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Secret sharing allows a trusted party (the dealer) to distribute a secret to a group of players, who
can only access the secret cooperatively. Quantum secret sharing (QSS) protocols could provide
unconditional security based on fundamental laws in physics. While the general security proof has
been established recently in an entanglement-based QSS protocol, the tolerable channel loss is unfor-
tunately rather small. Here we propose a continuous variable QSS protocol using conventional laser
sources and homodyne detectors. In this protocol, a Gaussian-modulated coherent state (GMCS)
prepared by one player passes through the secure stations of the other players sequentially, and each
of the other players injects a locally prepared, independent GMCS into the circulating optical mode.
Finally, the dealer measures both the amplitude and phase quadratures of the receiving optical mode
using double homodyne detectors. Collectively, the players can use their encoded random numbers
to estimate the measurement results of the dealer and further generate a shared key. We prove the
unconditional security of the proposed protocol against both eavesdroppers and dishonest players
in the presence of high channel loss, and discuss various practical issues. a

PACS numbers: 03.67.Dd

I. INTRODUCTION

Seccet sharing is a cryptographic primitive with im-
protant practical applicaitions [1, 2]. In this protocol, a
dealer distributes a secret message M to n players in such
a way that at least k ≤ n players have to work together
to decode the message. This is called a (k, n)−threshold
scheme. In this paper, we will focus on (n, n)−threshold
secret sharing protocol, which means all the n players
have to work together to decode the dealer’s message.

If the dealer shares an independent secure key Ki

(i=1,2..n) with each player and the length of each key is
the same as that of the message, then a (n, n)−threshold
scheme can be implemented as follows. The dealer first
generates a new key K = K1⊕K2⊕...⊕Kn where “⊕” de-
notes addition modulo 2, then encodes message M using
K and broadcasts the encrypted message E = M ⊕ K.
Obviously, only when the n players work together can
they determine K and thus decode M from E.

The security of the above scheme relies on the security
of each individual key. Two-party quantum key distribu-
tion (QKD) protocols can be employed to generate un-
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conditional secure keys through insecure channels [3–6].
The dealer could establish a QKD link with each of the
players and generate n individual keys before running the
secure sharing protocol. However, such an implementa-
tion is rather inefficient for large n. Various quantum
secret sharing protocols [7–13] have been proposed aim-
ing at achieving both proven security and high efficiency.

The security of QSS is deeply connected to that of
QKD. Nevertheless, in contrast to a point-to-point two-
party QKD protocol, a QSS protocol typically involves
more participants and some of them might be dishon-
est. This allows additional hacking strategies and makes
the security analysis of a QSS protocol more demanding
than that of QKD. The application of continuous variable
(CV) QKD techniques to analyze CV-QSS security was
first proposed in [14]. More recently, the security proof of
CV-QSS against both eavesdroppers in the channels and
dishonest players appeared [15]. Like most other QSS
protocols, the protocol studied in [15] is based on multi-
party quantum entanglement which may be difficult to
implement with today’s technology when n is large. Fur-
thermore, the tolerable channel losses presented in [15]
are quite small.

On another front, to ease the implementation difficul-
ties, single qubit sequential QSS protocols have been pro-
posed and experimentally demonstrated [16]. The basic
idea is shown in Fig.1. A single photon prepared in an
initial polarization state propagates from party to party
sequentially. Each party independently applies a ran-
dom BB84-type [17] polarization rotation on the same
photon. Finally, the last recipient performs a polariza-
tion measurement. In half of the cases, the combination
of the basis choices by all the parties results in a deter-
ministic measurement result at the last recipient. These
instances could be used to implement secret sharing when
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FIG. 1: Single qubit sequential QSS protocol [16].

equipped with an appropriate post-processing procedure.
We remark that a similar design has been proposed and
demonstrated in multi-user QKD [18, 19].

While the above scheme can significantly improve the
feasibility of QSS, its general security is still under de-
bate [20–22]. Furthermore such a design is vulnerable
to Trojan-horse attacks where an malicious eavesdropper
could send in multi-photon signals to the polarization
rotation device of the targeted party and unambiguously
determine the correspoding polarization rotation by mea-
suring the output signals. We remark that in the context
of QKD, a similar problem has been investigated in the
so-called “plug-and-play” design [23], where Bob sends a
strong un-modulated laser pulse to Alice through an inse-
cure channel, who in turn encodes information and sends
it back to Bob after attenuating it to single-photon level.
Since the laser pulses from Bob to Alice are strong clas-
sical signals, the security issue due to the bidirectional
feature of Alice’s system could be mitigated by charac-
terizing the light pulses received by Alice using conven-
tional photo-detectors [24, 25]. However, it is more dif-
ficult to apply the same countermeasures in the case of
single qubit sequential QSS, where the attacker can use
a weaker probe signal. This is not only because the QSS
design does not employ an attenuator (as in the plug-and-
play design), but also because the attacker can make use
of both ports of the QSS device rather than probing and
detecting via a single port.

