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The 5512 — 5Ds5/2 two-photon transition in Rb is of interest for the development of a com-
pact optical atomic clock. Here we present a rigorous calculation of the 778.1 nm ac-Stark
shift (2.30(4) x 107'*(mW/mm?)™!) that is in good agreement with our measured value of
2.5(2) x 107 (mW/mm?)~*. We include a calculation of the temperature-dependent blackbody
radiation shift, we predict that the clock could be operated either with zero net BBR shift
(T = 495.9(27) K) or with zero first-order sensitivity (I' = 368.1(14) K). Also described is the
calculation of the dc-Stark shift of 5.5(1)x107**/(V/cm?) as well as clock sensitivities to optical
alignment variations in both a cat’s eye and flat mirror retro-reflector. Finally, we characterize these

Stark effects discussing mitigation techniques necessary to reduce final clock instabilities.

I. INTRODUCTION

Narrow-line transitions can be realized through two-
photon spectroscopy to explore a wide array of sci-
entific phenomena. Two-photon transitions have been
successfully leveraged for measuring fine and hyperfine
structures [1], Zeeman [2] and Stark [3] splittings, hot
vapour collisional effects [4, 5], and are important in
precision Hydrogen spectroscopy [6]. A common tech-
nique in two-photon spectroscopy is the degenerate two-
photon method which uses photons derived from the
same source, resulting in identical frequencies. The ad-
vantage of using degenerate photons in two beams of op-
posite k vector is that all atoms, regardless of velocity,
can contribute to a Doppler-free signal [1, 7-10]. As em-
ployed here [11] the Rb 55/, — 5D5/5 transition can
be leveraged to create a high stability optical clock with
a simple vapour cell architecture, without the need for
laser cooling, offering an alternative to saturated absorp-
tion systems such as molecular iodine [12], or pulsed op-
tically pumped microwave systems [13-15]. Offering a
simpler and more compact approach than more compli-
cated (albeit higher stability) optical lattice clocks [16-
21]; Doppler free degenerate two-photon spectroscopy
provides an appealing architecture for which to build a
compact optical atomic frequency standard [11, 22, 23]
and has already shown promise for very small packaging
[24].

The two-photon transition in Rb can be driven with
two degenerate 778.1 nm photons, which can be gen-
erated either directly with a 778.1 nm laser diode or

* A contribution of AFRL, an agency of the US government, and
not subject to copyright in the United States.

through second harmonic generation (SHG) of mature
telecommunications C-band lasers at 1556.2 nm [11]. The
relatively small virtual state detuning (see Figure 1) re-
sults in significant atomic excitation rates at modest op-
tical intensities [25-27], which allows for a high signal-to-
noise ratio of the 420 nm fluorescence, as shown in Figure
1, due to the simple detection scheme with spectral filter-
ing of the incident probe beam from the fluorescence sig-
nal. Fractional frequency instabilities of < 4 x 10713 /\/7
up to 10,000 seconds have been measured, and operation
with increased SNR has shown short term stability of
1 x 10713 at one second [11]. This performance is com-
parable to other commercially available compact clocks,
specifically the laser cooled microwave Rb compact clocks
whose fractional frequency instability is < 8 x 10713 /,/7
[28] , and the current global position system (GPS) rubid-
ium atomic frequency standard (RAFS) whose instability
is < 2 x 10712/4/7 [29] over the same time-frame.

While laboratory based optical lattice systems pro-
vide the highest stability [16-21] and progress towards
portable lattice clocks is ongoing [30], a more compact,
transportable lattice clock has yet to be fully realized.
However, the Optical Rubidium Atomic Frequency Stan-
dard (O-RAFS) has potential to meet current needs
for compact frequency standards whose stability exceed
active hydrogen maser capabilities [31], fractional fre-
quency instabilities < 1 x 10713 /,/7. Mitigation of the
ac-Stark shift will be an integral component to achiev-
ing these ambitious instability goals. Unlike its lattice
clock counterparts which leverage well known “magic”
wavelengths [32, 33| to eliminate this light shift, no com-
mon light shift mitigation techniques are used for vapour
cell clocks. Because the atoms are sensitive to the av-
erage intensity across the vapour, imperfect or unstable
optical alignment can also lead to Stark shift fluctua-
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FIG. 1. (a) The differential polarizability displayed in atomic
units of the 55,5 — 5Ds5/, transition as a function of wave-
length as calculated by Equation 2. (b) Partial energy level
diagram of Rb. The virtual state, through which the two-
photon transition is excited, is denoted by a horizontal dashed
line. In the degenerate case, w1 = w2, the virtual state is
2 nm detuned from the 5P3/, state. The cascade decay path
5D5/9 — 6P5/5 — 5515 results in the emission of a 420 nm
photon, which we detect to observe the two-photon resonance.

tions and clock instabilities. Moreover, since the atomic
vapour is heated to increase signal to noise, the atomic
vapour is immersed in blackbody radiation (BBR) [34-
36]. Normally BBR is treated as a dc shift as the black-
body spectrum is far off resonance from the atomic tran-
sitions. However, the 5D5/5 state in Rb has resonant
transitions that are well within the blackbody spectrum
requiring calculation as an ac-Stark effect. Careful calcu-
lations and measurements of both the ac- and dec-Stark
shifts are required to make predictions of clock perfor-
mance to determine feasible clock instability goals, and
decide whether more complicated Stark shift mitigation
techniques are required.

