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We evaluate the reflectivity of neutron mirrors composed of certain heavy nuclei which possess
strong neutron-nucleus resonances in the eV energy range. We consider possible corrections to the
usual formulae of neutron optics for this case and find that dispersion and multiple scattering effects
are negligible but one must take Doppler broadening into account. Effects from surface roughness,
and phonon scattering are small compared to the Doppler corrections and are either the same as or
smaller than those for mirror reflection with meV neutrons. We show that the reflectivity of such
a mirror for some nuclei can in principle be high enough near energies corresponding to compound
neutron-nucleus resonances to be of interest for certain scientific applications in non-destructive
evaluation of subsurface material composition.

PACS numbers: 11.30.Er, 24.70.+s, 13.75.Cs

I. INTRODUCTION

Neutron optics based on mirror reflection [1, 2] from
the neutron optical potential of matter, which is de-
rived from the spatial average of the individual neutron-
nucleus scattering amplitudes from the nuclei in the
medium, has been widely used in slow neutron instru-
mentation now for decades. The ability to conduct mea-
surements using slow neutrons far from the radiation
backgrounds and noisy environment near the neutron
source without 1/r2 intensity falloff revolutionized the
field and greatly expanded its range of scientific appli-
cations [3, 4]. Early slow neutron mirrors were made
from nuclei with relatively large neutron optical poten-
tials. 58Ni was (and still is in many cases) a common
choice.

Supermirror neutron guides [5–7] also employ the neu-
tron optical potential to reflect neutrons. Neutron su-
permirrors are engineered to realize a reflectivity whose
critical angle for near-total external reflection is larger
than that from the neutron optical potential of a uni-
form medium. This is done using multilayer coatings of
materials with a large contrast in the neutron scatter-
ing length density. Incident neutrons diffract from the
one-dimensional crystal created by these stacked multi-
layers, and the constructive interference from this diffrac-
tion scattering produces a peak in the neutron reflectiv-
ity for specific values of the transverse momentum which
match the diffraction condition [8, 9]. If one deposits
a set of layers with a continuous distribution of bilayer
separations which span the transverse momentum phase
space in a neutron beam, one can efficiently transport all
of the neutrons of interest. In a typical beam from a cold
neutron source, one can use supermirrors to efficiently
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transport a much larger fraction of the beam phase space
from the source over distances as long as 100 meters or
more compared to a mirror made of a single material.
By convention the transverse phase space acceptance of
a supermirror guide is typically characterized by a dimen-
sionless number m which is the ratio of the critical angle
for near-total reflection from the guide to the same criti-
cal angle for a neutron mirror composed of natural nickel.
In these units 58Ni corresponds to m = 1.2. Supermirror
guides with m = 7 are now commercially available.

eV neutron beams are used in some measurements in
neutron scattering [10, 11] and neutron imaging for con-
densed matter and materials studies [12]. The most heav-
ily used neutron scattering application for eV neutrons
are measurements of the longitudinal momentum distri-
bution of hydrogen, deuterium, and other light atoms in
materials [13] and vibrational spectroscopy [14]. Neutron
resonance imaging [15] to get nondestructive quantitative
information on the local environment of specific isotopes
embedded in materials from the shapes of the Doppler
broadening of the resonance linewidths also of course op-
erates in the eV neutron energy regime where resonances
are abundant. With the development of a growing num-
ber of intense neutron sources in the eV energy range
based on proton spallation [16], where the incompletely-
moderated 1/E high energy tail of the neutron energy
spectrum from a hydrogenous moderator is much richer
in eV neutrons than is the high energy tail of the spec-
trum from a research reactor, it is well worth considering
the possibility of developing other scientific applications
of eV neutrons.

Both normal neutron mirrors and neutron supermir-
rors typically employ the real part of the (in general
complex) neutron optical potential of the medium. This
is because, in the meV energy range emitted by slow
neutron sources, the neutron-nucleus scattering ampli-
tude has a real part that is typically much larger than
the imaginary part. This follows in turn from proba-
bility conservation as embodied in the optical theorem
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of nonrelativistic scattering theory, Im[f(θ = 0)] = kσ
4π

where k is the neutron wave vector, σ is the total cross
section, and f(θ = 0) is the forward scattering ampli-
tude. The slow neutron energy regime corresponds to
kR ≈ 10−4 where R is the potential scattering range
from the neutron-nucleus interaction, which implies that
the scattering is dominated by the s-wave component of
the partial wave expansion of the scattering amplitude.
For this case, f(θ = 0) = f is of order R in magni-
tude and σ = 4π|f |2, so the optical theorem implies
Im[f ] = k[Re(f)2 + Im(f)2] ≈ kR2 ≈ 10−4|f |.

This argument breaks down however for inelastic scat-
tering and for resonance scattering. For the case of res-
onance scattering of most interest in this work, f can be
much larger than R. The simplest case of elastic scatter-
ing with resonances will serve to make the point clear.
One can decompose the partial wave expansion in non-
relativistic scattering theory into terms associated with
ingoing and outgoing spherical waves [17]

f(θ) =

∞∑
l=0

(2l + 1)Pl
2ikr

[(1+2ikfl(k))eikr−e−i(kr−lπ)] (1)

where fl(k) is the partial wave scattering amplitude in
orbital angular momentum channel l and Pl(cos θ) is the
lth Legendre polynomial. As elastic scattering merely
redirects the incident wave packet, the optical theorem
demands that |1 + 2ikfl(k)| = 1. This condition can be
written in terms of the elastic scattering phase shift δl as
1 + 2ikfl(k) = exp 2iδl, which implies

kfl =
exp (2iδl)− 1

2i
=

1

cot δl − i
· (2)

In resonance scattering near the resonance energy Er
the phase shift increases rapidly from 0 to π. On res-
onance δl = π/2 and cot δl = 0 so fl = i/k is purely
imaginary and also takes the maximum possible value
consistent with unitarity. In particular fl need not be
of order R. Expanding cot δl near the resonance energy
as a power series in E − Er and keeping only the linear
term, cot δl(E) = 0+(Γ/2)(E−Er) gives the well-known
Breit-Wigner form

kfl =
Γ/2

E − Er + iΓ/2
· (3)

fl then both possesses a large imaginary component
and also can be large compared to R as long as (E−Er) ≈
Γ.

Similar to visible light reflection from a metallic mirror,
neutrons can coherently reflect from the imaginary part
of the optical potential of the medium as well as from the
real part. In this paper we evaluate the neutron reflectiv-
ity in the eV energy range of mirrors composed of heavy
nuclei. The idea is to take advantage of the large imag-
inary component of the scattering amplitude present at

and near neutron-nucleus resonance energies to enhance
the reflectivity of neutrons. The large imaginary com-
ponent of the scattering amplitude is only present for
neutrons with energies within the width Γ of the reso-
nance energy, and since both Γ/Er � 1 and Γ � ∆E
where ∆E is the typical separation between neighboring
resonances for the great majority of low-lying n-A reso-
nances, no single nucleus can be used to reflect a broad
range of neutron energies using this mechanism. As the
neutron optical potential for coherent reflection is sim-
ply a weighted linear sum of the amplitudes from all of
the scatterers in the medium, one can imagine making a
mirror out of a “cocktail”of different nuclei. Although as
we will see below this idea does not seem practical, we
will see that the reflectivity is large enough for some nu-
clei at the resonance energies to be of interest for certain
applications. As long as the thickness of the mirror is
great enough (a few microns of solid is usually enough)
that one can neglect the transmission through the mir-
ror for all of the relevant energies in the beam, one can
apply the well-known formulae from the theory of neu-
tron optics and use the very extensive set of measured
data on n-A scattering resonances to calculate the re-
flectivity. It is also important to take into account the
fact that the neutron-nucleus resonances in the eV energy
range typically posses a large inelastic component, usu-
ally dominated by (n, γ) reactions. Therefore the frac-
tion of the coherently scattered neutrons on resonance is
proportional to Γn

Γtot
where Γn and Γtot are the neutron

and total widths of the resonance, respectively. Typi-
cally Γn

Γtot
� 1, which further suppresses the reflection

probability for many nuclei.

