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Quantum electrodynamic fluctuations cause an attractive force between metallic surfaces. At sep-
arations where the finite speed of light affects the interaction, it is called the Casimir force. Thermal
motion determines the fundamental sensitivity limits of its measurement at room temperature, but
several other systematic errors contribute uncertainty as well and become more significant in air rel-
ative to vacuum. Here we discuss the viability of the force modulation measurement technique in air
(compared to frequency modulation, which is typically used in vacuum, and quasi-static deflection,
which is usually used in fluid), characterize its sensitivity and accuracy by identifying several dom-
inant sources of uncertainty, and compare the results to the fundamental sensitivity limits dictated
by thermal motion and to the uncertainty inherent to calculations of the Casimir force. Finally, we
explore prospects for mitigating the sources of uncertainty to enhance the range and accuracy of
Casimir force measurements.

I. INTRODUCTION

H. B. G. Casimir predicted a force between surfaces
that originates from quantum electromagnetic fluctua-
tions [1]. This force is of theoretical and practical interest
because it is an application of quantum electrodynamics
to bulk materials. Lifshitz extended the analysis to arbi-
trary materials [2, 3], including the prediction of a repul-
sive Casimir force, which has since been experimentally
confirmed [4]. The force has been measured numerous
times [5–13], between many materials [14–21], in several
geometries [22–25], and with increasing precision [26–29].

Because measurements in gas provide a middle ground
between the high sensitivities of measurements in vacuum
and the exotic Casimir force behavior in liquid environ-
ments, they have frequently contributed to critical exper-
imental tests of the Casimir force [30–34]. For example,
de Man et al. [16] verified that a significant difference in
the visible dielectric function can halve the magnitude of
the Casimir force, and Van Zwol et al. tested how rough-
ness affects the Casimir force [35]. Moreover, exploring
the contributions to uncertainty in one environment can
clarify how they appear in another [32]. Understanding
the uncertainty in air would assist the interpretation of
Casimir force measurements in a variable pressure cham-
ber, which are being undertaken to separate hypothetical
local-density-coupled chameleon forces from the Casimir
force [36, 37]. Some sources of uncertainty, such as patch
potentials, are predicted to have reduced magnitude in
air relative to vacuum [38].

Efforts to harness the Casimir force for new MEMS
devices [39] have resulted in non-linear MEMS oscilla-
tors [40, 41] and on-chip Casimir force measurement de-
vices [24, 42]. Several measurements of the Casimir force
have been made in ambient conditions, a necessary test
for realistic MEMS. Drag in air can be utilized to de-
velop MEMS techniques that are difficult in vacuum. For
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example, it has recently been shown that an oscillating
spherical Casimir probe in air can scan the topography
of a surface, which can be useful for aligning novel ge-
ometries [25]. The drag helps to avoid collisions because
it slows the probe as it approaches the surface. Likewise,
the measurements of de Man et al. present a framework
for using the Casimir force to actuate dynamical MEMS
[33, 43].

Here we test the sensitivity and accuracy of the force
modulation (FoM) measurement technique in air using
an atomic force microscope (AFM) — depicted in Fig.
1, identify several sources of uncertainty, estimate the
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Figure 1. An atomic force microscope is used to measure the
Casimir force. An optical lever detects deflections of the can-
tilever to which the sphere is attached. Direct digital synthe-
sizer (DDS) A drives the piezoelectric transducer to shake the
gold-coated plate. A lock-in amplifier (LIA) detects the can-
tilever’s response and separates it into in-phase and quadra-
ture components. Each LIA in the AFM detects up to two
signals. DDS B applies an AC voltage to the cantilever at
frequency ωA. The oscillations of the cantilever are then de-
tected at frequencies ωA and 2ωA with LIA B and 4ωA with
LIA C. A feedback loop adjusts VAC so that the oscillation
at 2ωA is constant during the measurement of the Casimir
force. The signal at ωA is used to estimate and mitigate the
minimizing voltage V0 by applying a DC voltage to the sphere.
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uncertainty from each source, and discuss strategies to
reduce uncertainty in future measurements. Our inten-
tion is to identify sources of uncertainty, their relative
contributions to the total error, and tactics to mitigate
them, in order to facilitate the development of new ex-
periments. In addition, tabulating the uncertainty in a
measurement helps to clarify when it can be used to dis-
tinguish between different hypothesis regarding the com-
putation of the Casimir force.

As stated in [33], a measurement technique must
satisfy three requirements in addition to detecting the
Casimir force: (i) it must mitigate the contributions of
other forces (hydrodynamic, electrostatic, etc.), (ii) it
must determine the absolute separation, d0, between the
sphere and plate, and (iii) it must calibrate the force
signal. We characterize how well (i)-(iii) are achieved
and quantify the amount of uncertainty each imparts
to a measurement. Furthermore, several instrumental
sources of error, such as optical interference, may man-
ifest themselves differently in different experiments, but
are common to many force measurement techniques. A
few sources of error that impart uncertainty to the to-
tal calculated force rather than the force measurement,
such as roughness, patch potentials, and limited dielec-
tric information, have been discussed extensively in the
literature [38, 44–53]. We combine the different sources
of uncertainty in order to provide a total estimate of the
uncertainty in the comparison between calculations and
experiment. For our measurements, uncertainty in sepa-
ration is found to dominate the error at distances < 120
nm, while the hydrodynamic force dominates the error
at separations > 120 nm.

A. The atomic force microscope

All AFMs contain a microcantilever, a system to con-
trol the sample position (typically a piezoelectric trans-
ducer), a system to excite the cantilever (piezoelec-
trically, electrostatically, photothermally, etc), and a
method to detect the motion of the cantilever (optical
lever, interferometer, piezoelectric current, etc). In this
article, we discuss AFMs up to the level of detail nec-
essary to describe the artifacts present in Casimir force
measurements and to discuss strategies to mitigate those
artifacts. Although the sources and amount of force un-
certainty vary from system to system, some sources of
uncertainty follow characteristic trends. For example,
almost all sphere-plate Casimir force measurements rely
on the electrostatic force for the estimation of the abso-
lute separation or the calibration of force sensitivity, but
its accuracy has only been tested a few times [54, 55].

Because the AFM used here (Cypher, Asylum Re-
search) is very similar to the AFMs used in prior Casimir
force measurements, an analysis of the uncertainty the
microscope imparts to the measurement helps to predict
the uncertainty present in other systems. For example,
the signals output from each lock-in amplifier (LIA) con-

tain a small offset voltage (∼ −180 µV) that varies over
time. To track the signal’s variation, a null signal is col-
lected at each point and is averaged over time to reduce
noise. In addition, the driving signal from each direct
digital synthesizer (DDS) couples directly into the out-
put of the corresponding LIA.

In the AFM, the piezoelectric transducers actuate the
sample and cantilever, as is common to many force mea-
surement procedures [16, 28]. The motion of the can-
tilever is detected by an optical lever, a beam of light re-
flected off of the cantilever and onto a quad-photodiode
[8, 30, 31]. LIAs then monitor the motion of the can-
tilever at a several frequencies. A DDS controls the volt-
age difference between the probe and sample. A temper-
ature of 303.15 ±0.05 K is maintained inside the AFM.

B. Overview of the force measurement method

The force measurement method that we use here fol-
lows the phase-separated force modulation method de-
veloped by de Man et al. [16, 33]. Figure 2 shows the
general scheme for applying and detecting signals. To
detect the force, the plate’s position is oscillated. The
in-phase and 90 degrees delayed (quadrature) response
of the cantilever are tracked and related to the Casimir
and hydrodynamic forces, respectively.

The electrostatic force between the two surfaces is used
both to determine their absolute separation, so that the
force versus separation profile can be obtained, and to
calibrate the detected Casimir force signal. The plate is
slowly brought towards the sphere in discrete steps. The
sphere approaches and retracts from the plate about 30
times in about 13 hours. The details of this technique
and two other methods for measuring the Casimir force
are described in the following sections.

The interacting surfaces are coated with gold because
it is a chemically inert conductor. The plate is a sili-
con substrate coated with 100 nm of gold (e-beam) us-
ing 5 nm of Cr for adhesion. The sphere is made of
hollow glass (Trelleborg SI-100) coated with TiO2(10
nm)/Ti(3 nm)/Au(100 nm). Both the sample and probe
are cleaned with acetone/isopropyl alcohol/DI water and
dried with an anti-static air flow prior to the gold de-
position. Two different types of cantilever are used in
the measurement: HQ:CSC37/Cr-Au (Mikromasch) can-
tilevers are used for the analysis leading to Fig. 10 and
11, while a MLCT-OW-B (Bruker) cantilever is used else-
where.