In this paper, we will address both the security and
the practicability of QSS. We propose a continuous vari-
able (CV) sequential QSS protocol based on conventional
laser sources and homodyne detectors. The main idea is
instead of modulating the quantum state of a “passing
through” photon, each player injects a locally prepared
quantum state into a circulating optical mode using a
beam splitter. This prevents the eavesdroppers to ac-
cess or interfere the quantum state preparation process
and makes our scheme resilient to Trojan horse attacks.
By choosing an appropriate beam splitting ratio, the ad-
ditional loss introduced by each player’s system can be
extremely small, making the protocol extendable to a
large number of players. Furthermore, by extending the
ideas introduced in [15], we prove the general security
of the proposed protocol against both eavesdroppers and
dishonest players in the presence of high channel loss.

This paper is organized as follows: In Section II, we
present details of the proposed QSS scheme and provide
a general security proof. In Section III, we conduct nu-

merical simulations based on practical system parameters
to show its feasibility. In Section IV, we discuss various
implementation issues and possible extensions.

II. THE PROTOCOL AND ITS SECURITY

Inspired by the single qubit sequential QSS protocol
[16] and the GMCS QKD [26], we propose a CV-QSS
protocol. As shown in Fig.2, n players and the dealer
are connected by a single communication channel such
as a telecom fiber. For each quantum transmission, the
first player P1 at one end of the link prepares a coher-
ent state |x1 + ip1〉 and sends it to the adjacent player
P2. Here x1 and p1 are independent Gaussian random
numbers with zero mean and a variance of V1N0, where
V1 is the modulation variance chosen by P1, and N0 =
1/4 denotes the shot-noise variance. The above coherent
state passes through a highly asymmetric beam splitter
(with a transmittance tB ∼= 1) located within the se-
cure station of P2, and continues its journey to the next
player. In the mean time P2 locally prepares an indepen-
dent GMCS and couples it into the same spatio-temporal
mode as the signal from P1 via the second input port of
the beam splitter. By carefully controlling the modu-
lation variances and having knowledge of the reflectiv-
ity of the asymmetric beam splitter, P2 can introduce
phase-space displacements of {x2, p2}. All the other play-
ers perform similar operations. At the end, the quan-
tum state that arrives at the dealer can be described by
|
∑n

k=1

√
Tkxk + i

∑n
k=1

√
Tkpk〉, where Tk is the over-

all transmittance (including losses due to the channel
and the beam splitters) experienced by the quantum sig-
nal from the kth player. The dealer measures both the
amplitude and phase quadratures of the received optical
mode by performing double homodyne detection. Intu-
itively, if all the players collaborate with each other and
share the encoded Gaussian random numbers, they can
acquire a good estimation of the dealer’s measurement
results. This allows the dealer to generate a secure key
which can only be known by the whole group of n players
but not any subset of them. The dealer can further use
the above key to implement the (n, n)−threshold secret
sharing protocol.

The QSS protocol is summarized as below:

Quantum stage

1. The first player P1 draws a pair of Gaussian random
numbers {x1, p1}, prepares a coherent state |x1 +
ip1〉 and sends it to the adjacent player.

2. Using a highly asymmetric beam splitter, each
player down the link injects a locally prepared
GMCS into the same spatio-temporal mode as the
signal from P1.

3. The dealer measures the amplitude and phase
quadratures of the received optical mode by per-
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forming double homodyne detection. The measure-
ment results {xd, pd} are kept as raw data.

4. The above procedure is repeated many times to
generate enough raw data. This completes the
quantum stage of the protocol.

Classical post-processing stage

5. The dealer randomly selects a subset of the raw
data and requests all the players to announce the
corresponding Gaussian random numbers. Com-
bined with the corresponding measurement results,
the channel transmittance {T1, T2, ..., Tn} can be
determined [27]. All the parties discard the dis-
closed data.

