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We show that the dynamical Casimir effect in an optomechanical system can be achieved under
incoherent mechanical pumping. We adopt a fully quantum-mechanical approach for both the cavity
field and the oscillating mirror. The dynamics is then evaluated using a recently-developed master
equation approach in the dressed picture, including both zero and finite temperature photonic reser-
voirs. This analysis shows that the dynamical Casimir effect can be observed even when the mean
value of the mechanical displacement is zero. This opens up new possibilities for the experimental
observation of this effect. We also calculate cavity emission spectra both in the resonant and the
dispersive regimes, providing useful information on the emission process.

I. INTRODUCTION

One of the most surprising predictions of quantum field
theory is that the vacuum of space is not empty, but it
has plenty of short-lived virtual particles. Real observable
particles can be produced out from the quantum vacuum
providing energy to its fluctuations [1–5]. Vacuum fluctu-
ations have measurable consequences, such as the Lamb
shift of atomic spectra [6] and the modification of the
electron magnetic moment [7], even when real particles
are not generated. For years, scientists and researchers
wondered if it was possible to achieve a direct observa-
tion of the virtual particles composing the quantum vac-
uum or, at least, if their conversion into real particles
was achievable. The answer arrived only forty years ago,
when Moore [2] suggested that a variable length cavity
undergoing relativistic motion could be able to convert
virtual photons into real ones. This phenomenon was
later called the dynamical Casimir effect (DCE). Fulling
and Davis [3] demonstrated that photons can be also gen-
erated by a single mirror subjected to a non-uniform ac-
celeration. The DCE effect was first studied in the con-
text of electromagnetic resonators with oscillating walls
or containing a dielectric medium with time-modulated
internal properties [8–11].

This concept was later generalized for other bosonic
fields, e.g., cold atoms [12], phononic excitation of ion
chains [13], optomechanical systems [14], and Bose-
Einstein condensates [15, 16]. Moreover, it has been
shown that photon pairs can be emitted out from the
vacuum by switching or modulating the light-matter cou-
pling strength in cavity QED systems [17–21]. In 1996,
it was shown [22] that a significant number of photons
can be produced also in realistic high-Q cavities with
moderate mirror speeds, taking advantage of resonance-
enhancement effects. Unfortunately, the resonance condi-
tions require the mechanical frequency ωm to be, at least,
twice the first cavity mode frequency ωc, i.e., ωm ' 2nωc,
where n ∈ N. This is a significant obstacle for experimen-
tal observations.

Additional theoretical studies on the DCE have been
presented in, e.g., [3, 23–29]. Some of these proposals
suggested to use alternative experimental setups where
the boundary conditions of the electromagnetic field are
modulated by an effective motion [17, 30–35]. Specif-
ically, the link between the DCE and superconducting
circuits was theoretically proposed for the first time in
Ref. [36] and elaborated later on in Ref. [37]. In this con-
text, the experimental results did not take long to arrive.
In fact, the emission of photon pairs was observed in a
coplanar transmission line terminated by a SQUID whose
inductance was modulated at high frequency [38]. The
experimental realization of the DCE gives further evi-
dence of the quantum nature of the dynamical Casimir
radiation, indicating that the produced radiation can be
strictly nonclassical with a measurable amount of inter-
mode entanglement [39]. Reference [40] reviews vacuum
amplification phenomena with superconducting circuits.
Photon pairs were also produced by rapidly modulating
the refractive index of a Josephson metamaterial embed-
ded in a microwave cavity [41]. However, these do not
demonstrate the conversion of mechanical energy into
photon pairs, so these experiments can also be regarded
as quantum simulator. A new type of optomechanical
dynamical coupling based on the DCE has also been
proposed in trapped Rydberg atoms interacting with a
dynamical mirror whose refractive index can be period-
ically varied [42]. A significant emission of photon pairs
has also been predicted in Mott insulators of coherently
dressed three-level atoms by parametric amplification of
the polaritonic zero-point fluctuations in the presence of
a fast time modulation of the dressing amplitude [43].