II. FORCE MODULATION MEASUREMENT
TECHNIQUE

The force modulation (FoM) technique of de Man et al.
drives sinusoidal cantilever oscillation with the Casimir
force directly by shaking the plate vertically at frequency
ωpz [33]. Because the position of the plate varies sinu-
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Figure 2. (a) An AC voltage (VAC) is applied to the sphere
to generate three signals (SωA ,S2ωA ,S4ωA) that are used to
minimize the potential difference, estimate the sphere-plate
separation, and calibrate the sensitivity. Oscillating the plate
drives oscillations of the cantilever that are proportional to
the Casimir force (in-phase, SI

ωpz) or hydrodynamic force
(quadrature, SQ

ωpz). (b) The transfer function describes how
forces at different frequencies excite cantilever oscillation. All
the frequencies are plotted normalized by the first resonance
frequency of the cantilever, ω1. Downward arrows represent
perturbations applied to the cantilever, upward arrows indi-
cate signals generated by the response of the cantilever, and
the tilted-upward arrow represents an out-of-phase response.

soidally, so does its velocity, v = ∂d/∂t.
The response of the cantilever to the moving plate has

both an in-phase and a quadrature component (Fig. 3):

SIωpz
=
γ

k

(
∂Fes

∂d
+
∂FC

∂d

)
∆d, (1a)

SQωpz
=
γ

k
FH(v), (1b)

where γ is the optical lever sensitivity (V/m), ∆d is the
shake amplitude of the plate, k is the spring constant, FC
is the Casimir force, Fes is the electrostatic force, and FH
is the hydrodynamic force. Derjaguin’s proximity force
approximation (PFA) is used to compare the measured
signal between a sphere and a plate to the Casimir force
between parallel plates per unit area, Fpp:

1

R

∂FC

∂d
≈ 2πFpp. (2)

1. Generating the force signal

During the measurement, the sphere begins about 5
µm from the plate and approaches it at discrete separa-
tions until it reaches a preset minimum. Then the direc-
tion of motion is reversed so that it is similarly retracted
from the surface.

At each separation, the measurement is performed in

(a) (b)     Casimir (c)  Hydrodynamic

v

Separation VelocityShake plate
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Figure 3. (a) The sphere-plate force is probed by shaking the
plate and observing the response of the probe. (b) Because
conservative forces (Casimir, electrostatic) depend on position
but not velocity, they bend the probe proportionally to the
plate’s displacement (in-phase). (c) On the other hand, be-
cause the hydrodynamic force is proportional to velocity, the
cantilever bending it causes is 90 degrees out-of-phase with
the plate’s displacement.

three steps. During the first step, an AC voltage, VAC, is
applied to the sphere at frequency ωA in order to drive
the cantilever at frequencies ωA and 2ωA, while the plate
is grounded. The cantilever’s response to the applied
voltage is detected with LIA A. A feedback loop uses the
signal at 2ωA to control VAC in order to maintain a con-
stant amplitude set point, Aset. A second feedback loop
applies a slowly varying voltage, VDC, to the sphere in
order to minimize the signal at ωA, which in turn min-
imizes the potential difference between the sphere and
the plate. The electrostatic force generated by VAC has
a large signal-to-noise ratio, so it is used to account for
the change in d0, also called drift, over the course of the
measurement.

The force measurement is performed in the second
step at each separation. First, the oscillating voltage
VAC is turned off. Second, VDC is set to -V0, its aver-
age value over the first step, to mitigate the electrostatic
force. Third, while a piezo oscillates the plate, the re-
sponse of the cantilever is detected by the optical lever
and recorded by LIA B.

During the third step, the piezo continues to oscillate
the plate while VDC is discretely varied across its force-
minimizing value in order to determine the electrostatic
force gradient. The V 2 dependence of the electrostatic
force causes the signal versus voltage curve to take the
shape of a parabola. The range of the voltage sweep is
chosen so that the total signal variation of the parabola
(and thus the sensitivity) remains approximately con-
stant at every separation. The second d-derivative of
the capacitance (C ′′) is calculated from the curvature of
each voltage parabola. In turn, C ′′, discussed in more
detail below, is used to determine the tip-sample separa-
tion. The electrostatic force gradient allows us to deter-
mine the separation more accurately because the gradient
changes more quickly with separation than the force it-
self, is measured through the same channel as the Casimir
force gradient, and is less susceptible to second-order os-
cillation. Below 110 nm, the third step is stopped to pre-
vent the electrostatic force from causing the tip to jump
to contact. The measurements here use ωpz/2π=211 Hz
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and ωA/2π=77 Hz.

2. Ratcheting

Because the Casimir force signal is proportional to
∆d (Eq. 1a), increasing the shake amplitude improves
the signal-to-noise ratio and enables observations of the
Casimir force at larger separations. However, using a
larger amplitude both limits the minimum achievable
separation and can lead to a systematic, but well un-
derstood, overestimate of the Casimir force ∝ ∆d3 [56].

To maximize the signal while mitigating the errors as-
sociated with large shake amplitudes, a ratcheting tech-
nique is introduced. Far from the surface, the plate oscil-
lates with ∆d ≈ 48 nm. To minimize the systematic error
from the shake amplitude, ∆d/d ≡ χ < 0.15 is main-
tained throughout the experiment. The systematic error
from the ∆d as a fraction of the force gradient is then
2.5χ2, calculated from equation 6 of [56] by assuming the
typical d−4 dependence of the sphere-plate Casimir force
gradient. Thus, here the error is kept below 6% of the
force gradient. For example, once the plate reaches 320
nm from the surface, the shake amplitude decreases to 40
nm. Likewise, when the sphere reaches 267 nm separa-
tion, the amplitude drops to 32 nm. The process repeats
so long as the tip is approaching the surface. When the
plate is retracting, the process is reversed. We call the
technique ‘ratcheting’ because, on approach, the shake
amplitude only decreases and, during retraction, it only
increases (Fig. 4).

III. FUNDAMENTAL LIMITS TO THE
MEASUREMENT RANGE

Understanding the fundamental limits to FoM Casimir
force measurements helps to frame the effects of other
sources of uncertainty. In this section the perfect conduc-
tor approximation for the Casimir force is used, because
it permits analytic results. For real materials, the force
approaches a d−3 rather than a d−4 power law at short
separations. The separation at which this transition be-
gins depends on the particular material.

Jump-to-contact (JTC) limits how close to the surface
Casimir probes can approach, and for measurements in
which the shake amplitude is much less than the sep-
aration (e.g. for deflection measurements, or the force
modulation measurements discussed here), the criterion
for JTC is k < ∂F/∂d [57, 58]. The minimum possible
separation is then limited by the JTC, so that when the
dominant force is the Casimir force [1],

dmin≈
(
~cπ3

120

R

k

)1/4

. (3)

A typical probe (table I) should be able to measure as
close as 43 nm from the surface, which approximately
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Figure 4. (a) The shake amplitude varies with separation
to increase the sensitivity of the force modulation measure-
ment technique, while also avoiding errors associated with
the strong nonlinearity of the force. (b) The data collected at
each shake amplitude are combined for the final estimate of
the force gradient. The data are shown binned into groups of
≈50 individual measurements. The red line shows the calcu-
lated Casimir force gradient

agrees with experiment. Because of the d−3 power law
in the force, Eq. 3 is fairly insensitive to k. For example,
if k is increased by a factor of ten to 1 N/m, dmin only
decreases to 24 nm, less than a factor of two.

Thermal noise limits the furthest separation at which
the force can be measured. The minimum detectable
force for the FoM method described below is Fmin =
knd
√
B/γ, where nd (V Hz−1/2) is the noise amplitude

density at the detector and B is the detection bandwidth.
In the experiments discussed here, the nd is dominated
by the detector, but the fundamental limit to sensitivity
is the cantilever’s thermal motion. Because the oscilla-
tion frequency is much less than the resonant frequency,
only the first eigenmode of the cantilever is considered.
When thermal noise is dominated by the cantilever’s mo-
tion [59]

nd = 2γ

√
kBT

kω1Q
. (4)

Then the minimum detectable force is

Fmin = 2

√
kkBT

ω1Q

√
B, (5)

which, with the properties of a typical cantilever (table
I) and B = 1 Hz, is about 20 fN. However, our tech-
nique measures the force spatial derivative rather than
the force. The minimum detectable force gradient, when
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the cantilever is driven by ∂F/∂d∆d is

F ′min = 2

√
kkBT

ω1Q

√
B

∆d
, (6)

where ∆d is the oscillation amplitude of the plate. The
maximum separation is found by finding the separation
at which the predicted force gradient equals the minimum
detectable force gradient

dmax =

(
~cπ3R

240

∆d√
B

√
ω1Q

kkBT

)1/4

. (7)

The appearance of ∆d suggests that it is possible to in-
crease dmax arbitrarily, but ∆d must always be signifi-
cantly less than d so that the sphere does not hit the
surface and to avoid systematic errors associated with
the non-linearity of the force [56]. The shake amplitude
must be bounded to mitigate systematic artifacts, ∆d <
χd (section II 2), so that

dmax <

(
~cπ3R

240

χ√
B

√
ω1Q

kkBT

)1/3

. (8)

For typical cantilevers with B = 1 Hz and χ = 0.15,
the force detection is limited to separations dmax < 1.4
µm (table I). Note that the effective power law of the
sensitivity falls from d−4 to d−3 when ∆d is allowed to
vary, showing how ratcheting increases the range over
which the force gradient may be measured, relative to
the case when ∆d is constant.