6. The dealer assumes P1 is honest and all the other
players are dishonest.

7. The dealer randomly selects a subset of remaining
raw data and requests all the players except P1 to
announce their corresponding raw data.

8. The dealer displaces the measurement results of the
subset in step 7 using xR = xd−

∑n
k=2

√
Tkxk; pR =

pd −
∑n

k=2

√
Tkpk. From {xR, pR} and P1’s raw

data for the same subset, the dealer and P1 esti-
mate a lower bound of secure key rate R1 (in unit
of bits per pulse) of two-party QKD following the
standard post-processing procedures in the GMCS
QKD [26, 28]. All the parties discard the disclosed
data.

9. The steps 6-8 are repeated n time. In each run,
a different player is selected as the honest player.
At the end, the dealer has n secure key rates
{R1, R2, ..., Rn}.

10. The dealer determines the secure key rate R of the
QSS protocol as the minimum of {R1, R2, ..., Rn},
and generates the final secure key from undisclosed
data using reverse reconciliation scheme developed
in GMCS QKD [26, 28]. Note that, in reverse
reconciliation, classical information goes from the
dealer to the players. Accordingly, this process
can be accomplished without the cooperation of the
players. The dealer can implement a QSS protocol
by using the final secure key to encrypt the message
to be shared. Collaboratively, the n players can re-
cover the final secure key (thus the dealer’s mes-
sage) using their Gaussian random numbers and
the classical information announced by the dealer.
Any group of n − 1 (or fewer) players can only
gain an exponentially small amount of information
about the final secure key.

The data reconciliation procedure in the last step of
the protocol is the same as that in the standard GMCS
QKD, see [28] and the references therein. Note in the

P1 P2 Pn
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FIG. 2: The proposed CV-QSS protocol. L-laser;
M-modulator; BS-beam splitter; HD-double homodyne
detector

above protocol, we have implicitly assumed that all the
parties share a phase reference. We will discuss how to
establish such a phase reference in Section 4.

The security analysis of a QSS protocol is typically
more involved than that of QKD. The general security
proof against both eavesdroppers in the channels and
dishonest players only appeared recently [15]. In [15],
the dealer prepares a multi-party continuous-variable en-
tangled state, keeps one mode and distributes the other
modes to the players. Homodyne detection is carried
out by each party on the corresponding mode. One im-
portant idea in [15] is to treat the measurement results
announced by the players as input or output from unchar-
acterized devices while the dealer and the correspoing de-
vice are assumed to be trusted. This allows them to ap-
ply the tools developed in one-sided device-independent
QKD [29, 30] into the security analysis of QSS protocol.
Nevertherless, the tolerable channel losses presented in
[15] are quite small.

In this paper, we follow a security proof strategy sim-
ilar to that in [15] by connecting the security of QSS
with that of the underlying two-party QKD. In our CV-
QSS protocol, the dealer needs to generate a secure key
from the measurement results using reverse reconcilia-
tion. The question is at what rate the secure key can
be generated (the lower bound of secure key rate) such
that only when all the n players work together, they can
recover the dealer’s secure key, while any group of n− 1
(or fewer) players can only gain an exponentially small
amount of information. The above problem can be con-
nected to QKD as follows: Imagine that the dealer re-
quests a group of n−1 players to publicly announce their
Gaussian random numbers while the last player (Alice)
keeps her data private. In this case Alice (who holds the
complete information of the n players) should be able to
recover the secure key while the n−1 players do not have
sufficient information for key recovery. This is equivalent
to a two-party QKD problem where two honest users (Al-
ice and the dealer) try to generate a secure key against
all the other n − 1 players (and potential eavesdroppers
in the channel). So the secure key rate of QSS is the
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same as that of QKD and can be calculated using stan-
dard security proofs of QKD (see more details in next
paragraph). Since Alice is assumed to be honest in the
above picture, it is reasonable to assume the device con-
trolled by her is also trusted. This suggests that we can
use the standard security proof of QKD with trusted de-
vices to evaluate the secure key rate. Since the secure
key of QSS should be secure against any group of n− 1
players, the dealer needs to repeat the above procedure
n times: the dealer evaluates potential secure key rates
of QKD with each individual player (by assuming all the
other players are dishonest) and chooses the smallest one
among them as the secure key rate for QSS [steps 6-9 in
the protocol]. This guarantees the security against the
collaborating attacks between the eavesdropper and any
n−1 (or fewer) players. By employing the security proof
of standard QKD, a highly efficient, loss-tolerant QSS
can be achieved. Note that we have adopted a similar
security proof strategy in a recent entanglement based
QSS demonstration [31].