We were not able to find any previous quantitative
analysis of this idea in the neutron optics literature. We
found a qualitative comment on the possibility of inter-
esting resonance effects in eV neutron optics in a theoret-
ical treatment of neutron multiple scattering in neutron
optics [18] which we will discuss in more detail below.
In the case of ultracold neutrons with energies of hun-
dreds of neV such calculations were actually done a very
long time ago for the case of nuclei with large absorp-
tion cross sections near threshold [19]. It is well-known
that ultracold neutrons bouncing from a mirror made of
nuclei with a large neutron absorption cross section can
possess a very large reflection probability, and this was
demonstrated experimentally long ago [20]. Frank and
collaborators [21] analyzed the resonance component of
the neutron optical potential of Gd for the interpretation
of some ultracold neutron transmission experiments de-
signed to investigate the 1/v neutron absorption law. By
contrast our interest is in the eV neutron energy range.
The contribution of neutron resonances to the neutron
optics phase shift of moving matter, the so-called neu-
tron Fizeau effect [22], was predicted theoretically [23]
and has been observed experimentally [24] but involve s
neutron transmission in the several meV neutron energy
range, not neutron reflection at eV energies. The effects
of resonances in the theory of xray optics are by contrast
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well-developed in both theory and experiment [25, 26].
The rest of this paper is organized as follows. In section

II we review the relevant parts of the theory of neutron
optics and of resonance scattering. Effects from surface
roughness, and phonon scattering. We consider possi-
ble corrections to the usual formulae in the kinematic
limit of neutron optics, roughness, phonon scattering,
and Doppler broadening of the resonances. We present
and discuss the results of our calculations in section III.
In section IV we discuss some possible applications of our
results. We conclude in section V.

II. NEUTRON OPTICS THEORY AND
CORRECTIONS TO THE REFLECTIVITY

FORMULA

In this section we give a brief review of the relevant
results from the theory of neutron optics that are needed
to understand the foundation for the formulae used in
this work. For a more detailed treatment see Sears [27].
Neutron optics is based on the existence of the “coher-
ent wave” which is the coordinate representation of the
coherent state formed by the incident wave and the for-
ward scattered wave in a scattering medium [28]. It is
determined by the solution of a one-body Schrodinger
equation

[
−~2

2m
∆ + v(r)

]
ψ(r) = Eψ(r) (4)

where ψ(r) is the coherent wave and v(r) is the optical
potential of the medium. The coherent wave satisfies the
Lippmann-Schwinger equation

ψ(r) = |k〉+ gv(r)ψ(r) (5)

where |k〉 is the incident wave, g is the one-body Green’s
function for nonrelativistic motion of a neutron and v(r)
is the optical potential. The optical potential is related
to the one body t matrix by

t = v(r) + tgv(r) (6)

and this combination forms the usual coupled system
of equations of nonrelativistic scattering theory from a
medium of a large number of scatterers. Given a form
for the t matrix one can determine the optical potential
and then solve the one-body Schrodinger equation for the
coherent wave.

One must make an approximation for the t matrix of
the neutron in a medium of scatterers. The usual approx-
imation is essentially the Born approximation in which
v = t and

t =
∑
l

tl. (7)

Finally one must approximate the one-body t matrix tl.
Using the impulse approximation for scattering, one gets

tl = (2π~2/m)
∑
l

blδ(r−Rl). (8)

Here, l denotes the elemental species, bl is the coherent
scattering length for element l, r is a random spatial co-
ordinate and Rl defines the coordinate of each atom the
neutron can scatter from. Since the neutron-nucleus in-
teraction is much stronger and much shorter range than
the binding forces of the atoms in matter, it is reason-
able to neglect the effects of chemical binding during the
neutron-nucleus collision. In addition, the short-range of
the interaction means that the timescale of the collision is
much shorter than the timescales associated with the mo-
tion of the atom in the potential well. For both of these
reasons, the t operator is usually approximated by the t
operator for a free atom. This is known as the impulse
approximation in scattering theory. In this approxima-
tion, the neutron optical properties of a medium depend
only on the coherent scattering length of the atoms and
not at all on the details of the binding of the atoms.

From Eq. 8 we then arrive at an expression for the
optical potential

vopt(r) = (2π~2/m)
∑
l

Nlbl = v0, (9)

where Nl is the number density of scatterers. In gen-
eral the scattering amplitude, and therefore the optical
potential, is complex to account for incoherent scattering,
absorption, and resonance contributions to the scattering
amplitude. The neutron index of refraction is then

n2 = 1− v0

E
(10)

This relation between the neutron optical potential and
the scattering amplitude is an approximation which ne-
glects effects due to dispersion and multiple scattering in
the medium. The approximation fails in Eqs. 7 and 8,
due to effects from atomic binding, and in Eqn. 6 due
to multiple scattering. Both these effects as well as the
intrinsic energy dependence of the scattering amplitude
bl itself render the neutron optical potential energy de-
pendent in general, so that

n2 = 1− v(k)

E
. (11)

In Eq. 7 the t matrix of the bound system of N scat-
terers is expressed as the sum of the (impulse approxima-
tion) one-body t matrix. But this is known in exact treat-
ments of scattering theory to be an approximation [28].
The next order of approximation for the t matrix of the
system is

t =
∑
l

tl +
∑

l,l′ ,l 6=l′
tlGtl′ + . . . (12)
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where G is the Green’s function. To calculate the full
t operator of the system, which is what is required to
obtain the optical potential in Eq. 4 one must take mul-
tiple scattering also into account. Then finally the op-
tical potential, which is now a function of the neutron
momentum, must be solved from Eq. 6.

The calculations of these additional terms in the the-
ory of dispersion in neutron optics which leads to a mod-
ified expression for the index of refraction n′ presented
below was conducted years ago using many different tech-
niques. The calculations performed in the 80s [27, 29–31]
built upon much earlier work [32–38] and were conducted
within the framework of the traditional multiple scat-
tering theory outlined above. A different calculational
method [18] based on resummation of dominat subclasses
of diagrams important for backscattering was seen to give
equivalent results. Yet a third approach motivated by a
desire to understand decoherence in neutron optics [39]
used a Lindblad operator treatment and also agrees with
the results of Sears presented below. All of these calcu-
lations restore consistency with the optical theorem and
reduce in appropriate limits to the usual kinematic limit.