Measurements of the Casimir force by the FoM tech-
nique of de Man et al. are thus fundamentally limited to
separations between ∼ 40 nm to 1.4 µm, or about one and
a half orders of magnitude, which is comparable to the
largest ranges probed by previous measurements [7, 29].
Using several probes with varying R and k may increase
the range. The next section discusses the sources of un-
certainty that prevent measurements from achieving the
range set by fundamental limitations.

IV. CALIBRATION AND SEPARATION
DETERMINATION

The calibration and separation determination in
Casimir force measurements are most often performed
with the electrostatic force, although the hydrodynamic
force has been used as well in liquids, where Debye screen-
ing affects the electrostatic force [32, 60]. In the low
Reynolds number limit, the hydrodynamic force is pro-
portional to d−1, so it might also be possible to use it to
estimate the tip-sample separation in air, as it has been
used in liquid [61]. The difficulties with using the hydro-
dynamic force are twofold: (1) the hydrodynamic force is
nearly two orders of magnitude weaker in air than in wa-
ter, so the signal-to-noise ratio of its detection is smaller,
although it could be increased by increasing ωpz, and (2)

the slip length at ambient pressures is quite large (esti-
mates range from 60 nm [62] to 118 nm [63]) and, while
it can be included in the fit, the extra free parameter
further reduces the accuracy of the separation estima-
tion. Because ∼60 nm of separation uncertainty would
prevent theory-experiment comparison, calibration with
the electrostatic force is the focus of this section.

A. From the electrostatic force

The electrostatic force between a plate and a sphere is

F =
C ′(V + V0)2

2
, (9)

where V is the applied potential between the plate and
the sphere, V0 is the minimizing potential, and C ′ =
∂C/∂d, where C is the sphere-plate capacitance,

C ′ = 2πε0R

∞∑
n=1

coth(α)− n coth(nα)

sinh(nα)
, (10)

and α is defined by the equation cosh(α) = 1 + d/R
[14]. Note that because C ′ < 0, the electrostatic force
is attractive. The voltage applied to the probe has two
components: VAC and VDC, so that the total voltage be-
tween the surfaces is V = VAC cos(ωAt) + VDC + V0. We
can separate the electrostatic force into three terms

Fes = FDC + Fa + Fb, (11)

where the individual forces are separated according to
the frequency of the applied voltage

FDC =
C ′(d)

2

(
(VDC + V0)2 +

V 2
AC
2

)
, (12a)

Fa = C ′(d)VAC(VDC + V0) cos(ωAt), (12b)

Fb =
C ′(d)

4
V 2

AC cos(2ωAt), (12c)

where it is noted that C ′ itself depends on d, which varies
with time because of both the oscillations of the plate and
the cantilever, which is why the forces are labeled with a
and b rather than frequencies.

Signals generated at the frequencies ωA and 2ωA are
critical for tracking relative changes to the potential dif-
ference and separation. The signal at ωA is generated by
Fa and is used as the input to the feedback loop that mea-
sures V0 = −VDC, akin to the loop used in Kelvin probe
force microscopy [64]. The force Fb generates the signal
at 2ωA: S2ωA ≈ γ C

′

4 V
2
AC/k. Although there are system-

atic artifacts in determining V0 with the signal at ωA, the
low noise level permits the tracking of the contact poten-
tial difference over time [65–67]. Likewise, the measure-
ments of C ′ from 2ωA have a high signal-to-noise ratio,
which makes them useful for correcting for drift in po-
sition and sensitivity between different approach/retract
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Table I. Typical probe properties
ω1

2π (kHz) L (µm) W (µm) R (µm) k (N/m) 1/γ (nm/V) Q
10 250 33 40 0.1 700 100

runs (see section VB).
To estimate the relative separation and sensitivity, the

measured values of S2ωA are fit to a function of the form

S2ωA

V 2
AC

=
κ

2R
C ′(dpz − d0, R), (13)

in which dpz is the position of the plate relative to a ref-
erence height, and the two free parameters are the sensi-
tivity (κ = γR/2k) and the absolute position offset (d0).
Fitting separates the two parameters d0 and κ. The rela-
tive piezo displacement is typically measured accurately,
for example, by a linear differential transformer, so that
the electrostatic force can be fit assuming that relative
displacements over a measurement are exact, and only d0
is unknown. Both γ and k are assumed to be frequency-
independent because the frequencies used are much lower
than the resonant frequency of the cantilever. The high
resonant frequency of the cantilever is enabled through
the use of a hollow, rather than solid, glass sphere. Any
drift in V0 or sensitivity across time is calibrated for using
the C ′ measurements.

B. From the electrostatic force gradient

We determine the absolute position and sensitivity
from measurements of the gradient of FDC, measured
through the same channel as the Casimir force (Fig. 5).
The plate is oscillated, as it is when the Casimir force sig-
nal is generated, so that the force gradient between the
sphere and the plate is measured while VAC = 0. Simul-
taneously, VDC is slowly varied across the -V0 measured
in the first electrostatic step. Because there is no AC
voltage, there is no AC coupling to the piezo. The V 2

dependence of the electrostatic force causes the resulting
signal to be a parabola, whose curvature can be related
to C ′′:

SDC, pz =
ε0π

2
C ′′(VDC + V C

′′

0 )2
Rγ∆d

k
, (14)

where the superscript on V C
′′

0 shows that it is the force
gradient minimizing voltage. Because the signal-to-noise
ratio of the force gradient measurement is much lower
than the force measurement, it is not used to estimate
the minimizing voltage or separation during the mea-
surement for individual approaches. However, in the fi-
nal analysis C ′′ is used to calculate separation and the
minimizing voltage, because it is much less susceptible
to artifacts than C ′. If the measurement of C ′ did not
contain the systematic effects discussed below, C ′′ could
be calculated directly from it. However, in practice, cal-

culating C ′′ from C ′ directly, rather than determining it
from a second measurement, amplifies the effect of the
artifacts discussed below.
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Figure 5. (a) The total force gradient signal as a function
of applied voltage at several different separations (eq. 14),
each noted by a symbol in (b), where the measured force
gradient (black dots) is shown with the fit used to determine
the absolute separation (blue line).

To compensate for the low signal-to-noise ratio of the
force gradient measurement, the relative positions of
many runs are aligned before fitting the parabola, as dis-
cussed below in the section VB6. Once the curvature of
the parabolas as a function of position is determined, it
is fit to C ′′ to determine the absolute position and sensi-
tivity. By measuring the electrostatic force through the
same channel as the Casimir force, any non-idealities in
the piezo actuation of the plate appear in the electrostatic
calibration as well as the Casimir force, which helps with
diagnosing experimental problems, such as uncertainty
about the shake amplitude, ∆d of the plate [68].

C. Determining spring constant and optical lever
sensitivity

In our experiment, higher harmonics driven by the non-
linearity of the electrostatic force are used to separate
the spring constant k from the optical lever sensitivity, γ
(which are combined to give κ in Eq. 13). To calculate
them, we expand C ′ to 1st order in a Taylor series around
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the time-averaged separation

C ′(t) = C ′(d) + C ′′(d)A cos(2ωAt) + ... (15)

Then, inputting Eq. 15 into Eq. 12c, forces at higher
frequencies are found

Fb =
C ′

4
V 2

AC cos(2ωAt) (16)

+
C ′C ′′

16k
V 4

AC cos2(2ωAt).

The second term can then be expanded, so that the elec-
trostatic force on the cantilever at frequency 4ωA, up to
first order, is

F4ωA,1 =
C ′′C ′

32k
V 4

AC cos(4ωAt). (17)

Note, when the PFA for the capacitance is inserted into
Eq. 17, the strength of the force is consistent with the
calculation of de Man et al. in which the PFA is assumed
from the beginning [33]:

F4ωA,1 = −π
2ε20R

2

8kd3
V 4

AC cos(4ωAt). (18)

Because F4ωA,1 depends on k, independent of γ, the sig-
nal that it drives, S4ωA , can be used to separate the two
parameters. To do so, the electrostatic force is driven
with VAC = 8 V on approach, so that both the S2ωA and
S4ωA signals are generated.

Within one approach, determination of d0 is performed
with the S2ωA signal. Using the d0 found from the first
fit, the S4ωA signal is fit to Eq. 18. Then S4ω is used to
separate k and γ as

k =
ε0πR

4

κ

S4ω
, (19a)

γ =
κ2

2S4ω
, (19b)

where κ comes from the C ′ fit (Eq. 13). It is not nec-
essary to split κ into k and γ to perform measurements,
but doing so permits the comparison of our calibration
to other calibration methods. In our previous measure-
ments [25], we ran a large-VAC calibration every other
run, but now, we only do so at the end of a set of runs.

V. DETERMINING MEASUREMENT
UNCERTAINTIES

A. Characteristics of different uncertainties

To determine the total uncertainty in the measure-
ment, we divide it into several categories. All uncertain-
ties are reported in percent of the measured force. How-
ever, separation uncertainty is first reported as a range

of separations before being converted into a percent un-
certainty.