Most theoretical studies on the DCE are based on a
quantum mechanical description of the electromagnetic
field and a classical description of the time-dependent
boundary conditions. Recently, the DCE in cavity
optomechanical systems has been investigated with-
out linearising the dynamics and describing quantum-
mechanically both the cavity field and the vibrating mir-
ror [44–46]. Within this full quantum description, it
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turns out that the resonant generation of photons from
the vacuum is determined by several ladders of mirror-
field vacuum Rabi-like splittings. The resulting general
resonance condition for the photon pairs production is
k ωm ' 2nωc, (k, n ∈ N). This corresponds to processes
where k phonons in the mechanical oscillator are con-
verted into n cavity photon pairs. This generalized res-
onance condition enables a resonant production of pho-
tons out from the vacuum even for mechanical frequen-
cies lower than the lowest cavity-mode frequency, thus
removing one of the major obstacles for the experimen-
tal observation of this effect.

In addition, it has been shown that a vibrating mirror
prepared in an excited state (mechanical Fock state) can
spontaneously emit photons like a quantum emitter. In
this case, however, a photon pair is emitted instead of a
single photon.

Moreover, it has been recently demonstrated that vir-
tual Casimir photon pairs can be used to enable a coher-
ent motional coupling between two spatially separated
moveable mirrors, allowing this kind of optomechanical
system to also operate as a mechanical parametric down-
converter even at very weak excitations [47]. Entangled
photons from the vacuum can be also generated by using
microwave circuit-acoustic resonators [48].

The approach considered in Ref. [46] also extends
the investigation of the DCE to the optomechanical
ultrastrong-coupling (USC) regime, where the optome-
chanical coupling rate is comparable to the mechanical
frequency [49–55]. This regime, which attracted great
interest also in cavity QED giving rise to a great variety
of novel quantum effects [20, 56–58], turned out to be
an essential feature for the realization of new interesting
proposals in quantum optomechanics [59–61].

Temperature effects also play an important role for
the generation of photons in a resonantly vibrating cav-
ity [62–65]. Specifically, it turns out that the thermal
contributions in these systems under the influence of
time-dependent boundary conditions leads to a strong
enhancement of photon pairs production at finite tem-
peratures.

Encouraged by the results obtained in Ref. [46], here
we investigate the dynamics of an optomechanical sys-
tem in a fully quantum-mechanical framework, under in-
coherent mechanical excitation, using a master equation
approach. This allows to demonstrate that a remarkable
Casimir photon pairs flux is produced even considering
a thermal-like noise source coupled only to the mechani-
cal degree of freedom. For ultra-strongly coupled hybrid
quantum systems [66–70], the standard quantum-optical
master equation breaks down, and a dressed master
equation approach is needed [56, 71, 72]. Furthermore,
if the energy level spectrum displays a quasi-harmonic
behaviour [51], like in optomechanical systems, a new
dressed master equation [73, 74] not involving the usual
secular approximation is required.

The outline of this article is as follows: in Sec. II we
briefly introduce the theoretical model and the dressed
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Figure 1. Schematic of a generic optomechanical system. One
of the mirrors of the optical cavity is coupled to a noise source
with effective temperature Tγ and can vibrate at frequency
ωm. This system can generate Casimir photon pairs.

master equation approach for quasi-harmonic hybrid sys-
tems. Section III is devoted to the presentation of
the energy-level structure, focusing the attention on the
avoided level crossings giving rise to the DCE. In Sec. IV
we apply the generalized master equation [74] to calcu-
late the dynamics of the system at finite temperatures
and, using the quantum regression theorem, we present
the power spectra in the weak and strong light-matter
coupling regimes. We conclude in Sec. V.

II. MODEL

We study a standard optomechanical system consti-
tuted by an optical cavity with a movable end mirror
[see Fig. 1]. Moreover, we consider a radiation pressure
coupling between the first cavity mode and a single me-
chanical mode.