The paper is organized as follows: Section ITA de-
tails a calculation of the ac-Stark shift at 778.1 nm, Sec-
tion IT B calculates misalignment contributions to the ac-
Stark shift, Section IT C describes a measurement of the
ac-Stark shift at 778.1 nm, Section III investigates a two-
photon two color approach to excitation of the atom, and
Section IV calculates the blackbody radiation shift for
the two-photon transition.

II. STARK SHIFT AT 778.1 NM
A. Calculation

Although many environmental variables impact the
clock instability of O-RAFS, the inherently large ac-Stark
shift motivates the most difficult requirements. Careful
calculation and direct measurement of the ac-Stark shift
magnitude are pivotal to understanding the overall im-
pact on clock performance. The ac-Stark shift can be
written as [37],

A«

(SV(T,Z) = m

I(r,z), (1)
with h Planck’s constant, ¢ the speed of light, ¢y per-
mittivity of free space, I (r,z) is the laser intensity, z is
the optical axis of the beam and r completes the cylin-
drical coordinate system, and A, the differential atomic
polarizability between the two clock states will need to
be calculated. Although the atomic vapour will absorb
light from the beam the scattering rate on resonance for
the two-photon transition is small, and the laser inten-
sity along the propagation axis can be approximated as
constant, I (r,z) = I (r).

The rank-2 atomic polarizability tensor can be sep-
arated into three irreducible components: the scalar
(trace), the vector (free symmetric) and the tensor (anti-
symmetric) polarizabilites. The two-photon transition is
pumped with linearly polarized light, yielding zero vec-
tor shift, and each hyperfine state is addressed uniformly,
leaving the atom orientation independent, netting zero
tensor shift. The remaining scalar term is written below
in atomic units [45, 46],

2 wyr,g|(J]d]J) 2
J)=— . . 2
« (w7 ) 3 (2J + 1) ; w?]/,J _ w2 ( )

(J|d|J'y is the dipole matrix element whose resonant fre-
quency is wy,s; J and J are the associated angular mo-
mentum quantum numbers.

Final calculation of Equation 2 uses the finite basis
of B-splines as outlined in Ref. [47]. Tables I and II
summarize the states and extra considerations included
in the polarizability calculation, displaying the transi-
tion energy difference, the dipole matrix elements, and
the Einstein A coefficients calculated from (unless stated
otherwise) [48-50],

2w (ecap(J|d|J’))?
Ay =
n 3eoh3(2J +1) 3)

where e. is the electron charge and ag is the Bohr ra-
dius. A large number of the parameters listed in Ta-
ble I originate from Safronova et al. [38], however, the
551/2 — 5P1/2 and 551/2 — 5P3/2 dipole matrix el-
ements are calculated utilizing measured lifetimes [40-
43]. The final matrix elements were calculated utilizing



TABLE 1. Values for the reduced electric-dipole matrix elements, (J|d|.J'), taken from [38], are presented in a.u., the transition
energies are taken from [39], and the Einstein A coefficients are calculated utilizing Equation 3, except as noted. The chosen
sign convention yields negative energies for the 5D5,5 — 5P/ and 5D5/, — 6P/, transitions, indicating that 5D5 /5 is the

higher state.