Here we outline the derivation presented in Sears and
just state the final results of the other two approaches
mentioned above. Sears employs the static approxima-
tion, which assumes that each atom in the system is
bound to a fixed position in space, which is true for the
solid materials under consideration in this paper as can-
didates for practical neutron mirrors. In that case, the
coupled equations can be written in terms of the scatter-
ing wave function ψ and the local field χi

ψ = |k〉+
∑
i

gTiχi (13)

χi = |k〉+
∑
j 6=i

gTjχj (14)

These two equations simply say that the neutron wave
function is the sum of the incident plane wave plus a
scattered spherical wave from each atom in the system,
and that the local field χi that generates the scattered
wave from location i is, in turn, the sum of the incident
plane wave plus the scattered spherical wave from all of
the other atoms. The dispersion theory of neutron optics
must relate the coherent wave to the local field χ. Using

an approach directly analogous to the relation ~D = ε ~E
in electrodynamics in a medium, one derives the consti-
tutive relation χ(r) = cψ(r) where c, like the dielectric
constant in light optics, depends on the medium proper-
ties. Defining c = 1/(1 − J ′), the dispersion corrections
to the neutron optical potential can be written in the
form

n′ = 1− 2πρb′

k2
[1 + J ′ +

πρb′

k2
] (15)

where the (dominant) real part of J ′ =
2πρb
k

∫
sin (2kr)[1 − g(r)]dr for an isotropic medium,

where g(r) is the pair correlation function for the atoms
in the material, n′ is the real part of the neutron index
of refraction with the multiple scattering correction,
b′ is the neutron scattering length with the multiple
scattering correction, ρ is the number density of atoms
in the material, and k is the incident neutron wave
vector.

The correction terms in the parentheses are very small
even in the presence of n-A resonances. Sears shows that
J ′ is of order 10−4 for slow neutrons and is smaller for
eV energy neutrons due to the 1/k factor. As for the
second term, even if we take the extreme on-resonance
case at a resonance energy Er one gets kb = Γn/Γtot and
furthermore consider the ideal case of total elastic scat-
tering where kb = 1, the factor πρ

k3 is less than 10−5 for
neutrons with energies above 1eV reflecting from solid
materials of normal densities. Both of these terms are
therefore negligible for the case of interest in this paper,
since almost all of the n-A resonances are at or above
eV energies. Table 1 in the Appendix shows the prod-
uct kb = Γn/Γtot for all of the resonances considered at
the resonance peaks, few of which are even close to one,
thereby further suppressing the second correction term
above.

The results from the other two approaches mentioned
above are similar and consistent. Warner [18] derives the
nonlinear expression for n

n2−1 =
4πρb

k2
/[1 + (

4πρb

nk2
)

∫ ∞
0

dyeiy sin (ny)[g(y/k)−1]

(16)
which reduces to the expression of Sears for small

n. The Lindblad operator treatment by Lanz and Vac-
chini [39] gives the neutron optical potential

vopt =
2π~2ρb

m
[1− kb

4π

∫
dΩqSc(q)] (17)

which also reduces to the Sears result upon writ-
ing the static structure factor Sc(q) = 1 + ρ

∫
[g(r) −

1]d3~r exp i~q · ~r. We therefore conclude that we can use
the usual expression for the index of refraction in the
kinematical theory of neutron optics to calculate the re-
flectivity even in the presence of n-A resonances.

If we write out the real and imaginary parts of the
optical potential U = V − iW

U = V − iW = (2π~2/m)
∑
l

Nl(bl,r − ibl,i), (18)

and use this complex optical potential to calculate the
reflection probability |R2| of a neutron incident on a uni-
form medium, one gets the result [42, 43]

|R2| =
E⊥ −

√
E⊥(2α− 2(V − E⊥) + α

E⊥ +
√
E⊥(2α− 2(V − E⊥) + α

(19)
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where

α =
√

(V − E⊥)2 +W 2 (20)

and E⊥ = ~2k2
z/2m is the fraction of the incident neutron

kinetic energy associated with the momentum normal to
the material boundary.

In our case we want to consider the situation in which
the neutron-nucleus scattering possesses both a poten-
tial scattering term as usual and also a resonance scat-
tering term. The resonance both absorbs neutrons and
also adds a large imaginary component to the total n-A
neutron scattering amplitude. In the presence of n-A res-
onances the expression for the resonant part bres of the
total scattering amplitude b = bpot + bres becomes [44]

bres =
∑
j

g±,j
2k

′
j

Γn,j
[(E′ − Ej) + iΓj/2]

(21)

where Γn,j and Γj are the neutron width and total width

of the resonance at energy Ej and k
′

= µk/m is the wave
vector in the n-A center of mass system of reduced mass
µ, E

′
is the associated energy in the COM frame, and

g+,j = (I + 1)/(2I + 1) and g−,j = I/(2I + 1) are the
statistical weight factors for a resonance at energy Ej in
the total angular momentum channel J = I ± 1/2. bres
is purely imaginary on resonance, as can easily be seen
explicitly by writing out the real and imaginary parts of
bres

bres,real =
∑
j

g±,j
2k

′
j

Γn,j(E
′ − Ej)

[(E′ − Ej)2 + Γ2
j/4]

(22)

bres,im = −
∑
j

g±,j
4k

′
j

Γn,jΓj
[(E′ − Ej)2 + Γ2

j/4]
(23)

There are some additional corrections to the formula
presented above which we now consider which are impor-
tant for practical measurement conditions.

As the atoms in the mirror will be moving in the solid
due to zero point motion and thermal effects, the reso-
nance scattering will undergo Doppler broadening. We
can evaluate this effect for a neutron mirror at room tem-
perature in a reasonably general way assuming a simple
Debye model for the phonon spectrum in the solid [49].
We include the effect of the Doppler broadening of the
resonances due to the motion of the atoms in the mirror
at finite temperature approximately using the convolu-
tion

R(E) =

∫
dE′S(E′ − E)R(E′) (24)

where the Doppler shifts come from the convolution
with the energy distribution of the atomic motions

S(E′ − E) =

√
M

4πkBmTeffEj

× exp

[
−

√
M

4kBmTeffEj
(E′ − E)2

] (25)

where Teff = <hν>T

kBT
is set by the mean oscillator en-

ergy < hν >T at temperature T . We evaluate Teff using
the Debye model, where

kBTeff =
3

2

∫ kBΘD

0

E3 coth
E

2kBT
dE/(kBΘD) (26)

where θD is the Debye temperature of the material.

Teff ≈
3

8
ΘD coth

(
3ΘD

8T

)
(27)

This approach gives the leading term in an approxi-
mate treatment of the Doppler broadening effects which
gets the second moment of the broadening function R(E)
correct but neglects the effects of higher order moments.
The theory required for a more detailed treatment of the
resonance broadening for individual nuclei in specific ma-
terial environments than the one used here has been de-
veloped [50–52] and could be adapted to specific cases
for our calculation as needed. Later theoretical work [53]
has developed this calculation to the point that detailed
measurements of the resonance lineshape can be used to
get information on low-order moments of the phonon en-
ergy spectra in the material. Evaluating these higher-
order correction to the resonance lineshape are again be-
yond the scope of this paper but are doable given suf-
ficient knowledge of the local structural environment of
the atoms with resonant nuclei.

Another effect which lowers the reflectivity of the mir-
ror somewhat is due to inelastic scattering of the neutrons
from phonons. This is a very small effect of order 10−5

per bounce for slow neutron mirror reflection as the pen-
etration depth of the evanescent neutron wave into the
mirror material is only on the order of 100 nm for almost
all neutron transverse momenta which are not right at
the edge of the Vopt = p2

z/2m critical angle condition.
The fractional loss in neutron reflectivity from thermal
phonons is so small that it is typically only measurable at
all using very low energy neutrons, called ultracold neu-
trons (UCN) [48], which can bounce several times from
material surfaces. The expression for the total inelastic
scattering cross section σintot is

σintot =
4πma2

Mki

∫
dω exp−2W (kf )

|γ|2g(ω)
√

(2mω/~)

(exp ~ω/kT − 1)(28)

where ki and kf are the incident and scattered neutron
wave vectors, m is the neutron mass, M is the atom mass,



6

W (kf ) is the Debye-Waller factor, g(ω) is the phonon
density of states, and γ is the amplitude of a phonon
mode. For the case of eV neutrons, this cross section is
even smaller than for slow neutrons as ki is larger and
the larger kf leads to a smaller Debye-Waller factor with
all other factors in the cross section expression the same.