The system Hamiltonian can be written as:

ĤS = Ĥ0 + V̂om + V̂DCE , (1)

where (~ = 1 throughout the paper)

Ĥ0 = ωcâ
†â+ ωmb̂

†b̂ (2)

is the uncoupled Hamiltonian, and

V̂om = gâ†â (b̂+ b̂†) (3)

is the standard optomechanical interaction Hamiltonian.
Here, ωc is the resonator frequency, ωm is the mechanical
frequency, g is the optomechanical coupling strength and
â(b̂), â†(b̂†) are, respectively, the bosonic creation (anni-
hilation) operators for the cavity and mechanical modes
Finally, the perturbation term determining the DCE is

V̂DCE = g

2(â2 + â†2)(b̂+ b̂†) . (4)

Since in this case the V̂DCE term only couples bare states
having energy differences 2ωc±ωm much larger then the
coupling strength g, it can be neglected. Also, this in-
teraction term is often neglected when describing most
of the experimental optomechanical systems, where the
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mechanical frequency is much smaller than the cavity fre-
quency.

The resulting total Hamiltonian conserves the photon
number and can be diagonalized separately in each n-
photon subspace. The general quantum state of such
system is:

|n, kn〉 = |n〉 ⊗ D̂(nη)|k〉 , (5)

where the integer kn represents the vibrational excita-
tions of the mechanical resonator in the corresponding
n-photon subspace, and

|kn〉 = D̂(nη)|k〉 (6)

represents the displaced mechanical Fock state deter-
mined by the displacement operator D̂(nη), where

η ≡ g/ωm (7)

is the normalized coupling strength. In the manifold with
n = 0, the states |0, k0〉, simply labeled |0, k〉, are the
eigenstates of the harmonic oscillator decoupled from the
cavity. When considering ultrahigh-frequency mechani-
cal oscillators with resonance frequencies

ωm ' ωc , (8)

the V̂DCE term cannot be neglected. In this case, the pho-
ton number is no longer conserved and there is no analyti-
cal solution for the system eigenstates. Moreover, it turns
out that the introduction of the V̂DCE term increases
the degree of anharmonicity, slightly modifying the lev-
els structure but still preserving the quasi-harmonic be-
haviour. Consequently, the system dynamics has to be
described using a generalized master equation developed
without performing the usual secular approximation. A
suitable approach, able to describe the time evolution of
the density matrix operator ρ̂ for any hybrid quantum
system in the presence of dissipations and thermal-like
noise, has been presented in Ref. [74].

In the interaction picture, this master equation can be
written as

˙̂ρ = κL[Â]ρ̂+ γL[B̂]ρ̂ . (9)

with κ and γ, respectively, the cavity and mirror damping
rates. The dressed photon and phonon lowering opera-
tors Ô = Â, B̂ are defined in terms of their corresponding
bare operators ô = â, b̂ by the relation [20, 56]

Ô(ω) =
∑

ε−ε′=ω
Π̂(ε)(ô+ ô†)Π̂(ε′)e−iωt , (10)

where ε are the eigenvalues of ĤS and Π̂(ε) ≡ |ε〉〈ε| indi-
cate the projectors onto the respective eigenspaces. Fur-
thermore, the Liouvillian superoperator L[Ô]ρ̂ can be ex-

pressed in the general form:

L[Ô]ρ̂ =
∑

(ω,ω′)>0

1
2

{
n(ω′, T )[Ô†(ω′)ρ̂Ô(ω)− Ô(ω)Ô†(ω′)ρ̂]

+ [n(ω, T ) + 1][Ô(ω)ρ̂Ô†(ω′)− Ô†(ω′)Ô(ω)ρ̂]
+ n(ω, T )[Ô†(ω′)ρ̂Ô(ω)− ρ̂Ô(ω)Ô†(ω′)]

+ [n(ω′, T ) + 1][Ô(ω)ρ̂Ô†(ω′)− ρ̂Ô†(ω′)Ô(ω)]
}
(11)

where (kB = 1)

n(ω, T ) = [exp(ω/T )− 1]−1
(12)

is the thermal noise occupation number of the system
reservoir, at real or effective temperature T .