Next we discuss how to evaluate the secure key rate
of QKD between the dealer and a chosen player given
all the other n − 1 players are dishonest. Here, we use
a security argument similar to the one used in [32]. As
specified in steps 7-8 of the protocol, after the dealer has
decided which player to conduct QKD with, he (or she)
requests all the other players to announce encoded ran-
dom numbers for a randomly chosen subset of the raw
data. The dealer then displaces the corresponding mea-
surement results using xR = xd −

∑n
k=2

√
Tkxk; pR =

pd −
∑n

k=2

√
Tkpk and estimates a lower bound for the

QKD key rate with the player chosen above. Since the
displacement operation commutes with homodyne detec-
tion, instead of displacing the measurement results, the
dealer could perform phase-space displacements before
double homodyne detection. We can further assume this
virtual displacement operation is performed by the n− 1
players outside the dealer’s secure station without weak-
ening the security of the protocol. In this picture, the
actual protocol has been reduced to the standard QKD
where all the operations by the other n− 1 players (and
potential eavesdroppers) are conducted in the channel be-
fore the two QKD users start the post-processing process.
Thus the standard security proof of the GMCS QKD can
be applied. Note the above security analysis covers the
cases when the n− 1 players do not execute the protocol
honestly.

Note in this paper, we have assumed that the dealer
performs homodyne detection while the players prepare
quantum states. In this scenario, the homodyne detector
can be trusted and this allows us to apply the standard
security proof of CV-QKD. Furthermore, we can apply
the trusted detector noise model by assuming both the
detector efficiency and detector noise are well calibrated
and out of adversary’s control. This approach can typ-
ically lead to a better QKD performance and has been
widely adopted in long-distance CV-QKD experiments
[26, 33–37]. We will discuss other possible arrangements

in Section 4.
To evaluate the performance of the proposed QSS pro-

tocol, in next Section we conduct numerical simulations
based on realistic system parameters.

III. NUMERICAL SIMULATIONS

We assume the quantum channel is telecom fiber with
an attenuation coefficient of γ. Numerical simulations
are conducted based on a specific configuration: the fiber
length between the dealer (Bob) and the farthest player
(Alice) is L. All the other n − 1 players are distributed
between them with equal separation. According to the
step 10 in the protocol, the secure key rate of the QSS
protocol in the smallest secure key rate of two-party QKD
evaluated between the dealer and each player. Given
each player introduces the same amount of excess noise
(defined as ε0 in the shot noise limit), the smallest QKD
key rate under normal operation will be the one between
Alice and Bob. This is the key rate we will evaluate
below. Note that to implement the proposed protocol
in practice, the dealer should evaluate a secure key rate
with each player using experimental data, and choose the
smallest one as the secure key rate for QSS.

The asymptotic secure key rate of two-party GMCS
QKD, in the case of reverse reconciliation, is given by
Refs. [33, 38]

R = fIAB − χBE , (1)

where IAB is the Shannon mutual information between
Alice and Bob; f is the efficiency of the reconciliation
algorithm; χBE is the Holevo bound between Eve (in-
cluding external eavesdroppers and the other n− 1 play-
ers) and Bob. IAB and χBE can be determined from
the channel loss, observed noises, and other QKD sys-
tem parameters. Note all the noise terms in this paper
are defined in shot noise unit.

The channel transmittance of the kth player is given
by

Tk = 10
−γlk
10 , (2)

where lk = n−k+1
n L is the fiber length between the dealer

and the kth player. Here without compromising the
practicability, we have assumed the transmittance of the
beam splitter at each player is tB ∼= 1.

The excess noise contributed by the kth player, when
referred to the channel input, is given by

εk =
Tk
T1
ε0. (3)

Note that the excess noise is defined as the additional
noise above the vacuum noise associated with non-unity
channel transmittance. Under normal operation (no
eavesdroppers in the channel), the excess noise is mainly
due to system imperfections, such as detector noise, er-
rors in quantum state preparation, background light, etc.
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In (3), ε0 is defined as the variance of the excess noise
from each player. Since the secure key rate given below is
estimated using noises referred to the channel input (at
Alice), we calculate the excess noise from the kth player
by dividing ε0 by the transmittance from Alice to the kth

player T1

Tk
.