Transition (J|d|J’y  Energy (cm™') A (MCyc/sec)|Transition (J|d|J’y  Energy (cm™') Ag; (MCyc/sec)
5812 > 5Pys  4233(6)  12578.950(2)  36.129(52) * |5D5s — 6Fyy  1373(22) ° 4924.48(2) 0.076(2)
5812 — 5Ps;s  5.979(9)  12816.545(2)  38.12(13) ®  |5Ds;s — TFsjn  0.871(38) ¢ 5738.23(2) 0.048(4)
5S1/2 — 6Py 0.3235(9) © 23715.081(10)  1.498(8)  |5Ds/m — 8Fsjp  0.641(24) ©  6266.12(2) 0.034(3)
5S1/2 — 6Py 0.5239(8) © 23792.591(10)  1.873(6)  |5Ds/n — 9Fs,  0.513(26) ©  6629(3) 0.026(3)
5810 — TPy 0.101(5) ¢ 27835.02(1) 0.223(22)  |5Ds5/2 — 10F5,, 0.440(22) ©  6889(3) 0.021(2)
5512 = TP3/5  0.202(10) 4 27870.11(1) 0.447(44) 5D5/5 — 11F5,5 0.450(23) © 7080(3) 0.024(2)
5810 — 8Py 0.059(3) ¢ 20834.94(1) 0.094(10)  |5Ds5/5 — 12F5,, 0.472(71) ¢ 7225(3) 0.028(8)
5812 = 8P3/2  0.111(6) d 29853.79(1) 0.166(18) 5D5/o — 13F5,5 0.478(72) © 7338(3) 0.030(9)
5D5/5 — 5P3/5  1.999(70) 4 -12886.95(5) 2.89(20) 5D5/5 — 4F7/2  30.316(64) ©  1088.59(2) 0.300(1)
5D5/5 — 6P5/5 24.621(79) d -1910.907(52) 1.428(8) 5D5/5 — 5F7/5  11.24(32) © 3574.27(2) 1.461(83)
5Dsy — TPy 13.82(33) ¢ 2166.61(2) 0.984(47)  |5Ds5/2 — 6Fy/n  6.140(97) ©  4924.46(2) 1.140(36)
5Dsj5 — 8Py 3.292(11) ¢ 4150.29(2) 0.392(3)  |5Dsjo — TFrjn  3.90(17) ¢ 5738.22(2) 0.726(63)
5D5/9 = 9P52  1.691(85) © 5266.69(2) 0.212(21) 5D5/5 — 8F7/  2.87(11) © 6266.12(2) 0.512(39)
5D5/5 — 10P5/, 1.099(55) © 5957.66(2) 0.129(13) 5D5/ — 9F7/  2.29(12) © 6629(3) 0.388(41)
5D5/5 — 11P5/5 0.799(40) © 6415.02(2) 0.085(8) 5D5/5 — 10F7 /5 1.968(98) © 6889(3) 0.321(32)
5D5/5 — 12P5)5 0.627(94) © 6733.54(6) 0.061(18) 5D5/5 — 11F7 ;5 2.01(10) © 7080(3) 0.365(4)
5D5/5 — 13P5/, 0.578(87) © 6964.13(6) 0.057(17) 5D5/p — 12F7 ;5 2.11(32) © 7225(3) 0.425(129)
5D5/9 — 4F5/5  6.779(14) © 1088.62(2) 0.020(1) 5D5/5 — 13F7 ;5 2.14(32) © 7338(3) 0.429(128)
5D5/5 — 5F5/5  2.513(72) © 3574.29(2) 0.097(6)

aLifetime measured in Refs. [40-42]
bLifetime measured in Refs. [40-43]
°Matrix elements measured in [44]
dMatrix element calculated in Ref. [38]
°Matrix elements derived using the method described in Reference [38].

the method described in Reference [38]; these elements
only account for a small fraction of the overall differen-
tial atomic polarizability. Uncertanities in the matrix el-
ements were estimated according to References [51, 52].
A majority of the energy levels and uncertainties were
obtained from [39]. However, the energy levels for the
(9 — 13) F' states were calculated utilizing quantum de-
fect theory(QDT) with a correction accounting for slight
discrepancies between observed and predicted energy lev-
els. QDT generalizes that energy deviations from the
Rydberg atom can be written,

A
=P <4>

where, E is the energy, n is the principal quantum num-
ber and d is the quantum defect. Equation 4 can be
used to calculate the energies and thus the transition fre-
quencies subtracting the result from the Rb ion limit in
[53]. Necessary elements for the calculation are the Ryd-
berg constant substituted for A from [54] and the defects
for Rb which are: S = 3.13, P = 2.64, D = 1.35, and
F = 0.016 [55]. The uncertainty of the energy levels is
extrapolated from lower states.

The differential polarizability was calculated for a
range of incident wavelengths shown in Figure 1. Cal-
culation of the ac-Stark shift at 385.284 THz yields a
fractional frequency shift of 2.30(4)x 10713 /(mW /mm?).

FE =

TABLE II. Contribution to the atomic polarizability from the
atomic core and continuum in atomic units. These numbers
were included in the final calculation of ac and dc Stark shift.

Contribution Static Scalar Polarizability®
A58, /2 (c) 9.1
ass, ,, (tail) 1.24
065D5/2 (C) 9.0
5D, (> TP3)2) 88(0)
QsD; (> 6F5)2) 13(0)
5D;5 (> 13F;)5) 100(0)
Contribution |Dynamic Scalar Polarizability
at A = 778.1 nm
ass, , (c) 8.7
ass, (tasl) 0.5
Q5D; 5 (¢) 9.0
5D,y (> 13P3)2) -4(74)
C¥5D5/2 (> 13F5/2) —18(5)
Q5D; )y (> 13Fy)2) -33(110)

aPolarizability numbers are taken from [56].