The reduction of the reflectivity of the mirror surface
due to surface roughness can be important in the slow
neutron regime. Its evaluation is beyond the scope of
this paper as the calculation depends in detail on many
specific, non-universal features of the surface roughness
that will vary greatly among different practical materi-
als. Mirrors for slow neutrons typically possess a loss of
specular reflectivity which ranges from 10−4 to 10−5 per
bounce, which is negligible for most purposes. However
we can show that, for the same surface roughness profile,
one expects eV neutrons to possess a lower nonspecular
loss probability per bounce than for meV neutrons. The
reason for this expectation can be seen if one adopts a
simple model of a mirror surface with a Gaussian distri-
bution of surface heights relative to the mean surface lo-
cation. In this case [47, 48] one can show that the angular
distribution of the nonspecular component of the mirror
reflection is proportional to the Fourier transform of the
roughness autocorrelation function F (q) = exp−w2q2/2
where w2 is the variance in surface heights away from
the mean flat surface and q is the momentum transfer
along the surface of the mirror. As the longitudinal mo-
mentum transfer q is larger for eV neutrons than meV
neutrons by a factor of

√
1000 for the same value of the

transverse momentum, the angular distribution of the
roughness scattering from an eV neutron mirror is much
more sharply peaked than for cold neutrons.

Our conclusion from the analysis presented above is
that, in the presence of n-A resoances, the calculation of
the reflectivity is accurately described by Eq. 19 using
the kinematic theory of neutron optics, the potential and
resonance contributions to the scattering amplitude with
their contributions to the real and imaginary parts of
the neutron optical potential, and resonance broadening
from the Doppler effect of nuclei moving in a mirror at
finite temperature.

III. ANALYSIS, CORRECTIONS, AND
RESULTS

Extensive data on n-A resonances exists. Table 1 in
the Appendix lists the nuclei and the resonances which
we considered as in principle available as possible eV neu-
tron mirror materials. Figures 1 and 2 show the total
resonance widths, resonance energies, and associated iso-
topes in our energy range of interest. The density of
n-A resonances in this regime along with their overlap-
ping total widths encouraged us to pursue the calcula-
tion. We consider here heavy stable nuclei with n-A reso-
nances with energies below 10 eV. This data is taken from
the National Nuclear Data Center (NNDC) [45] and the

Japanese Evaluated Nuclear Data Library (JENDL) [46].
We use these measured resonance parameters and substi-
tute them into Eq. 19.

We show the results of our calculations in a series of
plots in which we simply superpose all of the reflectiv-
ity results from mirrors made of the relevant pure sub-
stances. The reflectivity of any compound material would
be the appropriate weighted sum according to equation
9. We chose to use as variables the total neutron energy
E and the incident neutron angle θ. We chose a typical
value of θ = 1 mrad for all of the plots: at constant E the
reflectivity is a sharply decreasing function of θ according
to Eq.14.

In the regime of unit reflectivity shown in Figure 3, all
of the heavy nuclei fall below natural nickel and therefore
there is no special advantage that we can see to use heavy
nuclei in a eV neutron guide. The imaginary parts of
the optical potential change the shape of the reflectivity
curve away from the usual shape given by the Fresnel
formula.

The 1/k factor in the resonance amplitude eventually
reduces the reflectivity at high energy. Nevertheless as
can be seen in Figure 4 certain nuclei possess a high
enough reflectivity on resonance in the 1-10 eV energy
range to be clearly visible for an incident angle of 1 mrad.
This observation is in our judgement the most interesting
result of our calculation.

We included the effects of the real part of the scatter-
ing amplitudes as well in the formula. One must take
care not to “double count” the resonance scattering con-
tribution, since the scattering amplitudes bmeasured that
are reported in the literature from measurements using
slow neutrons are in fact a sum of the potential scat-
tering contribution and also the tails of all of the other
resonances in the limit E → 0:

bmeasured = bpot +
∑
j

g±,j
2k

′
j

Γn,j
[(Ej) + iΓj/2]

· (29)

We took this effect into account but it is typically
rather small and makes a negligible change in the re-
flectivity of order 10−3 in the worst case. This is because
the meV neutron energies where the scattering ampli-
tudes are measured are almost always several resonance
widths away from the resonances at eV and higher neu-
tron energies. Certain nuclei which possess subthreshold
n-A resonances very close to threshold are an exception,
but none of the nuclei identified with visible peaks in the
reflectivity curve and for which the neutron scattering
data exists at thermal energies possess significant sub-
threshold effects. This can be seen by inspecting the
experimental data on the relevant n-A cross sections at
low (meV) energies.

Finally we plot the reflectivity for a few special nuclei
(155Gd, 157Gd, 113Cd, and 10B) which have especially
large absorption cross sections close to zero neutron en-
ergy from either a subthreshold resonance (in the case of
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FIG. 1: Plot of total resonance widths of neutron resonances versus resonance energy with identification of the relevant isotopes.
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FIG. 2: Plot of total resonance widths of neutron resonances versus resonance energy for heavy nuclei in a representation that
illustrates the “forest”. The horizontal dimension of the bars is 2Γ.
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FIG. 3: Reflectivity for neutron energies between 0-0.3 eV for an incident angle of 1mrad. All of the heavy nuclei fall below
natural nickel even after including the resonance contributions. The nuclei with reflectivity curves closest to natural nickel are
labeled explicitly.

10B) or from an above-threshold but especially low en-
ergy resonance (as in 155Gd, 157Gd, and 113Cd). One can
see that the reflectivity is reasonably large up to about
100 meV. This fact could concievably be of interest for
neutron beam transport in thermal and epithermal neu-
tron beams in upstream sections of the beamline close
to the neutron source. Such a guide would both reflect
some of the neutrons in the epithermal energy range and
also efficiently absorb many of the neutrons incident on
the guide above the critical angle.

IV. POSSIBLE APPLICATIONS

Figure 4 shows that there is a reasonably large number
of heavy nuclei which possess resonances whose proper-
ties can produce a noticeably large neutron reflectivity
on resonance. The relatively high neutron reflectivities
for these cases opens the possibility for new applications
in nondestructive subsurface analysis. One can exploit
the relatively shallow penetration of the neutron wave
amplitude into the medium upon mirror reflection to de-
tect the presence of certain subsurface isotopes from the
neutron energy dependence of the reflectivity from the
flat surface of a material. As the reflected neutrons can
be separated from the incident beam and this enhanced
reflectivity is completely absent for all other nuclei, this
method could possess a high signal to background ratio

in a practical apparatus. One could also exploit the fact
that the nuclear resonance will also emit a gamma cas-
cade upon neutron capture to detect both this gamma
cascade along with the delayed coincidence with the neu-
tron reflectivity peak at the resonance energy from the
large collection of nuclei in the mirror to further suppress
environmental backgrounds. This latter mode of opera-
tion can easily be realized at a pulsed spallation neutron
source where the neutron energy is tightly correlated with
the neutron time of flight.