When counter-rotating terms are taken into account in
the interaction Hamiltonian, the introduction of master
equations in the dressed basis is not sufficient. Indeed,
a modification of input-output relationships, relating the
intracavity field with the external fields [46, 56, 74–76], is
also required. According to these modified relationships,
the output fields are no more determined by expectation
values of the bare photon operators (see, e.g., [77–79]),
but by the expectation values of the dressed operators in
Eq. (10).

III. VACUUM CASIMIR-RABI SPLITTINGS

In order to fully characterize our system, we numer-
ically diagonalize the Hamiltonian ĤS in Eq. (1). Fig-
ure 2(a) shows the lowest energy levels as a function of
the cavity frequency ωc/ωm considering a normalized op-
tomechanical coupling strength η = 0.1.

As reported in Ref. [46], when the resonant conditions

q ωm = 2ωc (13)

are satisfied, the V̂DCE term induces a coherent resonant
coupling between the bare states |0, k〉 (i.e., 0 photons
and k phonons) and |2, (k − q)2〉 (i.e., 2 photons and
k − 1 phonons), with q ∈ N∗, having different number
of excitations. Figure 2(b) shows an enlarged view of
the avoided level crossing arising for ωm ' ωc, involv-
ing the states |0, 2〉 and |2, 02〉. When the splitting is at
its minimum, the two system eigenstates are essentially
a symmetric and antisymmetric linear superpositions of
these bare states |ψ±〉 ' 1√

2 (|0, 2〉 ± |2, 02〉). The size of

this avoided level crossing (Casimir-Rabi splitting), ana-
lytically calculated using first-order perturbation theory,
is given by

2Ω2,0
0,2 = 2〈0, 2|V̂DCE|2, 02〉

=
√

2 g
[√

3D3,0(2η) +
√

2D1,0(2η)
]
,

(14)
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Figure 2. (a) Lowest energy eigenvalues of the system as a
function of ωc/ωm for a normalized optomechanical coupling
strength η = g/ωm = 0.1. The ground state is not displayed.
(b) Enlarged view of the avoided level crossing arising from
the coherent coupling between the states |0, 2〉 and |2, 02〉.
The energy splitting reaches its minimum at the resonant fre-
quency ωc ' ωm.

where

Dk′,k(2η) =
√
k!/k′!(2η)k

′−ke−|2η|
2/2Lk

′−k
k (|2η|2) (15)

represents the overlap between different displaced me-

chanical Fock states and Lk
′−k
k is an associated Laguerre

polynomial. It is important to note that the quantity
2Ω2,0

0,2 plays a fundamental role in the DCE, since it deter-
mines the rate at which a mechanical two-phonon state is
able to generate photon pairs. Specifically, for a normal-
ized optomechanical coupling η = 0.1 we obtain a matrix
element 2Ω2,0

0,2 ' 0.05 that ensures that this avoided level
crossing is able to produce a detectable rate of Casimir
photon pairs.

IV. RESULTS

Here, we present the system dynamics numerically
evaluated taking into account a thermal-like pumping
of the mechanical components and considering the pho-
tonic reservoir both at Tκ = 0 and at finite tempera-
ture. Specifically, we study the time evolution of the
mean phonon (photon) number 〈B̂†B̂〉 (〈Â†Â〉) and the
zero-delay phononic (photonic) normalized second-order
correlation function, defined as

g
(2)
O (t, t) = 〈Ô

†(t)Ô†(t)Ô(t)Ô(t)〉
〈Ô†(t)Ô(t)〉2

, (16)

with Ô ∈ [Â, B̂].