Equation 1 shows an ac-Stark shift dependence on local
intensity of the laser electric field. The atomic vapour
effectively samples the laser intensity distribution, and
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FIG. 2. Simple geometric alignment diagram for a flat mirror
(a) and a cat’s eye (b). In each case all distances were writ-
ten in terms of the focal length of the lens utilized in the cat’s
eye: Ni, Nz, Ad, Af AX; are unit-less parameters. AX;f
- displacement of the initial Gaussian beam from the optical
axis, # - angular misalignment of the initial beam, £ - angular
misalignment of the retro-reflecting optic, 8 - angular mis-
alignment of the mirror and lens in the cat’s eye optic, fAd
- displacement from optimal placement of the mirror in the
cat’s eye optic, N1 f - distance from the fiber launcher to the
rear of the vapour cell, Naf - distance from the vapour cell
to the retro-reflector, a -vapour cell length and fAf - abso-
lute deviation of the cat’s eye mirror from optimal radius of
curvature.

the fluorescence spectrum is shifted on average by
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I,0; is the spatial weighted average intensity,
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with the total intensity as the sum of the two beam pro-
files It = I1 +I5. The weighting function I7 I is utilized
as a measure of the intensity in the two-photon region,
the beam overlap in the vapour cell, the main contributor
to the ac-Stark shift. Equation 5 details that variations
in laser intensity will cause a clock shift, and these can
arise from laser power fluctuations as well as slight opti-
cal alignment variations.

B. Alignment Shift

Typical optic mounts allow slight tip/tilt adjustments
which are required for control of the beam. In the O-
RAFS system, variations in alignment affect the total in-
tensity of the two-photon excitation causing an ac-Stark
instability. This section examines slight angular varia-
tions of the laser light emitted from the fiber launcher,
as well as slight variation of the retro-reflector, and calcu-
lates the variation of I;,;. Figure 2 presents what a small

angular misalignment would look like for both a flat mir-
ror (a) and a cat’s eye retro-reflector (b). These two sep-
arate retro-reflectors have been successfully employed in
the experimental apparatus. The optimal retro-reflector
can be determined through calculation of Equation 6.

Normally, the intensity of a Gaussian beam after in-
teraction with a series of optical components can be cal-
culated using the ABCD or M matrices and the complex
beam parameter ¢ [46, 57]. However, the M matrices re-
quire that the optical elements are placed normal to the
optical axis, which is not true for a general case. In-
stead, we use the extended ray trace matrices [57] (see
Table II1),

A B §
C D~
0 01

; (7)

where ¢ is a displacement from the optical axis, - is a ro-
tation of the optic from normal incidence, and the ABCD
elements are unchanged.

In the flat mirror case, the Gaussian beam originating
from the fiber launcher can be written as

Iincident = 106_2(x2+y2)/wga (8)

with wg the 1/e? intensity radius. The extended M ma-
trix for the beam as it re-enters the vapour cell after
reflection off the mirror is

1 2Nof Naof§
M={o 1 €. (9)
0 O 1

The complex beam paramter ¢ [46, 57],

Awimi/\ + B

—_— 1
Cwimi/A+ D’ (10)

g=q t+ig =
can be used to to determine the retro reflected beam pro-

file as it re-enters the cell. Substituting the parameters
from Equation 9 yields,

q = wimi/\+ 2Naf, (11)

where ) is the wavelength. Calculating the retro-reflected
beam from these g-parameters and using the approxima-
tion that the free space propagation lengths are less than
the Rayleigh length and thus (q1/g2) << 1, yields,

—2(2?+y?+22 (N2 f+2) (—0)+(N2 f+2)? (§-0)?) /w]

(12)
for the retro-reflected beam. Equation 6 is calculated and
the normalized weighted average, I, is given by,

Iretro = IOe

V3erf (2(y1 + y2)/V3) — erf (2y2/V/3)

I
I=Tc—0 2 orf (g1 + ya) — orf (42)
(13)

where y1 = a (£ —0) Jwo and yo = M f (£ — 0) /wo. This
result is plotted in Figure 3 for the experimental set-up



TABLE III. The extended ray trace matrices used to calculate misalignment effects from the cat’s eye optic

Freespace propagation of distance N

Thin lens with focal length f at angle £

Concave mirror, radius f(1+ Af), at angle £+ 8| | 2/f(1 + Af)

Flat mirror, at angle &

1 N O
010
00 1
1 00
—1/f 1¢
0 1

1 0 0

1 &+5

0 0 1
100
01 ¢
001

described in [11]. The M matrix formulation leverages
the small angle approximation where £,60 << 1. If the
higher order terms are ignored, the weighted average be-
comes

(a® + 3aNof + 3N3f?) (€ - 6)°

T~1-—
9w(2) ’

(14)

which has been expanded to second order in 6, £ and
their cross terms.