V. CONCLUSION

We present a calculation of the reflectivity of neutron
mirrors in the eV energy range which takes into account
the large imaginary parts of neutron-nucleus resonance
scattering amplitudes based on the kinematic theory of
neutron optics and the known properties of neutron-
nucleus resonances. We find that the reflectivity is large
enough to be visible for several nuclei on different res-
onances in the 0 to 10 eV neutron energy range. We
include the largest relevant correction to the idealized
reflectivity formula, which comes from the Doppler effect
from relative motion of the neutron and nucleus of the
atoms bound in the mirror. Other effects from multiple
scattering corrections to the neutron optical potential,
surface roughness, and phonon scattering are small com-
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FIG. 4: Reflectivity envelope for the resonance guide for neutron energies between 0-10 eV for an incident angle of 1mrad. The
lower amplitude curves for each nucleus show the approximate effects from Doppler broadening at 300K for the associated pure
materials.

pared to the Doppler corrections and are either the same
as or smaller than those for mirror reflection with meV
neutrons. The relatively high neutron reflectivities for
the cases of the specific nuclei we identify opens the pos-
sibility for new applications in nondestructive subsurface
analysis, especially at pulsed spallation neutron sources
where neutron energy is directly correlated with time of
flight from the source to the sample and detector.
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VII. APPENDIX

TABLE I: A list of neutron-nucleus resonances considered in this paper
with their respective resonance parameters, the product kb of the reso-
nance wave vector, the scattering amplitude on resonance, and the Debye
temperature at 298 K where available. Debye temperatures were taken
from [55], unless otherwise noted on the first instance of the element.

Isotope
Resonance
Energy (eV)

Γ (meV) Γn (meV) kbres =Γn/Γ Debye Temperature (K)

87Sr 3.53 205 0.618 3.01E-03 148
99Tc 5.58 147 3.45 2.35E-02 422
100Ru 10 113 0.138 1.22E-03 415



10

155Gd
157Gd

113Cd

10B

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Energy (eV)

0.2

0.4

0.6

0.8

1.0
Reflectivity

Reflectivity of 10B, 155Gd, 157Gd, and 113Cd for θ = 1mrad

FIG. 5: Reflectivity of 155Gd, 157Gd, 113Cd, and 10B between 0-0.3 eV for an incident angle of 1mrad.

Isotope
Resonance
Energy (eV)

Γ (meV) Γn (meV) kbres =Γn/Γ Debye Temperature

102Ru 9.8 128 0.0093 7.27E-05 415
103Ru 8.89 170 0.134 7.88E-04 415
103Rh 1.26 140 0.52 3.71E-03 350
105Pd 3.91 146 0.000613 4.20E-06 275
107Pd 3.92 131 0.00171 1.31E-05 275

5.2 131 0.0197 1.50E-04 275
6.83 131 0.0588 4.49E-04 275

108Pd 2.96 92 0.01 1.09E-04 275
110Pd 5.19 60 0.0024 4.00E-05 275
109Ag 5.19 136 12.7 9.34E-02 221
111Cd 4.53 163 0.0014 8.59E-06 221

6.94 143 0.00086 6.01E-06 221
113Cd 0.179 114 0.64 5.61E-03 221

7 160 0.000413 2.58E-06 221
113In 1.8 78 0.223 2.86E-03 129

4.7 75 0.106 1.41E-03 129
115In 1.46 72 2.98 4.14E-02 129

3.82 81 0.38 4.69E-03 129
6.85 178 0.000418 2.35E-06 129
9.07 80 1.5 1.88E-02 129

113Sn 8.29 124 4.47 3.60E-02 254
117Sn 1.33 148 0.00011 7.43E-07 254
119Sn 6.22 90 0.00148 1.64E-05 254
121Sb 6.22 87 1.88 2.16E-02 200
126Sb 6.24 140 2.23 1.59E-02 200
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Isotope
Resonance
Energy (eV)

Γ (meV) Γn (meV) kbres =Γn/Γ Debye Temperature

123Te 2.33 104 10.4 1.00E-01
127I 4.41 140 0.0001 7.14E-07

7.55 100 0.000483 4.83E-06
124Xe 5.09 89.5 12.9 1.44E-01

9.88 142 42.3 2.98E-01
126Xe 9.88 93 1.35 1.45E-02
129Xe 9.66 144 7.76 5.39E-02
131Xe 3.2 112 0.000256 2.29E-06
135Xe 0.0842 114 20.4 1.79E-01
133Cs 5.91 123 7.38 6.00E-02 43

9.5 120 0.00217 1.81E-05 43
138La 2.99 95 1.19 1.25E-02 135
139La 0.758 40.1 0.0000996 2.48E-06 135
141Ce 7.4 100 1.01 1.01E-02 138
145Nd 4.36 69.6 1.18 1.70E-02 148
147Nd 4.79 75 0.309 4.12E-03 148

6.26 75 0.651 8.68E-03 148
147Pm 5.36 78.9 40.1 5.08E-01

6.57 59.6 1.4 2.35E-02
6.92 74.3 4.75 6.39E-02

148Pm 0.169 79.6 0.545 6.85E-03
151Pm 4.1 110 41.4 3.76E-01

8.2 70.9 1.87 2.64E-02
147Sm 3.4 67 1.35 2.01E-02 184
149Sm 0.0973 63.4 0.525 8.28E-03 184

0.872 62.7 0.75 1.20E-02 184
4.94 59 2.14 3.63E-02 184
6.43 68 1.2 1.76E-02 184
8.93 70 11.8 1.69E-01 184

151Sm 0.456 100 0.0223 2.23E-04 184
1.09 119 0.948 7.97E-03 184
1.7 98.4 0.444 4.51E-03 184
2.04 99.9 0.744 7.45E-03 184
4.13 95.9 1.26 1.31E-02 184
6.4 108 6.71 6.21E-02 184

152Sm 8.05 201 135 6.72E-01 184
153Sm 1.92 72.1 10.1 1.40E-01 184

3.84 62.4 0.42 6.73E-03 184
5.76 62.5 0.523 8.37E-03 184
7.68 62.9 0.917 1.46E-02 184
9.6 68.6 6.61 9.64E-02 184

151Eu [56] 0.32 79.5 0.071 8.93E-04 120
0.46 87 0.665 7.64E-03 120
1.05 93 0.19 2.04E-03 120
1.83 93 0.0324 3.48E-04 120
2.71 97 0.223 2.30E-03 120
3.36 97 1.1 1.13E-02 120
3.71 89 0.694 7.80E-03 120
4.78 93 0.146 1.57E-03 120
5.38 108 0.228 2.11E-03 120
5.98 100 0.408 4.08E-03 120
7.05 92 0.0429 4.66E-04 120
7.29 88 1.89 2.15E-02 120
7.44 85 2.03 2.39E-02 120
9.07 104 1.3 1.25E-02 120

152Eu 0.884 122 0.187 1.53E-03 120
1.34 216 0.146 6.76E-04 120
1.63 137 0.104 7.59E-04 120
1.89 197 0.48 2.44E-03 120
3.21 160 0.0035 2.19E-05 120
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Isotope
Resonance
Energy (eV)

Γ (meV) Γn (meV) kbres =Γn/Γ Debye Temperature

3.55 270 0.791 2.93E-03 120
4.13 180 0.391 2.17E-03 120
4.92 80 0.285 3.56E-03 120
5.6 90 0.199 2.21E-03 120
6.35 130 0.551 4.24E-03 120
6.75 151 0.543 3.60E-03 120
9.61 218 2.57 1.18E-02 120
9.94 119 0.665 5.59E-03 120