First is the calibration uncertainty, which includes un-
certainty in the measurements of k, R, and γ and uncer-
tainty in the calibration of the piezo actuation ∆d (sec-
tion IVC). Because a number of different methods of cali-
brating AFM cantilevers have been developed, comparing
the results of different methods is one way to character-
ize their uncertainty [69]. Techniques used to estimate
k of an AFM cantilever include fitting the cantilever’s
thermal motion to a Lorentzian, measuring the change
in the cantilever’s resonance frequency when it is used to
pick up particles of a known mass, or measuring the re-
sponse to a known radiation pressure [70–72]. The effect
of the added mass on ‘colloidal probes’ (like the probes
used here) changes the correction factor used for thermal
calibration and affects the cantilever mode shapes [73].
While variation between different techniques for calibrat-
ing k can be as large as 17% [69], similar electrostatic
calibration experiments on colloidal probes suggest that
the error in k from using electrostatic calibration is about
5% [74]. Thus, a calibration uncertainty of 5% is used.

Uncertainty in the absolute position of the sample rel-
ative to the probe is one of the most problematic sources
of error in Casimir force measurements because of the
strong separation dependence of the force. The uncer-
tainty in the measured F ′ is calculated from the uncer-
tainty in the position (±2 nm) multiplied by F ′′ (section
VB). Note that although the force is measured with no
less precision at separations below 120 nm, uncertainty
in the separation makes comparison with theory less vi-
able. The calculation of the uncertainty in position is
presented below.

Interference of the optical lever is a major source of un-
certainty in the measurements. The interference varies in
both phase and magnitude between the different spheres.
The magnitude of the interference is estimated by the
technique described above in section VC2.

The hydrodynamic force present in the Casimir force
channel of the measurement in the limit of a small phase
offset is FH sin(∆θref), where ∆θref is the difference be-
tween the reference phase of the lock-in amplifier and
the response of the cantilever to the force modulation.
Below in section VC3, ∆θref is determined. Then the
uncertainty originating from the hydrodynamic force is
determined by multiplying the measured hydrodynamic
force by sin(∆θref). The magnitudes of both the hydro-
dynamic force and interference depend significantly on
the particular probe used for the measurement.

Stochastic noise is estimated by dividing the standard
deviation of the force gradient data within a small sepa-
ration range (∼ 2 nm) by the square root of the number
of data points collected within that range. Here, the
stochastic noise comes primarily from the photodetector,
but there is always some stochastic noise due to the ther-
mal motion of the cantilever.

The electrostatic force is present because of an artifact
in the minimizing voltage detected by the Kelvin probe
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feedback loop (section VC1). AC coupling causes V0 to
appear to vary with distance, even if there are no patch
potentials. The AC coupling that would cause the entire
separation-dependence of the measured V0 is calculated
[66]. Because AC coupling causes the measured V0 to
be offset from the actual V0, the residual electrostatic
force from the estimated V0 discrepancy determines the
uncertainty due to the electrostatic force.

B. Uncertainty in separation determination

Because the electrostatic force is used to determine the
separation between the sphere and the plate, any effects
that lead the measured electrostatic force to deviate from
the expected form of the electrostatic force lead to an er-
ror in the determination of the absolute separation, d0.
Below, we list several effects that can contribute to er-
ror in the separation, discuss ways to control them, and
quantify the error that they impart.

1. Electrostatic approximations and fitting

The computational demands of Eq. 10 have caused
several approximations to be used, the most prominent
of which is the proximity force approximation (PFA) for
C ′ (Fig. 6). Moreover, Eq. 10 is exact for an ideal sphere-
plate system, but incorporating imperfections such as
roughness or a water layer into it is difficult. The prox-
imity force approximation (PFA) describes the force be-
tween two curved surfaces as the sum of pairwise plate-
plate forces. To investigate the effects of roughness, long-
range sphere deformations and a water layer on the mea-
surement, the effects are calculated using the PFA and
then used to estimate error as discussed below. Most
previous Casimir force measurements have used the PFA
or other approximations to Eq. 10 to ease computational
difficulties. Fig. 6 shows several different implementa-
tions of the PFA. For a sphere and a plate the approxi-
mation gives

C ′PFA = −2πε0R

d
. (20)

However, the computational difficulty of the infinite
sum is not in the evaluation of the sum itself, but rather
that the sum must be recalculated for every iteration of
the fitting procedure. If, instead, the force is calculated
once for a number of points, the data for those points can
be saved and interpolated for later fit iterations. The sim-
plest interpolation, interpolating points linearly, tends to
slightly overestimate the force. Because C ′ is approxi-
mately linear on a log-log plot, interpolating log(C ′) vs
log(d/R) gives better accuracy. It deviates from the exact
C ′ by less than 0.5% over the whole range of the fitting,
which is less than any of the previous approximations,
even though the full Eq. 10 sum is only calculated for 43

Range of measurements(a)

(b)

(c)

32 terms

8 terms

2 terms

PFA

Interpolation

R uncertainty

Chen

Cantilever 

DE

C’
C’’

d/R (norm.)

Figure 6. (a) The full sphere-plate capacitance gradient (C′)
infinite sum approximated by several truncated sums. The
unshaded central region shows the range of data pertinent
to the Casimir force measurements discussed in this article.
(b) The proximity force approximation (PFA, green) deviates
from the exact solution at large d; the approximations of Chen
et. al. [15] (purple) and the derivative expansion (DE, blue)
[75] reduce the error somewhat. Logarithmic interpolation
(red) shows even less error. For all approximations except
Chen’s, the C′′ signal causes less systematic error than the
C′ signal. (c) Uncertainty in the sphere radius and the con-
tribution of the cantilever itself both affect C′ less than using
the PFA (∆R ≈0.7%, Fig. 7).

separations. Because the interpolation itself is limited to
the values between the minimum and maximum value of
d/R, it can be helpful for fitting to use Eq. 20 for separa-
tions below the lowest interpolated value and the n = 1
term of Eq. 10 for separations above the largest interpo-
lated value. Then, the function is well defined anywhere
that the fitting algorithm may need to evaluate it. Be-
cause it is not necessary to use an approximate form of
Eq. 10, approximations do not necessarily impart any
separation uncertainty. However, we note that it is sus-
pected that Eq. 10 itself is an approximation at some
level [76], and a deviation from it has been reported for
separations < 1 nm [77].

2. Sphere radius

Concern about how variations in the sphere radius af-
fect Casimir force measurements emerged because they
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were a possible, but unconfirmed, explanation for anoma-
lous electrostatic force versus separation power laws
[54, 78]. Even though the expected electrostatic force
power law is observed in many experiments [28, 55], con-
cern about radius variations persisted because AFMmea-
surements on spheres showed topographical irregularities
[49]. However, the tip shape of the scanning AFM probe
imprints itself on the image, particularly when scanning
the steep sides of the spheres [79]. Therefore, long-
range deformation is instead calculated from SEM im-
ages. Here, we use an SEM (Hitachi S-3400) to assess
the radius of our spheres. The sphere shown in Fig. 7 is
the sphere used for the Casimir force measurement pre-
sented in this manuscript.

To determine the roundness of the microspheres, we
identify the circumference of the sphere through image
segmentation via a watershed algorithm [80] A centroid
and boundary are extracted from the watershed result
enabling the overlay of the identified perimeter of the
sphere on the original SEM image as seen in Fig. 7a.
Plotting the radius versus angle in Fig. 7b shows the
ellipsoidal nature of the aberrations. We attribute the
ellipsoidal nature of the hollow glass microspheres to low
energy ellipsoidal excitations while being formed from a
liquid [81]. The standard deviation of the radius is then
about 200 nm or 0.7% of the radius, which minimally
effects the electrostatic calibration (Fig. 6c). We note
that an apparatus for measuring microsphere roundness
more accurately and over the whole sphere, rather than
just in profile, is currently under development [82]. The
radius calculated from an AFM scan, 33.2 µm, is within a
micron of the radius measured with an SEM (32.54 µm),
even though measurements of the sphere topography ac-
quired using an AFM contain an imprint of the AFM
probe.

R
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Orientation (rad)

-π 0 π 

32.54 m 
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32.2

32.4

32.6

32.8

Figure 7. (a) The perimeter of a sphere is identified through
a watershed algorithm and overlaid on a SEM image of the
sphere. (b) The average radius is calculated and plotted
(black) against the actual perimeter (red). We find a standard
deviation of 200 nm which amounts to a ∼0.7% variation in
the radius.