The final desired quantity is the sensitivity of the aver-
age weighted total intensity to angular misalignment in
each optic, or the derivative of the intensity w.r.t. the
angular variable. Taking the derivative of Equation 14
w.r.t. either 8 or £ yield the same result,

dl _ —2(a®+3aNaf + 3N3 f2) 6
o~ 9w? ‘

(15)

The cat’s eye calculation is more challenging. A cat’s
eye retro-reflector consists of a convex lens with a focal
length f, and a concave mirror with a radius of curva-
ture f, placed at the focus of the lens. An ideal cat’s
eye provides an anti-parallel retro-reflected beam [58],
whereas misalignment in the fiber launcher will yield
non-parallel beams in the case of a flat mirror reflec-
tor. Although the incident beam can be recycled and
the g-parameter formulation is the same, the M matrix
becomes more complex. Various misalignment mecha-
nisms in the cat’s eye optic calculation, shown in Figure
2, include small deviations of the location of the mirror
(now located at f(14 Ad)) the radius of curvature of the
mirror (f(1+ Af)), and also allowing the lens and mir-
ror to have a misalignment angle 5 between them. The
following assumptions are enforced: & << 1, 6 << 1,
Ad << 1, Af << 1, AX; << 1, 8 << 1, and the initial
beam is collimated. Three special cases were examined,
and details on each special case can be found in the ap-
pendix:

1. Analytic derivation with Ad = 0.

2. One specific numeric case with Ad # 0.

3. Analytic derivation with Ad # 0, AX; =0, 8 =0
and Af =0

Figure 3 shows the variation in average intensity as a
function of AX;, 8, £, and 0 with all other misalignment
variables set explicitly to zero. The fiber launcher angu-
lar sensitivity dominates in this simple case. As in the
flat mirror case the sensitivity of the average intensity
w.r.t. angular misalignments of the fiber launcher and
retro-reflector is the desired quantity. In the cat’s eye
case these solutions differ,

dI _ —2f*(N1+ Na) (€ + (N1 + N»)0)

e 1
do 3(.08 (16)

dl _ —2f? (£ + (N1 + N») 6)
de "~ 3wd

(17)

where Af =0, 8 =0, and AX; = 0. It is apparent
that Equation 16 is larger than Equation 17 by a factor
of N1 + N>. By design, the cat’s eye suppresses angular
motion of the retro-reflector optic over the flat mirror,
but at the expense of sensitivity to angular misalignment
of the fiber launcher.

The choice of retro-reflector will depend on environ-
mental conditions. For a fully dynamic environment, the
flat mirror case might be the best choice, however, if the
collimator can be rigidly mounted, the cat’s eye retro-
reflector is ideal for reducing alignment variations. More-
over, reduction of alignment sensitivity can be achieved
by reducing the laser intensity or increasing the beam
waist.

C. Measurement

Measuring the ac-Stark shift is important to confirm
the accuracy of the theoretical result. An experiment
was designed specifically to measure the effects of the ac-
Stark shift on the output clock frequency. Two lasers
were utilized in the Stark shift measurement (Figure 4):
a Ti:Sapph laser tuned slightly away from the two-photon
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FIG. 3. Shown in (a) is the simplified case where Ad = 0.
Clearly, the fiber launcher angle is more sensitive than the
other misalignment variables in the cat’s eye case and either
angular misalignment in the flat mirror case. Shown in (b)
is the numerically calculated average intensity as a function
of Ad for incident angular misalignment of § = 0 and 6 =
0.001 for Ad # 0 as well as the simplified case derived in the
appendix. The numerical result with # = 0 and the simplified
case in Equation A.4 agree over a half percent change in cat’s
eye optic displacement (the dotted blue line is obscured by
the solid black line).

resonance to 385287.8 GHz, which is far enough from the
resonant two-photon excitation frequency to introduce no
measurable vapour excitation, and the clock laser tuned
to be on resonance with the two-photon transition, de-
scribed in [11]. After amplification and subsequent sec-
ond harmonic generation of 778.1 nm, the clock laser and
the Ti:Sapph laser separately pass through a half wave-
plate followed by a quarter wave-plate. The remaining
light in each beam is subsequently sent through a vari-
able optical attenuator (VOA), which is used for laser
power stabilization. Each beam then passes through an-
other half wave-plate and polarizer, properly aligning the
polarization to fiber couple each beam into two separate
arms of a polarization maintaining (PM) 2 x 2 50:50 fiber
splitter. A portion of the Ti:Sapph light is sampled be-
fore fiber coupling. This signal is used to feedback to the
Ti:Sapph VOA and stabilize the optical power coupled
into the beam splitter. One arm of the splitter is sent
to a detector used for independent power measurements.
The second arm of the splitter is sent to the vapour cell
assembly through a 2 x 2 99:1 PM fiber splitter. Up to
30 mW of Ti:Sapph light and 30 mW of clock laser light
were delivered to the vapour cell assembly.

The vapour cell assembly is enclosed in 5 mm thick
single layer mu-metal magnetic shield to reduce Zeeman
shifts and broadening. The atomic vapour is regulated to

a constant temperature, ideally 100 °C. The final vapour
cell operational temperature is achieved though use of a
dual stage temperature apparatus. The first temperature
state is regulated to 60 °C, Temp stage 1 in Figure 4, pro-
viding a stable reference for the final stage regulated to
100 °C, Temp stage 2 in Figure 4. The vapor cell, which
is a rectangular prism with dimensions 5 mm x 5 mm
x 25 mm, containing > 99% isotopically enriched 37Rb,
is placed such that it has a 1 K thermal gradient along
its length, forcing the cell’s cold spot on the pinched-off
fill tube of the borosilicate glass cell. The vapor cell is
oriented at Brewster’s angle with respect to the incident
laser beam to reduce stray reflections. The vapour cell
assembly is further described in [11].