A. System dynamics in the weak-coupling regime

We start considering the system initially prepared in
its ground state and in the weak-coupling regime, which
corresponds to the case where the Casimir-Rabi split-

ting 2Ω2,k−q
0,k is smaller than the total decoherence rate

of the system Γtot = γ + κ. Specifically, we assume
γ/ωm = 0.05 and κ = γ/2 with an optomechanical cou-
pling η = 0.1, considering the resonant case ωm ' ωc
corresponding to the minimum splitting of the avoided
level crossing arising between the states |0, 2〉 and |2, 02〉
(see Figure 2(b)). Figures 3(a,b) display the time evolu-

tion of the photonic 〈Â†Â〉 (red solid curve) and phononic

〈B̂†B̂〉 (blue dashed curve) populations, together with
the time evolution of the respective two-photon and two-

phonon correlation functions g
(2)
B(A)(t, t). All these quan-

tities have been evaluated taking into account the inter-
action with a zero temperature (Tκ = 0) photonic reser-
voir and providing an incoherent thermal-like pumping of
the mechanical component by means of phononic reser-
voir with effective temperature Tγ/ωm = 0.9. As shown
in Figure 3(a), the photonic and phononic populations
start from zero and, due to the incoherent thermal-like
pumping of the mechanical modes, reach a considerable
stationary value. In particular, a steady state intracav-
ity mean photon number 〈Â†Â〉ss ' 0.15 is obtained.
For a cavity mode of frequency ωc/2π ' 6 GHz, this
value corresponds to a steady-state output photon flux
Φ = κ〈Â†Â〉ss ∼ 1.4× 108 photons per second. This out-
put photon flux is remarkable since it is much higher than
the detection threshold of the state-of-the-art detectors,
despite the quite low quality factor Qc = ωc/κ = 40 of
the cavity considered in the numerical calculations. Fur-
thermore, also the mechanical loss rate γ corresponds to a
quality factor Qm one order of magnitude lower than the
values which are experimentally measured in ultra-high-
frequency mechanical resonators [80, 81]. Moreover, in
Fig. 3(b) we observe that the photonic correlation func-
tion starts from a value much higher than two, suggest-
ing that a high number of photon pairs is produced. As
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Figure 3. System dynamics for the resonant case ωc ' ωm
considering a Tκ = 0 cavity reservoir and the mechanical os-
cillator coupled to a thermal-like noise source with an effective
temperature Tγ/ωm = 0.9. (a) Time evolution of the mean

phonon number 〈B̂†B̂〉 (blue dashed curve) and of the mean

intra-cavity photon number 〈Â†Â〉 (red solid curve). Due
to the thermal-like pumping, the populations reach station-
ary values. (b) Time evolution of the zero-delay normalized

photon-photon g
(2)
A (t, t) and phonon-phonon g

(2)
B (t, t) correla-

tion functions. At t = 0, the two-photon correlation function

g
(2)
A (t, t) displays values much higher than two, showing that

a considerable number of photon pairs are emitted. As the
time goes on, this value decreases significantly due to the cav-
ity losses and the corresponding increase of the mean photon
number. On the contrary, the mechanical correlation func-

tion sets on a constant value g
(2)
B (t, t) ≈ 2, showing that the

mechanical system is in an incoherent state produced by the
thermal-like noise.

the time goes on, this value decreases significantly due
to the system losses and the corresponding increase of

the mean photon number (note that g
(2)
A (t, t) is inversely

proportional to the square of the mean photon number).
On the contrary, the mechanical correlation function sets

on a constant value g
(2)
B (t, t) ≈ 2, showing that the me-

chanical component is in an incoherent state produced by
the thermal-like pumping. Note that the production of
Casimir photon pairs is sensitive to the optomechanical
coupling strength. Figure 4 displays the temporal evolu-
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Figure 4. Time evolution of the mean phonon number 〈B̂†B̂〉
(blue dashed curve) and of the mean intra-cavity photon

number 〈Â†Â〉 (red solid curve) for (a) η = 0.075 and (b)
η = 0.05, in the resonant case ωc ' ωm. We consider a
Tκ = 0 cavity reservoir, while the mechanical oscillator is
coupled to a thermal-like noise source with an effective tem-
perature Tγ/ωm = 0.9. Since the coupling rate Ω2,0