3. Water layer

A thin water layer forms on most surfaces exposed to
ambient conditions. The large relative DC permittivity
of water (εW=77 at 303 K [83]) causes even a nm-thick
water layer to noticeably affect both the capacitance and
the force. As we are considering uncertainty in d0 in
this section, we focus on the effect of the water layer on
capacitance because it is used in the determination of d0.
The effect of the water layer on the Casimir force itself is
considered in a subsequent section. The capacitance per
unit area between two parallel conducting plates that are
a separation d apart with a water layer of thickness, dW,
on one of the surfaces is

Cpp(dW) =
ε0

d+ dW( 1
εW
− 1)

, (21)

≈ ε0
d− dW

,

where εW is the DC permittivity of water, and Cpp is the
capacitance between parallel plates. Note that Eq. 21
implies that uncertainty in dW is roughly equivalent to
uncertainty in d0. The relative increase of Cpp due to the
water layer is

W (dW) =
Cpp(dW)

Cpp(dW = 0)
, (22)

=
1

1 + dW
d

(
1
εW
− 1

) .
Using the PFA to calculate the effect of water on the

sphere-plate fit, we have

C ′PFA = 2πRCpp, (23)

so that when a water layer is included

C ′PFA(dW) =2πRCpp(dW), (24)
=W (dW)C ′PFA(dW = 0). (25)

Because the effect of the water layer is the greatest over
the region of the sphere closest to the plate and van-
ishes at separations large compared to the water layer
thickness (Eq. 22), the equation derived with the PFA is
approximate when Eq. 10 is used for the capacitance

C ′(dW) ≈W (dW)C ′(dW = 0). (26)

The effect of the water layer on C ′′ is similar:

C ′′(dW) ≈W (dW)2C ′′(dW = 0). (27)

Unfortunately, the thickness of the water layer can vary
over the course of a measurement unless humidity is con-
trolled precisely, and the water layer thickness itself can
vary across a single sample, particularly at grain bound-
aries. Moreover, estimates of dW on gold vary widely
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depending on the type of measurement and the exact de-
position process for the gold [84–86]. Without modeling
or in situ measurement, the water leads to uncertainty
in d0 of about ±0.75 nm in air for each surface (or 1.5
nm total). In addition, because the structure of water
is much different at interfaces than in bulk [87, 88] it is
plausible that a nm-thick layer of water affects C ′ differ-
ently than would be expected from the bulk properties of
water. Finally, although the voltage applied between the
sphere and the plate increases dW, calculations indicate
that this change should be small compared to the overall
water layer thickness [89].

4. Roughness

Roughness appears twice in the error analysis: first as
uncertainty in the separation and calibration determina-
tion and second in the comparison of measurements to
theory. Here we consider how roughness affect the sepa-
ration uncertainty rather than how it changes the force
on average.

Many different roughness corrections have been devel-
oped for Casimir force measurements. The first correc-
tions were perturbative and assumed that the surface
could be described by an average height with some stan-
dard deviation [90, 91]. Including the correlation length
of the surface roughness leads to a correction that it-
self depends on the dielectric functions of the interacting
materials [47]. After the surface topographies of typi-
cal Casimir force probes were found to follow a skewed
probability distribution, new statistical methods were de-
veloped to account for the irregularity of the distribution
[48]. Finally, the dependence on the particular orienta-
tion of the sphere, typically defined by the point of least
separation (POLS) was noted, and a PFA-based tech-
nique was developed to estimate the uncertainty in the
force from the uncertainty in the relative orientation of
the sphere [49]. The POLS is the point on the surface of
the sphere that is also on the line between the center of
the sphere and the closest point on the plate.

Here, the uncertainty due to roughness is estimated
using an oriented-PFA procedure akin to the one pio-
neered by Sedmik et al. [49] (Fig. 8). To prepare AFM
topography scans of the spheres for a roughness anal-
ysis, the topography is first fit to the shape of sphere,
(x − x0)2 + (y − y0)2 + (z − z0)2 = R2, with the radius
and center as free parameters. Then the fit is removed
from the image. The resulting image retains systematic
long-range distortions, from a combination of the imprint
that the AFM tip leaves on the image [79] and imperfec-
tions in the sphere fabrication process. To eliminate the
distortions from the roughness analysis, the image is me-
dian filtered with a filter size larger than the short-range
roughness (> 100 nm). The median-filtered image is then
subtracted from the raw image so that only short-range
roughness remains.

Because the sphere’s orientation is only known to
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(c) Electrostatic force 

gradient

(d) Casimir force 

gradient

(a) (b)

R
o
u
g
h
n
e
s
s
 e

rr
o
r 

(%
)

C
o
u
n
ts

Position fit error (nm)
Separation (nm)

(e) 

8000 500

1

0.1

1

0.1

10

100 200 300 400

0.25 0.5 0.75 1.0

Height (nm) Height (nm)

12

10

8

6

4

2

0

Figure 8. (a) An AFM image of the sphere is fit to the
equation for a sphere and the fit is removed (512 × 512 pix-
els). After the fit is removed, a 64 × 64 pixel median filter
is used to separate the roughness from any imaging artifacts.
(b) Several points are chosen on the roughness image to act as
possible points of least separation (circles). (c) The electro-
static force gradient for the sphere with roughness relative to
a smooth sphere is calculated for each of the different points,
identified by their color and brightness. (d) The Casimir force
gradient for a rough sphere relative to a smooth sphere is also
calculated for the nine points, and shows a much larger uncer-
tainty because of the stronger separation-dependence of the
force. (e) The roughness leads to a systematic offset in the
separation determination up to 1 nm.

about 1 degree, the electrostatic force is calculated for
many possible sphere orientations. For each orientation,
the measured topography is placed onto a model sphere
of the appropriate radius. The PFA is used to compute
the roughness correction because roughness causes the
largest effect at small separations. For the regions on the
sphere where the topography is known, the force from
the smooth sphere is subtracted and replaced with the
force from the rough sphere pixel-by-pixel

Fr(d) = Fs(d) (28)

−
∑
i,j

[
Fpp(hs(d, xi,j))− Fpp(hr(d, xi,j))

]
,

where
∑
i,j is a sum over all the pixels in an image, Fr

and Fs are the forces from the rough sphere and a smooth
sphere, respectively, in the PFA limit, Fpp is the force
between each pixel and the pixel directly below it, and
hs(d, xi,j) and hr(d, xi,j) are the separation between the
surface of the sphere and the plate at that particular
pixel for a smooth and rough sphere, respectively, when
the point of closest approach is d away from the plate.
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The electrostatic force on the rough surface is compared
to the PFA calculation of the force on a smooth surface
so that the same approximation is used throughout the
calculation.

The median rather than the mean is used to compute
the height of the imaged portion relative to the smooth
portion of the sphere because of the skewed height distri-
bution. Note that this formulation of a roughness PFA
correction can be used to calculate either the electrostatic
or Casimir force, as in [49], and works similarly well with
force gradients. Fig. 8(c) shows that roughness primar-
ily affects the electrostatic force near the surface. By
fitting the electrostatic force gradient with the roughness
corrections included, we determined that the uncertainty
due to roughness on the sphere is 0.2 nm (standard devi-
ation of the offset from the 49 calculations, of which 16
are shown).

5. Surface states

The assumption that the macroscopic equation for
capacitance is adequate for describing plate-plate and
sphere-plate capacitance at the nanoscale has not been
stringently tested for gold. For materials where this
assumption has been tested (e.g. silicon and germa-
nium), naively fitting a measured electrostatic force to
the macroscopic form of the capacitance can lead to
distance offsets between 60 and 600 nm, depending on
preparation (for silicon), which were attributed to sur-
face states [92].

The offset for gold is likely less because it is more con-
ductive and a recent measurement shows agreement be-
tween the predicted C ′ and experiment out to 2 µm [55],
and here we observe C ′′ consistent with theory from 110
nm to 4 µm. However, the presence of water or other
adsorbates may complicate the nature of surface states.
Further studies are necessary to determine the extent to
which surface states affect C ′.

6. Drift

Drift can both impart error to each individual deter-
mination of the sensitivity and separation and hinder the
averaging of multiple data sets. To address drift in our
experiments, the absolute separation, d0, is determined
for each individual approach or retract (Fig. 9a). The
time dependence of d0 is determined from the entire se-
ries of approach and retract runs and is found to drift at
a rate of about 50 nm/hr, but decreasing as the elapsed
time increases. To account for the drift in the analysis
of the measurement data, the drift within a run is de-
termined by interpolating d0 from the two runs before it
and the two runs after it. By making d0 itself a function
of time, the effect of drift is accounted for in the data
analysis procedure.

Likewise, drift in the electrostatic sensitivity calibra-
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Figure 9. (a) The position of the plate, d0, drifts over time
at a rate of about 50 nm/hr on average. For each run, a line is
fit to d0 versus time, including the two previous runs, the two
subsequent runs, and the run itself. The drift is then deduced
from the fit, and the linear drift correction is applied. (b)
The force sensitivity increases by about 10% over the mea-
surement, but (c) the stochastic run-to-run variation is closer
to ±1%.

tion is also determined. To understand the stochastic
error and drift in the electrostatic calibration, the calcu-
lated absolute position offset d0 and force gradient sensi-
tivity are recorded for each approach (Fig. 9). Over the
13 hours of measurements, the force gradient sensitivity
shows systematic drift, and changes by a little over 10%.
The change is likely due to drift between the photodiode
and the photodetector used to track cantilever motion,
so in the analysis the change is included in the optical
lever sensitivity, γ, and its uncertainty.