The two witness photodiodes, a Thorlabs SMO5PD1A,
labeled witness 1 in the diagram, and a Thorlabs
PDA36A, labeled by the total power detector on in the
diagram were independently calibrated to both a Thor-
labs PM160 and an Ophir PD300-TP hand held silicon
power meter at the ”X” marked in Figure 4. Differences
in the calibrations are included in the combined statisti-
cal and systematic errorbars of Figure 5.

After the clock laser is stabilized to be on resonance,
the Ti:Sapph laser power is varied using the VOA in its
optical train. The frequency shifts are measured and av-
eraged over 100 seconds and are reported in Figure 5.
The data was fit with a orthogonal distance regression
(ODR) algorithm which weights the error bars in both
the x and y coordinates, yielding a fractional frequency
fit of -2.5(2)x 10713 (mW/mm?)~! with a reduced x? of
1.57. A gray shaded region shows associated error with
the fit. The theoretical value is plotted on the same curve
and shows good agreement with the experimentally mea-
sured values.

III. TWO COLOR

Reduction of the ac-Stark shift would be a power-
ful tool to reach the final long-term instability goal of
1 x 107 at one day. Alternative to the outlined ap-
proach in [11], two lasers of different frequencies could
be utilized to excite the atom in a two-color approach
described in [22, 59, 60]. However, this approach leads to
resid_t)lal Doppler broadening, because in the atomic frame
the k vectors of the excitation photons no longer match.
The increased spectral width requires a higher excitation
rate to achieve similar clock performance motivating the
choice to operate this two-color scheme near resonance
(see Figure 6). Short term stability has been shown to
remain unchanged in this design. However, clock stabil-
ity on timescales exceeding a few hours has not yet been
measured. Instabilities on longer timescales can often be
driven by technical noise, i.e. lock-point errors, reference
voltage drifts, detector responsivity drift, etc. Broad-
ening the transition could make control of these noise
sources more difficult.

An alternative two-color approach introduces a second
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FIG. 4. An optical and simplified electrical schematic of the Rb two-photon frequency standard as described in the text.

Also shown is a computer animated drawing of the rubidium atomic reference.

EOM - electro-optic modulator; PMT -

photomultiplier tube; VOA - variable optical attenuator; ISO - optical isolator; EDFA - erbium doped fiber amplifier; SHG -
second harmonic generator; PID - proportional integral differential lock mechanism.

laser (off-resonance from the virtual and intermediate
states) to the degenerate two photon Doppler free ex-
periment. The wavelength of this mitigation laser would
be chosen such that the differential polarizability sign is
opposite that of a 778.1 nm photon. Normally, the clock
laser intensity is measured and stabilized to a voltage
reference. This scheme is sensitive to stabilities of the
detector and voltage reference as well as drift in each de-
vice. The two-color approach would allow for the laser
intensities to be stabilized with respect to each other re-
ducing requirements on detector sensitivities and drift
as well as eliminating a need for a precise voltage refer-
ence. Unfortunately, frequency drifts in the mitigation
laser would cause variations in the ideal ratio, impos-
ing requirements on the frequency stability. Volumet-
ric Bragg grating stabilized lasers developed for Raman
spectroscopy experiments [61-64] offer potential options
for mitigation lasers. Table IV displays three possible
mitigating wavelengths, the clock laser and calculated
shifts. For a system whose purpose is to minimize the
required operational power while maintaining high short
term clock stability the mitigation laser at 785 nm is the
preferred choice.

Use of a mitigation laser could ease the challenge of
power stabilizing the probe laser. O-RAFS has already
demonstrated that clock laser power can be stabilized to
0.1% [11]. Current requirements on laser stability how-

TABLE IV. Proposed wavelengths, associated shifts and re-
quired power (mW) per mW of 778 nm for a ac-Stark miti-
gation laser.

Wavelength| ac-Stark shift Power multiplier
(nm) (Hz/(mW /mm?)) xPr7g
1556.2 -16.5 10.8
808 -30.9 5.7
785 -62.5 2.9
778 178.5 X

ever, require absolute laser stabilization to 0.01%. If the
cancellation can be maintained at a 0.1% level stabiliza-
tion of the ac-Stark shift can be maintained at 0.01% al-
lowing for final clock stability of 1 x 10715 to be achieved.