0,2 between
the states |0, 2〉 and |2, 02〉 becomes less effective for decreas-
ing values of η, in both cases we observe a smaller production
of Casimir photon pairs with respect to the case η = 0.1 dis-
played in Fig. 3.

tion of the photonic 〈Â†Â〉 (red solid curve) and phononic

〈B̂†B̂〉 (blue dashed curve) populations for (a) η = 0.075
and (b) η = 0.05 using the same values for the reservoir
temperatures Tκ(γ)/ωm as in Fig. 3. We observe that the

intra-cavity mean photon number 〈Â†Â〉 decreases for
decreasing values of η, suggesting that a sufficiently high
optomechanical coupling strength is required in order to
obtain a detectable output flux of Casimir photon pairs.
This effect can be explained considering that lower val-
ues of η lead to smaller values of the (two phonons)-(two

photons) effective coupling rate Ω2,0
0,2 and, consequently,

to a lower conversion rate of phonons into Casimir photon
pairs. These results are particularly interesting since they
demonstrate that the DCE can also be experimentally
observed exciting a movable mirror with an incoherent
thermal-like pump as, for example, a white noise genera-
tor (made by an ultra-high frequency resonator interact-
ing with a microwave cavity). In real optomechanical
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Figure 5. System dynamics evaluated considering finite-temperature reservoirs and the system initially prepared in a thermal
state at the same temperature Tκ of the photonic reservoir. Panels (a) and (c) show the time evolution of the cavity mean

photon number 〈Â†Â〉 (red solid curves) and the mean phonon number 〈B̂†B̂〉 (blue dashed curves) for Tγ/ωm = 0.9 and
Tκ/ωm = 0.2 (a), 0.4 (c). Panels (b) and (d) display the time evolution of the zero-delay two-photon (red solid curves) and

two-phonon (blue dashed curves) correlation functions, g
(2)
A (t, t) and g

(2)
B (t, t), for Tγ/ωm = 0.9 and Tκ/ωm = 0.2 (b), 0.4 (d).

systems ground state cooling is never complete and the
interaction with a finite-temperature reservoir has to be
taken into account. The time evolution of the photonic
and phononic populations together with the respective
two-photon and two-phonon zero-delay correlation func-
tions are displayed in Fig. 5. These functions are eval-
uated in more realistic conditions, taking into account
non-zero temperature reservoir for both the subsystems.
In these conditions, both the populations start from a
non-zero value corresponding to the initial thermal equi-
librium density matrix. As expected, a fraction of the ob-
served photons is thermal and does not originate from the
mechanical to optical energy conversion mechanism. This
picture is confirmed by comparing the dynamics of the
two correlation functions shown in Fig. 4(b,d). Specifi-
cally, when the cavity temperature increases, we observe

a strong decrease of the g
(2)
A (t, t) peak value, indicating

that less photons are emitted in pairs. However, as ex-
pected, the phonon-phonon correlation functions remain

constant at the thermal value g
(2)
B (t, t) ' 2. These re-

sults demonstrate that, when the presence of a cavity
thermal noise is taken into account, the number of the
produced Casimir photon pairs decrease. However, the
output photon flux is still above the detection threshold

of the photodetector and the peak value of the g
(2)
A (t, t)

indicates that photon pairs are produced.