7. Cantilever bending

Because the cantilever bends as it approaches the sur-
face, the effect of the bending must be accounted for
when determining d. The bending itself is often used
for Casimir force measurements, but in our experiment
deflection is detectable above the noise level only out to
about 100 nm. The deflection signal (µV) is converted
into a bending distance (nm) by dividing by the optical
lever sensitivity γ. The static deflection is recorded at
each height and a phenomenological power law is fit to
the data to describe it because the deflection signal it-
self is too noisy to use as a correction on its own. Then
the recorded piezo extensions are adjusted to account for
the cantilever’s bending towards the surface based on the
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phenomenological fit. Although bending leads to a small
correction, it imparts uncertainty into the final separa-
tion, which is proportional to the uncertainty in the op-
tical lever sensitivity γ. If all the drift in the sensitivity
is attributed to γ, then we can bound its variation by
about 10% over the measurement (Fig. 9). Because the
bending is almost 3 nm at the closest approach, it adds
about 0.3 nm of uncertainty to d0.

8. Second-order oscillation

The non-linearity of the electrostatic force not only
leads to oscillations at harmonics, but also leads to
higher-order corrections to the S2ωA signal. Because
second-order oscillation is a dynamic effect it only ap-
pears in the C ′ electrostatic measurement and not the
C ′′ voltage parabolas, which incorporate only a static
voltage. Using the PFA, the signal is [33]

S2ωA = −γε0πRV
2
AC

2kd
− γε20π

2R2V 4
AC

2k2d3
−O(V 6

AC), (29)

= −γε0πRV
2
AC

2kd

(
1 + δ + ...

)
,

where δ =
ε0πRV

2
AC

kd2 . Now, estimating δ is equivalent to
estimating the effect of the second-order oscillation on
the separation determination. Because VAC is controlled
by a feedback loop to produce a constant signal, Sset,
during the measurement run, it is possible to solve for δ,
assuming it is much less than one:

δ ≈ 2Sset

γd
. (30)

With a typical cantilever (Table I) and Sset = 1 mV,
δ ≈ 0.014 at 100 nm. Thus the correction is only a very
small portion of the overall electrostatic signal. However,
the slow d-dependence makes it difficult to avoid the er-
ror without correcting for it. Note that these oscillations
have a similar source as Eq. 17 and can, in principle, be
estimated by measuring the 4ωA signal. However, record-
ing 4ωA with our AFM setup would require a four-step
rather than a three-step measurement procedure, in order
to collect all the data channels. To estimate the effect of
the second-order oscillation on the separation, we calcu-
late how much the uncertainty in γ leads to uncertainty
in δ. We then determine how much the uncertainty in
δ affects the overall fit procedure by fitting with several
different δ within the range of its uncertainty and predict
that the imparted uncertainty is 0.3 nm, but only in the
C ′-based separation determination because the C ′′-based
determination uses only DC voltages.

9. Overall uncertainty in separation

Most of the above sources of error tend to cause the
surface to appear closer than it is. Moreover, these dif-
ferent sources of uncertainty can cause correlated error.
The water layer thickness varies by a few nanometers in
previous experiments depending on how it is measured
[84–86], so we posit a 1.5±0.75 nm water layer on each
surface, which in turn leads to a ±1.5 nm uncertainty
in the separation of the two metal surfaces. Bending
contributes about ±0.3 nm of uncertainty, while rough-
ness also contributes about ±0.2 nm of separation uncer-
tainty, so that the total uncertainty in position is about
±2 nm for the C ′′-based separation determination. For
the C ′-based method, there is an additional 0.3 nm of
uncertainty from second-order oscillations.

C. Uncertainty in the measured signal

1. Systematic uncertainty in voltage offset

The first major source of uncertainty in V0 comes from
using Fa to determine V0 (Eq. 11). Fa has a much higher
signal-to-noise ratio than FDC , but it is also susceptible
to AC coupling between the applied voltage and the drive
piezo. From Kelvin probe force microscopy, it is known
that the voltage that minimizes the electrostatic force is
not the same as the voltage that minimizes the electro-
static force derivative because the cantilever, rather than
the tip, contributes much of the electrostatic force sig-
nal, but the tip contributes most of the force derivative
signal [93]. For Casimir force measurements, the spheri-
cal probe has a much larger radius than an AFM probe
(40 µm vs 30 nm), so the cantilever contributes a much
smaller portion of electrostatic force.

The second source of uncertainty is present because
an AC voltage is applied to the probe. The AC volt-
age applied to the probe can couple into the drive piezo,
which leads to an extra signal fed into the voltage feed-
back loop [65, 66]. The additional signal combined with
the separation-dependence of the electrostatic force leads
to a distant-dependent artifact in V0. Any generic offset
of the output of a lock-in amplifier, in fact, leads to such
an error. The voltage artifact is proportional to 1/C ′,
and knowledge of C ′ permits an estimate of the voltage
error. If all the separation-dependence of V0 is attributed
to the extraneous voltage, then estimates can be made of
the original offset and the residual electrostatic force that
remains because of the extraneous voltage. Based on the
separation-dependence of V0, we estimate that the offset
in the signal is less than 10 µV, which would lead to an
error in V0 of less than 10 mV at separations where the
Casimir force is measured.
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2. Optical interference

Because the optical lever used to detect the motion
of the cantilever is coherent, an interference pattern ap-
pears in the response signal of the cantilever to the shak-
ing plate. A small amount of the optical beam that falls
off of the cantilever (e.g. Airy disks) has a different path
length to the detector than the light reflected directly off
the cantilever [94]. As the surface is brought towards the
cantilever, the interference condition at the photodiode
changes. The interference artifact is common to AFMs
that use optical lever detection [94] and has been iden-
tified before in Casimir force measurements as a factor
that limits accuracy at large separations [31, 33].

In order to minimize the optical interference in the
Casimir measurements presented here, two different op-
tical sources are tested. A diode laser and a superlumi-
nescent diode (SLD) [95], which limits the coherence of
the light by increasing its wavelength spread, are tested
using the same force measurement procedure (λ = 860
nm for both). The interference appears in the force data
channel. Figure 10 shows the signal for the approaching
cantilever once with the laser and once with the SLD.
The SLD is confirmed to decrease the interference arti-
fact in the force signal by about an order of magnitude
relative to the laser. Even so, the interference from the
SLD appears in the data at a level of about 1 N m−2.

-30

-20

-10

0

10

20

30

54321

Separation (µm)

Superluminescent diode Laser

1
/R

∂
F
/∂

d
s
ig

n
a

l 
(N

 m
-2

)

Figure 10. The interference artifact is analyzed by comparing
the calibrated force gradient signal at distances larger than
500 nm. The laser causes interference fringes on the order
of ±10 N m−2 (red), but the superluminescent diode (SLD)
produces fringes with a magnitude of about 1 N m−2 (for a
40 µm radius sphere). Thus, the SLD detector reduces the
error imparted by interference by a factor of 10. Because the
interference appears in the force data and is linear in shake
amplitude like the force itself, it is reported, after calibration,
in N m−2.

The force uncertainty from interference is estimated by
fitting the data from the force gradient signal channel to
sine waves at separations > 500 nm. The least-squares
fit to the sum of a sine curve at the primary wavelength
in the interference, which is half the wavelength of the
source (λ/2) and a sine curve at wavelength of the next
harmonic (λ/4). Only the amplitude and phase of one of

wavelengths is permitted to vary at a time in the fit pro-
cedure. The amplitudes of both sine curves are summed
for a rough estimate of the uncertainty imparted by in-
terference. Even though the fits characterize the uncer-
tainty, attempts to use the fits to remove the interference
after measurement are unsuccessful. This is because the
two spatial frequencies do not completely describe the in-
terference and the interference may change its amplitude
at at different separations, as it does between 2 and 4
µm in Fig. 10. The interference artifact varies by up to
a factor of 4 between measurements when the cantilever
probe varies but the light source remains the same.

3. The hydrodynamic force

For dynamic measurements in air, the hydrodynamic
force, FH, is of comparable magnitude to the Casimir
force. The Casimir force decays more rapidly with in-
creasing separation, so that the hydrodynamic force lim-
its how far from the surface it can be observed. However,
the hydrodynamic force is proportional to velocity, which
is 90 degrees out of phase with the displacement of the
plate. A lock-in amplifier separates the in-phase from the
quadrature signal in order to separate the hydrodynamic
force from the Casimir force (Fig. 3).
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Figure 11. (a) The detection beam is focused at least 15 µm
away from the edges of the cantilever, in order to minimize
interference during force measurements. (b) The interference
is greatly increased by focusing the detection beam at the
tip of the cantilever. (c,d) Interference is used to determine
the reference phase of the lock-in amplifier to within about
0.2 degrees because, when the reference phase is set properly,
the interference only appears in the in-phase channel of the
lock-in amplifier. The hydrodynamic force can be excluded
from the Casimir force channel more completely (0-5 degree
reference phases shown). For these measurements, a phase
lag of 2.4 degrees is optimal.
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The accuracy of the reference phase, θref, determines
the imprint of the hydrodynamic force in the Casimir
force measurement signal. Uncertainty in the phase has
two parts: a constant phase offset and a phase offset
that depends on separation, due to dissipation. The de-
lay between the direct digital synthesizer and plate must
be measured in order to set the reference phase to suf-
ficient accuracy, because the hydrodynamic force enters
into the Casimir force signal as FH sin(∆θref), where ∆θref
is the error in the reference phase, which is about 0.2
degrees in our measurement. The uncertainty from the
hydrodynamic force is calculated from the hydrodynamic
force measured by the quadrature channel multiplied by
sin(∆θref).