153Eu 1.73 90 0.0489 5.43E-04 120
2.46 91 1.03 1.13E-02 120
3.29 98 1.09 1.11E-02 120
3.94 93 0.943 1.01E-02 120
4.75 96 0.0429 4.47E-04 120
6.16 109 0.54 4.95E-03 120
8.85 114 3 2.63E-02 120

154Eu 0.195 150 0.0717 4.78E-04 120
0.857 126 0.056 4.44E-04 120
1.37 135 0.461 3.41E-03 120
3.51 115 0.222 1.93E-03 120
4.14 129 0.642 4.98E-03 120
5.22 140 0.359 2.56E-03 120
5.63 127 0.227 1.79E-03 120
6.65 100 0.0303 3.03E-04 120
6.82 151 1.08 7.15E-03 120
9.32 105 3.16 3.01E-02 120
9.48 111 1.53 1.38E-02 120

155Eu 0.602 87 4.08 4.69E-02 120
2.04 100 0.0394 3.94E-04 120
7.19 100 0.18 1.80E-03 120

157Eu 3.2 65.5 0.504 7.69E-03 120
6.4 72.5 7.54 1.04E-01 120
9.6 72.9 7.92 1.09E-01 120

152Gd 3.31 56 0.018 3.21E-04 155
8 56 5.1 9.11E-02 155
9.55 56 0.093 1.66E-03 155

153Gd 0.0297 65 0.041 6.31E-04 155
0.917 100 0.0208 2.08E-04 155
6.65 100 1.04 1.04E-02 155

155Gd 0.0252 104 0.097 9.33E-04 155
2.01 128 0.4 3.13E-03 155
2.57 107 1.71 1.60E-02 155
3.62 130 0.05 3.85E-04 155
6.31 109 2.2 2.02E-02 155
7.75 109 1.16 1.06E-02 155
9.99 110 0.2 1.82E-03 155

157Gd 0.032 107 0.428 4.00E-03 155
2.83 110 0.377 3.43E-03 155

159Tb 3.36 103 0.337 3.27E-03 158
4.99 103 0.0834 8.10E-04 158

160Tb 1.42 119 3 2.52E-02 158
2.21 85.8 0.583 6.79E-03 158
8.27 100 8.72 8.72E-02 158

156Dy 2.15 83.6 0.2 2.39E-03 158
3.21 83.6 0.8 9.57E-03 158
9.19 83.6 0.6 7.18E-03 158

160Dy 1.88 106 0.2 1.89E-03 158
161Dy 2.71 119 0.561 4.71E-03 158

3.68 124 2.14 1.73E-02 158
4.33 80 1.38 1.73E-02 158
7.74 107 0.514 4.80E-03 158

162Dy 5.44 148 21 1.42E-01 158
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Isotope
Resonance
Energy (eV)

Γ (meV) Γn (meV) kbres =Γn/Γ Debye Temperature

163Dy 1.71 103 2.04 1.98E-02 158
5.81 113 0.0231 2.04E-04 158

165Ho 3.91 87.8 2.13 2.43E-02 161
8.17 90.5 0.187 2.07E-03 161

166Ho 8.5 100 11 1.10E-01 161
162Er 5.48 100 0.33 3.30E-03 163

7.6 100 0.66 6.60E-03 163
164Er 7.9 96 0.71 7.40E-03 163
167Er 0.46 87.1 0.269 3.09E-03 163

0.583 86.2 0.247 2.87E-03 163
5.99 105 20.7 1.97E-01 163
7.93 98.8 0.16 1.62E-03 163
9.39 88.3 9.2 1.04E-01 163

169Tm 3.91 102 7.47 7.32E-02 167
170Tm 2.84 130 0.375 2.88E-03 167

9.41 131 1.25 9.54E-03 167
168Yb 0.597 64 2.2 3.44E-02 Yb

9.71 64 0.08 1.25E-03 Yb
170Yb 8.13 66.5 1.64 2.47E-02 Yb
171Yb 7.91 70 2.2 3.14E-02 Yb
173Yb 4.51 80 0.18 2.25E-03 Yb
175Lu 2.59 71 0.188 2.65E-03 116

4.75 65.3 0.267 4.09E-03 116
5.22 80.6 1.6 1.99E-02 116

176Lu 0.141 62.4 0.0927 1.49E-03 116
1.57 59.5 0.485 8.15E-03 116
4.36 68.4 0.403 5.89E-03 116
6.13 58.4 1.37 2.35E-02 116
8.14 177 0.0308 1.74E-04 116
9.73 91.3 1.28 1.40E-02 116

174Hf 4.06 52 0.015 2.88E-04 213
176Hf 7.89 61.8 10.1 1.63E-01 213
177Hf 1.1 65.2 2.22 3.40E-02 213

2.39 60.7 8.04 1.32E-01 213
5.9 62 5.32 8.58E-02 213
6.58 55.6 8.21 1.48E-01 213
8.88 57.3 5.89 1.03E-01 213

178Hf 7.78 60 50 8.33E-01 213
179Hf 5.69 47 4.27 9.09E-02 213
181Ta 4.28 53 3.2 6.04E-02 225
182Ta 0.147 67.3 0.315 4.68E-03 225

1.82 68.4 1.35 1.97E-02 225
5.98 67.4 0.406 6.02E-03 225

182W 4.15 48 1.55 3.23E-02 312
183W 7.64 83 1.66 2.00E-02 312
185Re 2.15 57.7 2.83 4.90E-02 275

5.92 69.3 0.264 3.81E-03 275
7.22 56.2 1.19 2.12E-02 275

187Re 4.42 54.9 0.318 5.79E-03 275
187Os 9.47 81 1.74 2.15E-02 400
189Os 6.71 82 4.53 5.52E-02 400

8.96 76 9.04 1.19E-01 400
191Ir 0.653 72.6 0.44 6.06E-03 228

5.36 87.4 5.44 6.22E-02 228
6.12 83.7 0.707 8.45E-03 228
9.07 83.1 3.12 3.75E-02 228
9.89 92 1 1.09E-02 228

193Ir 1.3 87.2 0.73 8.37E-03 228
9.07 92.2 2.24 2.43E-02 228

197Au 4.89 124 15.2 1.23E-01 178
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Resonance
Energy (eV)

Γ (meV) Γn (meV) kbres =Γn/Γ Debye Temperature

226Ra 0.537 28 0.021 7.50E-04
228Th 1.9 36 0.785 2.18E-02 100

7.55 70 1.21 1.73E-02 100
229Th 0.609 41 0.158 3.85E-03 100

1.25 41 0.16 3.90E-03 100
1.42 41 0.01 2.44E-04 100
1.72 23 0.0643 2.80E-03 100
1.96 37 0.223 6.03E-03 100
2.67 41 0.0137 3.34E-04 100
3.18 41 0.12 2.93E-03 100
4.16 41 1.17 2.85E-02 100
4.75 41 0.0317 7.73E-04 100
5.58 40 0.497 1.24E-02 100
6.95 40 0.912 2.28E-02 100
8.27 67.1 0.137 2.04E-03 100
9.15 341 0.432 1.27E-03 100

230Th 1.43 27.6 0.39 1.41E-02 100
232Th 8.36 24.4 0.000249 1.02E-05 100
231Pa 0.4 48.6 0.0592 1.22E-03 262