B. Emission spectra in the weak and strong
coupling regimes

In order to obtain more information on the ongoing
physics, here we present the cavity emission spectra de-
rived via a quantum regression approach. Consider-
ing a normalized optomechanical coupling η = 0.1, we
present results for the system both in the weak and in
the strong light-matter coupling regime for different val-
ues of ωc/ωm. We consider the cavity at Tκ = 0, while
the mechanical oscillator is coupled to a reservoir with
effective temperature Tγ/ωm = 0.9. For the sake of sim-
plicity, we indicate the energy eigenvalues and eigenstates
as ωl and |l〉 (l = 0, 1, . . .) and the transition frequencies
as ωjk ≡ ωj−ωk, choosing the labeling of the states such
that ωj > ωk, for j > k [see Fig. 5(a)]. If the effective
temperature of the mechanical reservoir is high enough
to populate the state |5〉, the system decays toward the
ground state via two different one-photon decay channels:
|5〉 → |2〉 → |0〉 and |3〉 → |2〉 → |0〉. Since the states
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Figure 6. (a) Schematics of the first energy levels of the
optomechanical system. Solid arrows represent the possible
one-photon decay channels when the effective temperature
of the mechanical reservoir is high enough to populate the
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oscillator is coupled to a reservoir with effective temperature
Tγ/ωm = 0.9. Parameters are: ωm = 1, η = 0.1. The total
loss rate Γtot = κ+ γ of the system is: (b) 7.5× 10−2ωm and
(c) 7.5× 10−3ωm.
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Figure 7. Cavity emission spectra for the system in the strong
coupling regime for different values of the detuning ∆ ≡ (ωc−
ωr)/ωm, where ωr ' 1.017ωm is the frequency corresponding
to the minimum value of the splitting in Fig. 2(b). Specifically,
we considered the cases: (a) ∆ = 0.028, (b) ∆ = 0.01 and (c)
∆ = −0.028. Main contributions are indicated by dashed
lines. Parameters are the same of Fig. 5(c).

|5〉 and |3〉 do not couple with the state |4〉, the other
possible one-photon transition |4〉 → |0〉 can occur only
by decays from higher energy levels.

We start considering the zero detuning case ∆ ≡
(ωc − ωr)/ωm = 0, where ωr ' 1.017ωm is the fre-
quency corresponding to the minimum value of the split-
ting in Fig. 2(b). In this case the states |3〉 and |5〉 are
well approximated, respectively, by the superpositions
|ψ±〉 = (|0, 2〉 ± |2, 02〉)/

√
2.

Figure 5(b) displays the emission spectra for the sys-

tem in the weak coupling regime, e.g., 2Ω2,0
0,2 < Γtot. Due

to the high value of Γtot, we observe a low-resolution
emission spectrum that only displays a wide band con-
stituted by a single peak at frequency ω/ωm ' 0.98.
On the contrary, when the system is in the strong cou-
pling regime (2Ω2,0

0,2 > Γtot), the spectrum becomes well-
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resolved. As shown in Fig. 5(b), for 2Ω2,0
0,2/Γtot ' 6.7