While interference is problematic in the force measure-
ment, it can be utilized to set the reference phase of the
LIA that records the response of the cantilever to the
shaking plate (Fig. 11). Because the interference is de-
termined by the position of the plate, relative to the can-
tilever, and is independent of the velocity of the plate, it
appears in the in-phase channel and is excluded from the
quadrature channel of the LIA. To determine the refer-
ence phase, we first replace the SLD with the laser light
source and focus it at the edge of the cantilever in order
to accentuate the amount of interference. Second, the
cantilever approaches and retracts from the surface with
several different reference phases. The reference phase
for which the interference falls entirely in the in-phase
channel of the lock-in amplifier is chosen for use in force
measurements.

The accuracy of the interference method of setting the
reference phase is also limited by changes to the can-
tilever’s transfer function due to the hydrodynamic force.
The phase lag is [Q(d)]−1(ω/ω1) in the ω � ω1 limit,
where Q is determined by the hydrodynamic damping
[62, 63, 96]

Q =
k

ω1

(
Γ0 +

6πηR2

d
f∗(d/6b)

)−1
, (31)

where Γ0 is the damping of the probe far from the plate,
η is the dynamic viscosity, b is the slip length, and f∗,
called a correction function in [62], is a monotonic func-
tion that approaches 1 for d � b and approaches 0 for
d� b. The phase lag of the cantilever’s response is mea-
sured from the frequency shift of the S2ω electrostatic sig-
nal (Fig 12). Once the phase lag is known as a function of
separation, it is incorporated into the force measurement
and uncertainty analysis. First, the expected phase shift
of the cantilever response at the piezo shake frequency
is calculated as φc(ωpz, d) ≈ [ωpz/(2ωA)]φc(2ωA, d). Sec-
ond, FH sin(φc/2) is subtracted from the measured force
gradient signal. Third, |φc/2| is added to the reference
phase uncertainty. The uncertainty is consistent with the
electrostatic estimate of the phase lag and the estimate
of no phase lag.
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Figure 12. The hydrodynamic force (a) is measured as well.
The increase in the hydrodynamic force increases the phase
shift of the cantilever’s response (b). The phase shift caused
by the hydrodynamic force is measured by monitoring the
phase of the electrostatic S2ωA . The red lines are fits used in
the analysis of the uncertainty coming from the hydrodynamic
force.

VI. TOTAL MEASUREMENT UNCERTAINTY

To understand how the different sources of error con-
tribute to the force measurement at different separations,
the uncertainties are combined at separations from 30 nm
to 300 nm (Fig. 13). They are added in quadrature, un-
der the assumption that each source is uncorrelated with
the others. At short separations, separation uncertainty
is the dominant contribution. At large separations, in-
terference, stochastic noise, and the hydrodynamic force
dominate the uncertainty. The force sensitivity is lim-
ited to about 2 pN when approximated from the smallest
observable force. Therefore, significant reductions in un-
certainty are possible.

The measured force sensitivity compares favorably to
other AFM force measurements, which report an optimal
sensitivity of ∼ 1 pN [97]. Other Casimir force measure-
ments in the sphere-plate geometry report a force sensi-
tivity of 2-5 pN in air [30, 33], while in the parallel plate
geometry the sensitivity is limited to a few nN (but with
a much larger interaction area) [36]. A few measurements
of the Casimir force in vacuum report force sensitivities
at the fN level with a ∼1 s integration time per sepa-
ration [26, 28] (using equivalent noise for force gradient
measurements [98]). Sensitivities at or below the fN level
are reported in fluid [99, 100], but because the spheres
used were all < 10 µm and the electric double-layer force
was present, the Casimir force was not unambiguously
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observed. Measurements in liquid that do observe the
Casimir force report a 50-100 pN sensitivity [61, 101].

Comparing Casimir force measurements performed
with an AFM to other microsphere measurement tech-
nologies, such as torsion pendulums and optical traps,
shows that AFM measurements have lower overall sensi-
tivity but offer more control. In vacuum, force sensitivi-
ties using microspheres in optical traps report measure-
ments up to aN level sensitivity [102, 103] but, though
there has been much recent progress, controlling the po-
sition relative to a surface remains a challenge. Torsion
pendulums give a pN level sensitivity with much larger
spheres (R ≈ 1 cm [7, 104]). AFM measurements, such
as those presented here, allow control over orientation,
which enables measurements between surfaces of differ-
ent shapes and characterization of the exact regions of
the surfaces that are interacting [25]. Even though opti-
cal traps and torsion pendulums provide greater sensitiv-
ity or interaction area, AFM probes will continue to have
a role in Casimir force measurements because they allow
the investigation of intricate geometric orientations and
the detailed characterization of the interacting surfaces.
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Figure 13. The expected uncertainty in the Casimir
force measurements is calculated from several sources of er-
ror. At short range, separation determination (section VB)
dominates the error. Although the force is detected well
above the noise level there, uncertainty in the position makes
experiment-theory comparison less clear. At large separations
the hydrodynamic force, as well as interference and stochastic
noise, dominate (sections VC2, VC3, and III).

A. Reducing measurement uncertainty

Based on the above analysis, there are two routes to
reduce the uncertainty in Casimir force measurements.
Near the surface, improvements in the separation deter-
mination reduce uncertainty the most. Far from the sur-
face, improvements to interference, stochastic noise, and
the hydrodynamic force reference phase all reduce the to-
tal uncertainty. Reductions to calibration uncertainty re-
duce uncertainty everywhere. Investigations into the re-
liability of calibrations using the electrostatic calibration

could be performed by comparing them to calibrations
performed with optical or other forces [63, 72, 100]. A
better understanding of calibration uncertainty is critical
to Casimir force measurements, because it affects them
at all separations. Because of similarities between the
measurement presented here and prior measurements, we
expect that the following uncertainty reduction strategies
will also lower error in other Casimir force measurements
as well.

1. Near the surface

At small separations, the Casimir force can be mea-
sured well above the stochastic noise level. To improve
the measurement, it is necessary to improve the separa-
tion determination. Because many factors contribute to
the uncertainty in the separation as determined by the
electrostatic force, it would be infeasible to address them
simultaneously. Some, such as the presence of a water
layer, could be addressed with improved characterization
of the samples. Most inhibitive is the presence of surface
states which would require significant experimentation
in surface science to characterize. Therefore, one tactic
to evaluate and improve the accuracy of the separation
determination is to develop new ways to measuring sep-
aration and comparing them [105].

A direct way to measure the position of the surface
is through contact measurements, but roughness adds
significant uncertainty in the relationship between the
distance-upon-contact and the absolute separation of the
two surfaces. However, for sufficiently smooth surfaces,
the difference vanishes. The electrostatic force is typi-
cally used to determine the absolute separation because
it has a strong separation-dependence that is described
by an analytic formula. In addition, the hydrodynamic
force has been used successfully for separation determi-
nation in liquids [61]. It might also work in air even
though the slip length is considerably larger (∼60 nm
versus < 10 nm) because it can be amplified by using
larger probes and higher frequencies [62, 106]. Using the
hydrodynamic force in air may also permit Casimir force
measurements with insulators, as is possible in liquid [4].

2. Far from the surface

The Casimir force is predicted to be observable out
to a separation about four times larger than reported in
this manuscript. Therefore, at large separations, there is
potentially more to reveal about the Casimir force by de-
creasing the uncertainty. The hydrodynamic force can be
made smaller by shaking the plate at a lower frequency,
by varying the reference phase with separation, or by
using smaller spheres because the hydrodynamic force is
proportional to R2 rather than R [63]. The interference is
harder to eliminate because the SLD is already designed
to minimize coherence.
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One possible way to minimize the interference would
be to measure the position of the cantilever with light
at several wavelengths. Other possibilities include mea-
suring the force with the optical lever at a few different
positions along the back of the cantilever to change the
path length of the interference, or varying the focus of
the light onto the cantilever. Different detection tech-
niques, such as laser doppler vibrometry [107] or piezo-
electric cantilevers [108], might circumvent the artifact.
Uncertainty from stochastic noise can be reduced by tak-
ing more data, using a larger shake amplitude, operating
at a lower temperature, or finding a lower-noise photo-
detector.

VII. COMPARISON TO OTHER TECHNIQUES

Above, several major sources of error in force modula-
tion measurements have been listed and quantified as a
function of tip-sample separation, and the uncertainty in
the Casimir force measurements is calculated from them.
In this section, the uncertainties of the force modulation
method are compared to those in the frequency modula-
tion and deflection methods.