0.497 36.9 0.0107 2.90E-04 262
0.744 43.1 0.0125 2.90E-04 262
1.24 40.8 0.0242 5.93E-04 262
1.96 40 0.0144 3.60E-04 262
2.79 40 0.013 3.25E-04 262
3.49 34.4 0.0386 1.12E-03 262
4.12 33.6 0.0709 2.11E-03 262
4.35 39.9 0.0557 1.40E-03 262
4.54 35.3 0.0202 5.72E-04 262
5.07 40.2 0.418 1.04E-02 262
5.29 42.7 0.0915 2.14E-03 262
5.64 40 0.0506 1.27E-03 262
5.82 40 0.0515 1.29E-03 262
6.21 40 0.052 1.30E-03 262
6.54 40 0.0707 1.77E-03 262
6.88 38.8 0.21 5.41E-03 262
7.58 40 0.147 3.68E-03 262
7.83 42.4 0.261 6.16E-03 262
8.74 40.1 1.08 2.69E-02 262
9.27 40 0.056 1.40E-03 262
9.72 34.1 0.349 1.02E-02 262

232Pa 0.33 42 0.0676 1.61E-03 262
0.67 37.8 0.0371 9.81E-04 262
1.14 44 0.0348 7.91E-04 262
1.42 41 0.0223 5.44E-04 262
2.73 43.7 0.457 1.05E-02 262
3.06 41.5 0.344 8.29E-03 262
4.14 36.1 0.484 1.34E-02 262
4.9 37.7 0.179 4.75E-03 262
5.55 40.8 0.0462 1.13E-03 262
5.82 38.5 0.138 3.58E-03 262
6.45 41.5 0.505 1.22E-02 262
7.48 43.8 0.144 3.29E-03 262
8.44 44.1 0.338 7.66E-03 262
8.85 42.5 0.507 1.19E-02 262
9.7 34.8 0.433 1.24E-02 262

233Pa 0.789 32.6 0.00144 4.42E-05 262
1.34 43.3 0.108 2.49E-03 262
1.64 40.6 0.309 7.61E-03 262
2.36 35.2 0.00744 2.11E-04 262
2.83 45.9 0.156 3.40E-03 262
3.39 40 0.526 1.32E-02 262
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Resonance
Energy (eV)

Γ (meV) Γn (meV) kbres =Γn/Γ Debye Temperature

4.29 48.4 0.0876 1.81E-03 262
5.15 47.3 0.399 8.44E-03 262
7.18 41 0.139 3.39E-03 262
8.26 41.2 0.0401 9.73E-04 262
8.97 77.3 0.158 2.04E-03 262
9.37 87 1.05 1.21E-02 262

232U 5.98 40 1.5 3.75E-02 300
233U 0.166 83 0.0001 1.20E-06 300

0.232 48.5 0.0000318 6.56E-07 300
0.577 25.2 0.000629 2.50E-05 300
1.45 38.3 0.201 5.25E-03 300
1.77 40 0.258 6.45E-03 300
2.3 37.4 0.152 4.06E-03 300
3.51 39 0.181 4.64E-03 300
3.63 35.9 0.0545 1.52E-03 300
4.46 34.5 0.379 1.10E-02 300
5.81 39 0.1 2.56E-03 300
6.64 39 0.343 8.79E-03 300
6.83 34.9 0.689 1.97E-02 300
7.48 39 0.0334 8.56E-04 300
8.7 39 0.019 4.87E-04 300
8.77 39 0.329 8.44E-03 300
9.17 50.2 0.0677 1.35E-03 300

234U 5.16 38.1 3.64 9.55E-02 300
235U 0.274 46.2 0.00425 9.20E-05 300

1.13 38.6 0.0145 3.76E-04 300
1.31 38.6 0.000195 5.05E-06 300
2.03 38 0.009 2.37E-04 300
2.76 41.4 0.000738 1.78E-05 300
3.14 38.2 0.0238 6.23E-04 300
3.62 37.7 0.0421 1.12E-03 300
3.87 38.9 0.000445 1.14E-05 300
4.85 38.1 0.0525 1.38E-03 300
5.41 39.8 0.022 5.53E-04 300
6.16 39.8 0.0533 1.34E-03 300
6.39 42.7 0.242 5.67E-03 300
6.99 40.1 0.00156 3.89E-05 300
7.08 39 0.112 2.87E-03 300
7.66 39.8 0.00202 5.08E-05 300
8.76 37.7 0.966 2.56E-02 300
8.93 50.5 0.0829 1.64E-03 300
9.27 41.4 0.12 2.90E-03 300
9.7 39.8 0.0356 8.94E-04 300

236U 5.46 24.5 2.3 9.39E-02 300
237U 1.5 35 0.533 1.52E-02 300

5 35 1.04 2.97E-02 300
8.5 35 1.36 3.89E-02 300

238U 4.41 23 0.0000555 2.41E-06 300
6.67 23 1.48 6.43E-02 300
7.68 23 0.00000942 4.10E-07 300

239U 1.28 87.1 0.282 3.24E-03 300
3.78 87.3 0.486 5.57E-03 300
6.28 87.4 0.627 7.17E-03 300
8.78 87.6 0.742 8.47E-03 300

240U 2.67 24.3 2.33 9.59E-02 300
241U 8.02 36.8 1.88 5.11E-02 300
236Np 0.171 40 0.0218 5.45E-04 163

0.705 40 0.0432 1.08E-03 163
2.02 40 0.152 3.80E-03 163
2.41 40 0.0553 1.38E-03 163
2.7 40 0.0971 2.43E-03 163
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Γ (meV) Γn (meV) kbres =Γn/Γ Debye Temperature

2.77 40 0.071 1.78E-03 163
3.13 40 0.0991 2.48E-03 163
3.54 40 0.115 2.88E-03 163
5.07 40 0.354 8.85E-03 163
6.03 40 0.195 4.88E-03 163
7.01 40 0.579 1.45E-02 163
7.92 40 0.179 4.48E-03 163
9.76 40 1.85 4.63E-02 163

237Np 0.49 40.5 0.047 1.16E-03 163
1.32 40.3 0.0323 8.01E-04 163
1.48 40.5 0.184 4.54E-03 163
1.97 39.5 0.0141 3.57E-04 163
3.05 40.8 0.00000171 4.19E-08 163
3.86 39.7 0.212 5.34E-03 163
4.26 40.4 0.0326 8.07E-04 163
4.86 40 0.0418 1.05E-03 163
5.78 41.9 0.528 1.26E-02 163
6.38 39.6 0.0789 1.99E-03 163
6.68 40.1 0.0132 3.29E-04 163
7.19 40 0.00888 2.22E-04 163
7.42 38.4 0.122 3.18E-03 163
7.68 40 0.00216 5.40E-05 163
8.31 37.6 0.0902 2.40E-03 163
8.98 37 0.102 2.76E-03 163
9.3 41.4 0.602 1.45E-02 163

238Np 0.181 50 0.118 2.36E-03 163
1.12 50 0.308 6.16E-03 163
1.83 50 0.149 2.98E-03 163
2.29 50 0.0675 1.35E-03 163
2.56 50 0.0621 1.24E-03 163
2.88 50 0.205 4.10E-03 163
3.28 50 0.132 2.64E-03 163
3.53 50 0.134 2.68E-03 163
4.04 50 0.0439 8.78E-04 163
4.36 50 0.115 2.30E-03 163
4.72 50 0.137 2.74E-03 163
4.98 50 0.115 2.30E-03 163
5.37 50 0.0388 7.76E-04 163
5.75 50 0.0949 1.90E-03 163
5.99 50 0.275 5.50E-03 163
6.57 50 0.247 4.94E-03 163

