These projectors have a compact MPO representa-
tion via a network of transfer matrices and copy tensors
(Fig. 6). Note that in case of an odd number of spins,
the form of PU/2 will be slightly different.

2. Example: T-MPS calculations

Then Hamiltonians HU/n (Eqs. (4) and (11)) are re-
placed by

H̃U/n = PU/nHU/nPU/n, (A2)

where the constraint terms disappear naturally. These
new composite Hamiltonians can be used for all sorts
of calculations in the restricted Hilbert space, both in
statics and dynamics.

For instance, we obtain the imaginary-time evolution
of the initial infinite temperature density matrix to fi-
nite temperatures by means of the TDVP algorithm
[32, 46–48]. In the Hilbert space without any restrictions
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the infinite-T density matrix is proportional to identity,
ρ0 ∝ I. However, in the presence of restrictions one
must take into account only allowed states, such that
ρ0 ∝ PU/nIPU/n = PU/n.

The next step is to evolve the density matrix to finite

temperatures ρ(β) ∝ e−βH̃ , where β = 1/T . In order to
preserve positive semi-definiteness of the density matrix
we used the purification technique [49, 50] and rewrite

this expression as ρ(β) ∝ e−βH̃/2ρ0e−βH̃/2. In this case
only one side of the density matrix is evolved ρ̄(β) ≡
e−βH̃/2ρ0, and since ρ20 = ρ0 = ρ†0 expectation values can

be obtained as

〈Ô〉β =
tr[Ôρ̄(β)ρ̄†(β)]

tr[ρ̄(β)ρ̄†(β)]
, (A3)

where Ô is an arbitrary operator in MPO form.
Furthermore, one can reduce the computation cost and

compress bond dimensions of sparse H̃U/n in MPO form
by performing compression procedure developed for com-
pression of MPS (Sec. 2.2 in [51]) via variational mini-
mization of the distance between states. For instance, in
the case of open boundary conditions the original bond
dimensions of PU/2 and HU/2 are 4 and 6, respectively, if
they are constructed in a sparse way. The resulting bond
dimension of H̃U/n is DMPO = 4× 6× 4 = 96, but it can
be compressed down to just DMPO = 8 with desired ma-
chine precision that does not exceed the major numerical
error — truncation error.
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