the cavity emission spectrum displays two main peaks.
Indeed, in the resonant case the accidentally quasi-
degenerate transitions |5〉 → |2〉 and |2〉 → |0〉 give rise
to a single high-frequency peak at ω ' ωm, whereas the
lower-frequency peak at ω/ωm ' 0.98 corresponds to the
transition |3〉 → |2〉. It is important to notice that, in
the presence of a Tκ = 0 cavity reservoir, these peaks are
observable only if the VDCE term is included in the Hamil-
tonian. Indeed, without this term the states |2, 02〉 and
|0, 2〉 are not coupled anymore and since the mechanical
incoherent pumping only populates phononic states, the
one-phonon decay peaks cannot be observed in the cavity
emission spectra. We now turn to the numerical analy-
sis of the detuning effects on the cavity emission spectra.
Figure 6(a) displays the emission spectrum calculated for
∆ = 0.028. As the transitions |5〉 → |2〉 and |2〉 → |0〉 are
no more quasi-degenerate, the peaks at frequencies ω52
and ω20 become well resolved, while the peak correspond-
ing to |3〉 → |2〉 shifts towards a slightly lower frequency.
As expected, if we reduce the detuning and approach the
resonance point ∆ = 0, the spectrum essentially presents
the same main features of Fig. 5(c). Specifically, Fig. 6(b)
shows that for ∆ = 0.014 the two peaks at ω52 and
ω20 merge, and the emission spectrum presents only a
main contibution at ω/ωm ' 1.015, while the transition
frequency ω32 does not change significantly. Finally, in
Fig. 6(c) we study the emission spectrum in the pres-
ence of a negative detuning ∆ = −0.028. Also in this
case, the spectrum displays three distinct peaks placed
at lower frequencies respect to Fig. 6(a). This shift arises
from the energy-level crossing between the states |1〉 and
|2〉 shown in Fig. 2(a). Although the highest peak still
corresponds to the one-photon decay toward the ground
state, the emission spectrum is not symmetric respect to
the one in Fig. 6(a). In particular, we observe that the in-
tensity of the peak associated to the transition |3〉 → |1〉
increases, whereas the |5〉 → |1〉 transition peak displays
a much lower intensity. This effect can be explained
considering that, differently from the positive-detuning
cases studied above, for ∆ < 0 the state |3〉 ' |2, 02〉 has
more photonic character than |5〉 ' |0, 2〉, which has more
phononic character. Thus, while the photonic character
of the polaron state |3〉 leads to an enhancement of the
peak intensity at ω31 in the cavity emission spectrum, on
the other hand the phononic character of the state |5〉 is
responsible for the intensity decrease of the peak at ω51.
This study provides useful information on the emission
process. Moreover, the presence of these features in the
experimental spectra would represent a signature of the
production of DCE photons. A very promising experi-
mental platform for the observation of the proposed effect
is provided by circuit-optomechanical systems utilizing
ultra-high-frequency (∼ 4-6 GHz) dilatational resonators
[80]. In these systems, it should be possible to easily
achieve an optomechanical coupling strength η = 0.02,
which is rather close to the lower value considered here
[see Fig. 4(b)]. Finally, we notice that a higher excita-

tion noise would allow the observation of the DCE effect
induced by an incoherent mechanical pumping, even for
lower values of the optomechanical coupling strength.

V. CONCLUSIONS

In conclusion, we have studied the dynamical Casimir
effect in cavity optomechanics achieved only under in-
coherent mechanical excitation. We employed a fully
quantum-mechanical description of both the cavity field
and the oscillating mirror. The system dynamics is eval-
uated under incoherent pumping of the mechanical com-
ponent, provided by a thermal-like excitation. Using a
master equation approach [74] in order to take into ac-
count losses, thermal effects and decoherence in the pres-
ence of a quasi-harmonic spectrum, we showed that a
measurable flux of Casimir photons can be obtained also
without a coherent pumping, suggesting another way for
experimental observation of the DCE. This master equa-
tion approach could be also used to describe this effect
in the presence of arbitrary colored-noise sources. The
incoherent mechanical excitation mechanism described
here is also expected to work in parametrically amplified
optomechanical systems in order to induce two-photon
hyper-Raman scattering processes, where squeezed pho-
tons already present in an optical resonator are scat-
tered into resonant cavity-photon pairs [82]. This method
would allow the parametric conversion of mechanical en-
ergy into electromagnetic energy in optomechanical sys-
tems where the mechanical frequency is usually much
lower than the cavity frequency, thus eliminating the need
for extremely high mechanical oscillation frequencies and
ultrastrong single-photon optomechanical coupling. In
Ref. [46], it has been shown that a vibrating mirror is
affected by spontaneous emission, in analogy with ordi-
nary atoms. However, it decays emitting photon pairs.
Here, we show that an incoherently excited vibrating mir-
ror can emit light, in analogy to atomic fluorescence or
electroluminescence in semiconductor devices.

By applying the quantum regression theorem, we have
calculated numerically the steady-state cavity emission
spectra under incoherent mechanical excitation, for dif-
ferent detunings and loss rates. When the loss rates are
lower than the effective coupling rate, the emission spec-
tra allow to identify the different emission channels.
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O. Di Stefano, “Single-step arbitrary control of mechani-
cal quantum states in ultrastrong optomechanics,” Phys.
Rev. A 91, 023809 (2015).
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