In the case of conjugate homodyne detection, the noise
added by Bob’s detector (referred to Bob’s input) is given
by [38]

χhet = [1 + (1− ηD) + 2υel]/ηD, (4)

where ηD and υel are the efficiency and noise variance of
Bob’s detector.

The channel-added noise referred to the channel input
is given by

χline =
1

T1
− 1 +

n∑
k=1

εk, (5)

where the term 1
T1
− 1 represents vacuum noise due to

the channel loss.
The overall noise referred to the channel input is given

by

χtot = χline +
χhet

T1
. (6)

Since both quadratures can be used to generate secure
key, the mutual information between Alice and Bob is
given by

IAB = log2

V + χtot

1 + χtot
, (7)

where V = VA+1, and VA is Alice’s modulation variance.
To estimate χBE , we adopt the realistic noise model

where loss and noise of Bob’s detector are assumed to
be trusted and cannot be accessed by the eaversdropper
[26, 33–37]. Under this model, χBE is given by Ref. [33]

χBE =

2∑
i=1

G

(
λi − 1

2

)
−

5∑
i=3

G

(
λi − 1

2

)
, (8)

where G(x) = (x+ 1)log2(x+ 1)− xlog2x.

λ21,2 =
1

2

[
A±

√
A2 − 4B

]
, (9)

where

A = V 2(1− 2T1) + 2T1 + T 2
1 (V + χline)

2, (10)

B = T 2
1 (V χline + 1)2. (11)

λ23,4 =
1

2

[
C ±

√
C2 − 4D

]
, (12)

FIG. 3: Simulation results of the secure key rate for
n=2 (solid), n=5 (dash), n=10 (dash dot) and n=20
(dot). Simulation parameters: γ = 0.2 dB/km;
ε0 = 0.01; υel = 0.1; ηD = 0.5; f = 0.95.

FIG. 4: Simulation results of the secure key rate for
n = 10 (dash dot), n = 20 (dot), n = 50 (solid) and
n = 100 (dash). Simulation parameters: γ = 0.2
dB/km; ε0 = 0.001; υel = 0.1; ηD = 0.5; f = 0.95.

where

C =
1

(T1(V + χtot))2
[Aχ2

het +B + 1 + 2χhet

(V
√
B + T1(V + χline)) + 2T1(V 2 − 1)],

(13)

D =

(
V +

√
Bχhet

T1(V + χtot)

)2

. (14)

λ5 = 1. (15)
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Simulation parameters are summarized as follows: γ =
0.2 dB/km, ε0 = 0.01, υel = 0.1, ηD = 0.5, and f = 0.95.
The modulation variance VA is numerically optimized at
different fiber lengths. Note that in (1), when VA in-
creases, both the mutual information IAB and Eve’s in-
formation χBE will increase. In the ideal case (no excess
noise and the efficiency of the reconciliation algorithm
f = 1), a larger modulation variance VA always leads
to a higher secure key rate, so the optimal value of VA
would be infinite. When we take into account system im-
perfections and non-unity reconciliation efficiency, χBE

can increase faster than fIAB when VA is above a certain
value. This leads to a finite optimal modulation variance.
It is a common practice to numerically search for the opti-
mal value of VA. In this paper, for simplicity, we assume
all the players use the same VA. The secure key rate
could be further improved by optimizing the modulation
variance for each player separately.

In Fig.3 we present the relations of the secure key
rate and the fiber length at different numbers of play-
ers n=2, 5, 10, 20. As shown in Fig.3, the QSS protocol
can be conducted over tens of kilometers telecom fiber
with moderate number of players. The performance can
be further improved by reducing the excess noise con-
tributed by each player. Fig.4 shows the simulation re-
sults when ε0 = 0.001 and n=10, 20, 50, 100: the QSS
protocol can be conducted over 20 km with 100 players.

IV. DISCUSSION

Comparing with previous single qubit sequential QSS
scheme [16], the CV-QSS proposed here is naturally re-
silient to Trojan horse attacks: the encoding modulators
within the secure stations cannot be reached by the prob-
ing signals from external players or the eavesdropper.
Furthermore, by using highly asymmetric beam splitters,
the additional loss introduced by each player can be ex-
tremely small. This opens the door to large-scale imple-
mentations. As in the case of single qubit sequential QSS
which can be easily changed into a configurable multi-
user QKD network [19], it should be straightforward to
implement CV-QKD based on the proposed CV-QSS de-
sign. Below we will address a few practical issues.