A. Frequency modulation

Measurements using frequency modulation (FM) de-
tection with AFM probes in vacuum report the highest
precision of any Casimir force measurements [26, 28]. In
the FM detection scheme, the force gradient is measured
through the change of the first resonance frequency of
the cantilever as the sphere approaches the surface. The
frequency shift is given by

∆ω1 ≈ −
ω1,0

2k

∂F

∂d
, (32)

where ω1,0 is the resonance frequency of the first eigen-
mode far from the surface and ∆ω1 is the change in the
resonance frequency at separation d. Note that the res-
onant frequency is then ω1 = ω1,0 + ∆ω1. To date, all
reported Casimir force experiments using the FM tech-
nique took place in vacuum environments. Our attempts
toward an FM measurement in air and the artifacts we
found in that environment are discussed in [109].

Frequency modulation measurements, despite their
higher overall sensitivity, are subject to several additional
sources of error in air. First, direct piezo-actuation of
the cantilever, at frequencies above the first resonance of
the piezo, hides the cantilever resonance in a ‘forest of
peaks’ [110–113], which increases the uncertainty in the
determination of the resonance frequency. Second, as
the cantilever approaches the surface and is damped by
the hydrodynamic force, the error in the resonance fre-
quency grows in proportion to the damping, which leads
to an artifact proportional to d−1. Third, any coupling

between the voltage applied to the drive piezo, used to
maintain constant excitation amplitude, and the lock-in
amplifier causes an artifact proportional to d−2. In the
experiments discussed in [109], these three artifacts pre-
vent us from observing the Casimir force in air using the
frequency modulation method.

B. Deflection

Several experiments in air have measured the Casimir
force through the detection of the cantilever’s deflection
[30, 31]. At any one height, the deflection is D = F (d)/k,
but low-frequency 1/f noise dominates the signal, which
leads to a trade-off: acquiring force curves faster excludes
more low-frequency drift, but also leads to more corre-
lation between the error at nearby separations. More-
over, increasing the speed at which the data are collected
causes the hydrodynamic force, which is proportional to
velocity, to be present in the data at higher levels. In
addition, repeated contact with the surface during mea-
surements can damage the tip. While damage does not
always occur and can be observed after the measurement
by AFM or SEM images of the probe itself, it can be
difficult to identify when during a set of measurements
the probe is damaged.

VIII. UNCERTAINTY FROM THE FORCE
CALCULATION

The uncertainty in Casimir force data comes not only
from the measurement error, but also from uncertainty
about the sample being used, which includes uncertainty
regarding optical properties [44–46], roughness [30, 47–
49], and patch potentials [38, 50, 51, 53, 114]. Because of
these factors, the calculated total force has uncertainty
itself. Of the different uncertainties, the uncertainty in
the gold’s optical properties is the limiting uncertainty
over most of the range (Fig. 14). At the shortest sep-
arations, the water layer and roughness become larger
sources of uncertainty (Fig. 15).

A. Sample dielectric function

Uncertainty in the dielectric function of the interact-
ing surfaces leads to uncertainty in the calculated Casimir
force. Because εair ≈ 1, the two gold surfaces contribute
most of the uncertainty to the Casimir force measure-
ment. Because tabulated optical data used on its own
leads to 5-15% uncertainty in the force [44, 45], the dielec-
tric response is measured with ellipsometry of an evap-
orated 100 nm Au film on a glass slide in the 0.73 to
6.3 eV range (Fig. 14). The ellipsometry data are then
compared to the tabulated Palik data [115]. Because
of the agreement with the ellipsometry data at high en-
ergies, the Palik data at energies above those collected
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with ellipsometry are used. The tabulated dielectric data
agree with the measurement less well at low energies, so
the response there is extended with the Drude model.
Pirozhenko et al. [44] lists the Drude model parameters
for several different samples of gold.

By comparing measured ellipsometry data to the
Drude parameters, the data from ellipsometry are deter-
mined to be most similar to a plasma frequency ωp = 8.84
eV and ωτ = 0.042 eV or ωp = 7.50 eV and ωτ = 0.061
eV (Fig. 14).

Because the resulting force difference from uncertain-
ties in modeling the Drude parameters is larger than the
difference between the force when calculated with either
the plasma or Drude model with the same plasma fre-
quency (∼ 1%) [28], the experiments presented here are
not yet at the level of accuracy to be able to comment
on that discrepancy. The force is computed using the
combined optical data together with each set of refer-
ence Drude parameters. The difference between the two
calculations is used as the uncertainty from the optical
properties [116].
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Figure 14. The dielectric data used to estimate the Casimir
force is computed from ellipsometry data in the range of 0.73-
6.3 eV combined with Palik reference data at higher energies
and the Drude model at lower energies. The inset shows the
boundary between the measured data and different fits for the
Drude model.

B. Patch potentials

The force from patch potentials on gold tends to be
about 1% of the Casimir force over the pertinent mea-
surement range, but it has become a major concern in
Casimir force experiments because it tends to follow a
similar separation-dependence. Because the patch poten-
tial contribution to the total force cannot be separated
from the Casimir force during an experiment, we include
it as a source of uncertainty in the calculation of the total
expected force.

A few experiments used Kelvin probe force microscopy
images of the surface potential on a plate to calculate the
patch potential force between a sphere and a plate, using
either the assumption that the potentials on a sphere and

a plate are statistically identical [53, 114] or by compar-
ing samples with different patches [117]. For the estima-
tion of uncertainty presented here, the calculated patch
potential forces from [53] are used. Note that the uncer-
tainty comes from the sample-to-sample variation in the
patch potential force, rather than its average value.

C. Calculating the Casimir force with roughness

Roughness also adds uncertainty to the calculated
force. Atomic force microscopy is used to measure the
roughness on both the sphere and the plate, as has been
performed before [30, 49, 91]. If the relative positions
of sphere and plate are known, then the predicted forces
can be calculated directly from the topography images
[116, 118–120]. However, there is uncertainty in the ex-
act orientation of the sphere because the point of closest
approach is known only to a few microns and the exact
position above the plate is unknown as well.

The spheres tend to be much rougher than the plates
because the fabrication processes for hollow spheres have
been developed only recently, and, while precision fabri-
cation techniques exist [121], our spheres were procured
from a commercial source (Trelleborg SI-100). Because
the sphere tends to be much rougher than the plate, the
focus of the roughness uncertainty comes from uncer-
tainty in the orientation of the sphere [49]. The technique
used to calculate electrostatic roughness corrections is
used again (Fig. 8d). To compute the roughness un-
certainty, the Casimir force gradient is calculated for 49
different points on the sphere profile, and the uncertainty
is computed as the range around the most likely estimate
within which about 68% of the calculated roughness cor-
rections fall. Note that the distribution of corrections is
extremely irregular (Fig. 8).

0.1

1

10

F
o

rc
e

 u
n

c
e

rt
a

in
ty

 (
%

)

0.80.60.40.2

Separation (µm)

Total

0.1

1.0

10.0

U
n
c
e
rt

a
in

ty
 (

%
)

Figure 15. The uncertainty in the force calculation comes
from uncertainty in the dielectric constant, water layer thick-
ness, roughness and patch potentials.

D. Calculating the Casimir force with a water layer

The water layer discussed above affects not only the
separation determination, but also the calculation of the
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Casimir force itself. Because the presence of a water layer
on the metal surfaces tends to increase the Casimir force
between metal plates, due to a decrease in the absolute
surface separation [122], uncertainty in the thickness of
the water layer leads to uncertainty in the Casimir force
theory.

To investigate the effect of the water layer thickness
uncertainty, we calculate the Casimir force with a 0.75,
1.50, and 2.25 nm thick water layer on each surface. The
uncertainty of the water layer is calculated as the average
of the differences of the 1.50 nm calculation with the
0.75 and 2.25 nm calculations at each separation (e.g.
uncertainty = |F0.75 − F1.50|/2 + |F2.25 − F1.50|/2). At
small separations, the water layer becomes the largest
source of error in the calculation.

IX. CONCLUSIONS

A measurement of the Casimir force has been pre-
sented, as well as several experiments designed to char-
acterize the uncertainty in Casimir force measurements.
Some of the sources of uncertainty are characteristic

of ambient environments (water layers, drag, etc.), but
many of the sources of error, such as interference arti-
facts and irregular transfer function from piezoelectric
actuation, may appear in other environments as well.
Comparing the measurements shown and characterized
here to the force that should be observable by a thermal-
noise limited measurement shows that the reduction of
uncertainty could allow the Casimir force to be observed
at separations up to 1.4 µm in this configuration. At
separations in the 30 - 150 nm range, calibration and
separation uncertainty dominate the error analysis, but
under those considerations the data are consistent with
the Lifshitz theory.

Higher accuracy will assist the search for materials that
can be used to electronically modulate the Casimir force,
which could have many uses in future technologies, e.g.
in next generation microelectromechanical systems [39,
123, 124].
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