IV. BLACKBODY RADIATION SHIFT

Plank’s Law describes the electromagnetic radiation
emanating from an object at temperature 7. The time
averaged intensity of the radiated field can expressed,
[16],

h w3

2 _
(B (w)” = m2e0c3 ehw/ksT — 1"

(18)
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FIG. 6. Shown above is the calculated Doppler broadened
peak (red solid line) and the normalized excitation rate (blue
dashed line) for a two photon transition where the second pho-
ton is constrained to keep the total transition on resonance.
The grey shaded region shows a choice of photon pair that
will not lead to ac-Stark cancellation.

An atom in a bath of electromagnetic radiation will ex-
perience an ac-Stark shift. Equation 18 describes an
electromagnetic field whose intensity is dependent on the
source temperature. Thus, fluctuating temperatures of a
source that is radiatively coupled to the atoms can cause
a clock shift via temperature driven ac-Stark interactions.

The shift arising from blackbody radiation (BBR) can be
calculated by,

1 o0
- ﬁ/o Aa(w)E (w)* duw, (19)

where Aa(w) = @ — ay. Oftentimes, the resonance fre-
quencies between atomic states connected to the ground
and excited states involved in the clock transition are far
from the blackbody spectrum. In this case the black-
body spectrum can be treated as a static polarizability
field and Equation 19 can be simplified to be,

Aa [ A 2
= —O‘/ E(w)ldo~ =2 (8 3 V) (T/300 K)*.
ko 2h

(20)
Systems that require higher precision include a small dy-
namic contribution, 7, to account for frequency depen-
dence [34-36]. However, for the Rb two-photon transition
the wide-band BBR spectrum has significant overlap with
the 5D5/5 — 4F7/3 5/2 transitions at operational temper-
atures making it necessary to fully integrate Equation 19.
This integral was calculated numerically two separate
ways. First, the polarizability was calculated using Equa-
tion 2 and the integral was performed using the Cauchy’s
principle value. The second method [46] introduced the
decay rate , T';, of each transition found in [56, 65],

Z wyr g |(JNd] ) (w5 s — w?)
2J+1h wJ, —w?)? + Iw?
(21)
When the polarizability is written this way the function
no longer diverges in the resonant cases. Equation 19 was
then calculated with a deterministic adaptive integration
technique. BBR shifts were examined under nominal op-
erational conditions, specifically looking at the shifts pro-
duced in the temperature range of 300 K to 500 K. The
fractional difference for each of these calculations for both
the excited state and ground state were less then 1x107°.

alw,J) =

The resultant BBR shift of the 55;,, ground state,
—2.68(2) Hz, whose polarizabilities are far off resonance
for the examined temperature range, yields a result that
was consistent with the Farley et al. [66] calculations of
—2.789 Hz at 300 K. The shift also is consistent with a
T* temperature dependence and a static polarizability
approximation. More interesting were the results from
integration over the excited state polarizabilities. At
300 K our value of —158.4(12) Hz differed from Farley
et al. calculation of —181.4 Hz, likely due to differences
in polarizability values. Regardless of this difference, the
5D5 o state has resonant polarizablities in the tempera-
ture range of interest. Not only was the calculated ac-
Stark shift no longer monotonic, the differential polar-
izability changed sign (see Figure 7). This result is not
consistent with either a 7% behavior or with the static
polarizability approximation. The calculation yields two
interesting “magic” temperatures. Around 495.9(27) K,
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FIG. 7. Plotted in (a) is the blackbody radiation intensity
(blue) as a function of angular frequency for and environment
at 300 K (dashed-dotted line), 400 K (dotted line), and 500 K
(dashed line). Also shown in (a) is the differential polarizabil-
ity (black solid line) as a function of angular frequency. Along
the top of (a) are labeled the intermediate states that connect
to 5D5/2 and whose spectrum overlaps that of a blackbody
at operational temperature. (b) The state shifts and the to-
tal BBR shift for the two-photon transition are plotted as a
function of temperature.

dv = 0 and around 368.1(14) K, the BBR shift is insen-
sitive to changes in environmental temperature. Clock
operation hoping to achieve greater stability could op-
erate around 368 K to suppress environmental tempera-
ture dependence. However, to benefit from this reduced
temperature sensitivity, the more significant temperature
shift arising from Rb collisional effects would also require
mitigation [5, 11].

V. DC-STARK

The presence of unknown electric charges on dielectric
surfaces in the vicinity of the atomic sample causes a DC
Stark shift and could, at least in principle, cause a clock
instability if the charge was to slowly migrate. In fact,
the buildup of stray charge inside of a vacuum chamber
on a mirror with a piezoelectric transducer was shown
to be detrimental to the overall performance in an opti-
cal lattice clock [67]. We calculate the DC polarizability
for the Rb 2-photon transition from Equations 1 and 2,
setting w = 0. The polarizability of the 5D, state dom-
inates due to the presence of low-lying resonances, and
we find the induced Stark shift to be 4.27(4) Hz/(V/cm)?
by summing over the matrix elements in Table I and in-
clusion of the core and continuum polarizabilites found

in Table II. When probed with a 778 nm laser, the 2-
photon frequency standard displays a fractional sensitiv-
ity of 5.55(5) x 107*° /(V/cm)2.