In Section 2, we have implicitly assumed that all the
participants share a phase reference. This allows them to
prepare quantum states and perform homodyne detection
in the same reference frame. One immediate question is
how to establish such a phase reference in practice? One
possible solution is the pilot-aided phase recovery scheme
proposed in CV-QKD [32, 39, 40]. The basic idea is that
the first player generates a classical phase reference pulse
using the same laser for quantum state generation. After
applying a suitable multiplexing scheme (time, frequency,
polarization, or a combination of them), the phase refer-
ence pulse propagates through the same optical path as
the quantum signal. Each player down the link (and also
the dealer) splits out a suitable portion of the phase ref-

FIG. 5: Secure key rates in the presence of phase noise
for n = 20. Simulation results of the secure key rate for
phase noise variance δ = 0 (dot), δ = 10−4 (solid) and
δ = 10−3 (dash dot). Simulation parameters: γ = 0.2
dB/km; ε0 = 0.001 + VAδ; υel = 0.1; ηD = 0.5; f = 0.95.

erence pulse and interferes it with the local laser. This al-
lows each player (and the dealer) to determine the phase
difference φk between the local phase frame and that of
the first player. After the quantum transmission stage,
the n − 1 players and the dealer first correct the raw
data by performing rotation x′k = xk cosφk − pk sinφk;
p′k = xk sinφk + pk cosφk, then they proceed with the
remaining steps of the protocol. This phase recovery
scheme has been successfully demonstrated in CV-QKD
[32, 39, 41, 42].

In practice, the above phase recovery scheme cannot
be implemented perfectly due to system imperfections.
The additional excess noise contributed by each player
can be described by εp = VAδ, where δ is the phase noise
variance (in the unit of rad2) at each player [32]. This
additional noise should be added into ε0 in (3). In [44],
a phase noise of 10−3 was demonstrated experimentally
using the scheme proposed in [43]. We expect a phase
noise of 10−4 could be achieved by further improving the
system. Fig.5 shows the simulation results for the case of
n = 20 players at three different phase noise levels: δ =
0, 10−4, 10−3. Even in the case of δ = 10−3, a reasonable
performance can still be achieved.

The CV QSS protocol proposed in this paper is based
on the GMCS QKD, which requires each player to gen-
erate Gaussian distributed random numbers and to ac-
tively modulate the output of a local laser using phase
and amplitude modulator. An alternative passive scheme
based on a thermal source has been proposed to simplify
the state preparation process in CV-QKD [45]. Such a
scheme can also be applied in the proposed CV-QSS pro-
tocol. In this case, at each player’s station, the phase and
amplitude measurements can be carried out with high
precision on the portion of the state that is transmitted
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through the asymmetric beam splitter, rather than on
the weaker portion coupled into the quantum channel.

As we noted in Section 2, in this paper we assume the
dealer performs the homodyne detection. This arrange-
ment allows us to apply the standard security proof of
CV-QKD and employ the trusted detector noise model.
Can we allow any participant in Fig.2 to be the dealer?
One trivial solution is to let each participant have both
source and detector. The one chosen as the dealer per-
forms measurement while the others prepare quantum
states. This solution requires modifications in the quan-
tum transmission stage and needs complicated system de-
signs and network re-routing. Can we achieve the same
goal by only changing the post-processing procedures?
Imagining that after the quantum stage, P2 in Fig.2 de-
cides to be the dealer. P2 could carry out the remain-
ing steps of the protocol as outlined in Section 2, with
help from the other participants. More specifically, P2

needs to estimate the potential QKD key rate with each
player under the assumption that all the other players are
dishonest. There are cases when the two trusted QKD
parties prepared quantum states while the measurement

was conducted by a dishonest player, a scenario as in
measurement-device-independent (MDI) QKD [46]. In
these cases, the security proof and key rate formulas de-
veloped in CV MDI-QKD [47–49] could be applied di-
rectly. We remark that the existing schemes of CV MDI-
QKD require highly efficient homodyne detector and is
more sensitive to channel losses. We leave the feasibility
of CV-QSS based on CV MDI-QKD for future study.

In summary, we propose a CV-QSS protocol based on
practical laser sources and homodyne detectors, which is
intrinsically resilient to Trojan horse attacks. By con-
necting the CV-QSS to CV-QKD, we prove its security
against both eavesdroppers and dishonest players in the
presence of high channel loss.
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