236Pu 3.16 44 1.56 3.55E-02 176
6.3 44 2.14 4.86E-02 176

238Pu 2.89 38 0.0747 1.97E-03 176
9.98 37 0.208 5.62E-03 176

239Pu 0.296 39.3 0.08 2.04E-03 176
7.82 37.7 0.792 2.10E-02 176

240Pu 1.06 30 2.45 8.17E-02 176
241Pu 0.15 42.3 0.000384 9.08E-06 176

0.264 34.6 0.0437 1.26E-03 176
1.73 40.3 0.00207 5.14E-05 176
4.29 34.7 0.576 1.66E-02 176
4.59 36.8 0.479 1.30E-02 176
5.81 60.1 2.77 4.61E-02 176
6.95 35.5 0.62 1.75E-02 176
8.62 33.6 0.78 2.32E-02 176
9.65 39.1 0.592 1.51E-02 176
9.94 56.6 1.89 3.34E-02 176

242Pu 2.68 26.8 2 7.46E-02 176
243Pu 1.66 73.4 0.556 7.57E-03 176

4.16 73.8 0.879 1.19E-02 176
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Γ (meV) Γn (meV) kbres =Γn/Γ Debye Temperature

6.66 74 1.11 1.50E-02 176
9.16 74.2 1.31 1.77E-02 176

244Pu 4 20 0.026 1.30E-03 176
241Am [57] 0.305 44.4 0.079 1.78E-03 153

0.572 43.3 0.134 3.09E-03 153
1.27 45.3 0.325 7.17E-03 153
1.92 41 0.144 3.51E-03 153
2.36 50 0.0688 1.38E-03 153
2.6 48 0.13 2.71E-03 153
3.97 44.5 0.257 5.78E-03 153
4.97 43.8 0.157 3.58E-03 153
5.42 44.2 0.653 1.48E-02 153
5.8 44.2 0.00247 5.59E-05 153
6.12 43.8 0.112 2.56E-03 153
6.75 44.2 0.0408 9.23E-04 153
7.66 44.2 0.0423 9.57E-04 153
8.17 42.7 0.0926 2.17E-03 153
9.11 44.2 0.449 1.02E-02 153
9.85 43.9 0.494 1.13E-02 153

242Am 0.178 46 0.192 4.17E-03 153
0.35 50 0.18 3.60E-03 153
0.615 50 0.111 2.22E-03 153
1.1 50 0.423 8.46E-03 153
1.71 50 0.0504 1.01E-03 153
2.11 50 0.181 3.62E-03 153
2.19 50 0.286 5.72E-03 153
2.31 50 0.152 3.04E-03 153
2.95 50 0.0821 1.64E-03 153
3.18 50 0.273 5.46E-03 153
3.39 50 0.242 4.84E-03 153
3.71 50 0.6 1.20E-02 153
4.01 50 0.266 5.32E-03 153
4.13 50 0.0019 3.80E-05 153
4.27 50 0.234 4.68E-03 153
4.55 50 0.231 4.62E-03 153
5.37 50 0.526 1.05E-02 153
5.7 50 0.0468 9.36E-04 153
5.91 50 0.0806 1.61E-03 153
5.95 50 0.356 7.12E-03 153
6.15 50 0.0805 1.61E-03 153
6.41 50 0.0128 2.56E-04 153
6.65 50 0.214 4.28E-03 153
6.71 50 0.13 2.60E-03 153
6.84 50 0.038 7.60E-04 153
6.99 50 1.74 3.48E-02 153
7 50 0.0361 7.22E-04 153
7.21 50 0.104 2.08E-03 153
8.07 50 0.131 2.62E-03 153
8.33 50 0.896 1.79E-02 153
8.6 50 0.0733 1.47E-03 153
8.86 50 0.00284 5.68E-05 153
9.03 50 0.412 8.24E-03 153
9.42 50 0.19 3.80E-03 153
9.43 50 0.0569 1.14E-03 153
9.88 50 0.159 3.18E-03 153

243Am 0.419 22.9 0.000671 2.93E-05 153
0.983 45 0.02 4.44E-04 153
1.36 50 1.1 2.20E-02 153
1.74 41.5 0.35 8.43E-03 153
3.14 32 0.0136 4.25E-04 153
3.42 38.7 0.235 6.07E-03 153
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3.85 44.9 0.0172 3.83E-04 153
5.13 35.1 0.344 9.80E-03 153
6.55 51.5 0.782 1.52E-02 153
7.07 29.7 0.0545 1.84E-03 153
7.86 46.9 1.48 3.16E-02 153
8.38 38.4 0.00989 2.58E-04 153
8.77 31.7 0.101 3.19E-03 153
9.31 38.6 0.178 4.61E-03 153

243Cm [58] 0.671 40 0.0528 1.32E-03 125
1.14 40 0.0588 1.47E-03 125
1.47 40 0.0249 6.23E-04 125
2.05 40 0.0163 4.08E-04 125
2.31 40 1.93 4.83E-02 125
2.76 40 0.0137 3.43E-04 125
3.07 40 0.816 2.04E-02 125
3.73 40 0.54 1.35E-02 125
5.68 40 0.497 1.24E-02 125
6.15 40 1.73 4.33E-02 125
7.21 40 1.67 4.18E-02 125
8.18 40 0.394 9.85E-03 125
9.11 40 3.74 9.35E-02 125

244Cm 7.67 37 9.6 2.59E-01 125
245Cm 0.85 44 0.09 2.05E-03 125

1.98 44 0.2 4.55E-03 125
2.45 33 0.126 3.82E-03 125
4.68 33 1.87 5.67E-02 125
5.75 33 0.22 6.67E-03 125
7.53 33 2.8 8.48E-02 125
8.65 33 0.606 1.84E-02 125
9.15 33 0.347 1.05E-02 125

246Cm 4.32 28 0.311 1.11E-02 125
247Cm 1.24 32 0.665 2.08E-02 125

2.94 40 0.13 3.25E-03 125
3.18 40 1.06 2.65E-02 125
4.73 40 1.47 3.68E-02 125
6.12 40 0.105 2.63E-03 125
7.12 40 0.45 1.13E-02 125
7.65 40 0.115 2.88E-03 125
7.94 40 0.4 1.00E-02 125
9.5 40 0.72 1.80E-02 125
10 40 0.15 3.75E-03 125

248Cm 7.25 23.3 1.89 8.11E-02 125
250Cm 9.02 99.3 79.3 7.99E-01 125
249Bk 0.195 35.9 0.117 3.26E-03

1.34 35.1 0.198 5.64E-03
1.6 33.2 0.573 1.73E-02
2.15 36.7 0.107 2.92E-03
3.11 37 0.145 3.92E-03
5.02 44.3 0.231 5.21E-03
6.28 33.8 0.147 4.35E-03
7.04 39 0.165 4.23E-03
7.99 36.1 1.41 3.91E-02

249Cf 0.7 40 0.65 1.63E-02
3.88 40 0.291 7.28E-03
5.07 40 0.653 1.63E-02
7.51 40 0.147 3.68E-03
8.65 40 0.444 1.11E-02
9.51 40 1.61 4.03E-02

250Cf 0.553 36.4 1.03 2.83E-02
6.85 45 0.425 9.44E-03
8.26 43 7.15 1.66E-01
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Γ (meV) Γn (meV) kbres =Γn/Γ Debye Temperature

251Cf 0.389 35 0.877 2.51E-02
252Cf 1.4 35 0.0192 5.49E-04
253Es 0.7 24.4 0.65 2.66E-02
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