Thus, in principle, a small electric field on the order of
1 V/cm with a slow time wander could cause a significant
long-term stability for this frequency standard. However,
since the glass vapor cell is embedded in a block of copper
for thermal control, we expect this effect to be minimal.
The inclusion of a UV LED to remove the charge [67]
is one simple way to rule out this possibility in future
investigations of long-term instabilities.

VI. CONCLUSIONS

We presented a calculated ac-Stark shift of 2.30(4) x
10713 (mW/mm?)~! in good agreement with the mea-
sured value of 2.5(2) x 10713 (mW/mm?)~!. Careful ex-
amination of alignment shows that the cat’s eye retro-
reflector helps reduce sensitivity of the average intensity
to variations in the retro-reflecting optic over the flat
mirror reflector. However, the cat’s eye retro-reflector in-
creases the sensitivity of the average intensity to angular
misalignments of the fiber launcher, and introduces an-
other very sensitive misalignment variable, the distance
between the lens and mirror in the cat’s eye optic. While
effort can be placed to reduce the dynamic response of
the displacement Ad, care must be taken to ensure that
the average intensity signal is maximized during initial
alignment. For a dynamic system, however, the flat mir-
ror retro-reflector might be the best choice to reduce com-
plexity and sensitivity to motion. Ultimately, any effort
to further reduce the overall ac-Stark shift will also re-
duce Stark shift related alignment sensitivities.

Two separate Stark shift mitigation techniques were
discussed. Practical limitations of available power in a
portable system make the two-color, two-photon tech-
nique less appealing. However, introduction of a Stark
shift canceling laser could help reduce overall ac-Stark
effects and allow for system fractional frequency instabil-
ities as low 1 x 10715,

The calculated BBR shift differs from extrapolated val-
ues. The calculation results in two interesting tempera-
tures: the magic tune out temperature, where the BBR
polarizability is zero, and the temperature where the sen-
sitivity to temperature variations is zero, effectively re-
moving the BBR driven clock instability.
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Appendix: Cat’s Eye Alignment Calculation

Calculation of the intensity weighted average for the cat’s eye case requires the Gaussian beam profile of the retro-
reflected beam. After retro-reflecting off of the cat’s eye the beam re-enters the vapour cell with the following M
matrix parameters:

X; ., [(AB E FAX,
|l=—|cD F o |, (A1)
i L+Af\o 0 1+Af 1

where,

A=— (14 Af —2Ad(Ns + Ad — NoAd + (Ny — 1)AS))),
B =f(2(Ad — No(Ad — 1))((N2 — 1)Ad — 1) + (2Ad(N2 + Ad — NaAd) — 1) N,

2N — (N2 — DAd— 1) + (2(Ny — )Ad — 1)Np)AS),
C =~ (—1+(Ny — DAD)S((2Ad — 3Af — 1€ — 3(1+ Af),
2Ad(1 — Ad+ Af)

7 )

E=—(14+Af—-2Ad(Ns+ Ad — NoAd+ N; — AdN; + Af(Ny + Ny — 1)),
F =Ad(§ — 2AdE +3AfE+ B+ AfB).

D=

Here we utilize the same approximations as the flat mirror case, namely that all distances are much shorter than the
incident beam Rayleigh length. Even leveraging this approximation yields a complicated Gaussian function. In order
to simplify the analytical solution a few special cases were examined.

1. Setting Ad = 0 yields

o —f22r;(1+ Af) + E+3AfE+ B+ AFB+ (N1 + No)0 — Af + (Ny + No)AfO)?
7— Tror . 3(1+ Af)2w? ) (A.3)

This expression is shown in Figure 3 and is utilized to calculate Equations 16 and 17.

2. A numerical integral was performed using a quadrature method. The numerical result is displayed in Figure 3
(b).

3. The final case studied simplified the geometry to reduce the number of free parameters. Af in known to have
small impacts on the retro-reflected beam profile [58]. Changes in AX; and 6 have similar effects on the beam
propagation, a similar relationship exits between f and Ad. With this in mind another analytical case was
examined where AX; =0, Af =0 and 8 = 0. It was also necessary to expand the integrand in a Taylor series
and ignore the higher order terms before final integration, yielding an average intensity of

- 262 + 2260 (N1 + Na) + 02 f2 (N2 + 2NaN; + N7
7t DE AP N No) + 077 (NG + 2o s 1)+Ad<4N2+a+2N1)+
3wg f (A4)
88N2Z 37a® a  40aN, 32N, N, 4alV, 272l '
Ad? (4 — 4Ny + —2 - = — 2N ANZZ_0 )
( 2+ —5 +27f2 f+ of e B 37 + e

Taking the derivative of the above Equation w.r.t. either € or ¢ yields the same result as the Ad = 0 case.
Figure 3 (b) shows average intensity given above plotted with the geometry presented in Reference [11] along
with the numeric results for the same geometry.
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