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Semiconductor double quantum dot hybrid qubits are promising candidates for high-fidelity quan-
tum computing. However, their performance is limited by charge noise, which is ubiquitous in solid-
state devices, and phonon-induced dephasing. Here we explore methods for improving the quantum
operations of a hybrid qubit, using strong microwave driving to enable gate operations that are
much faster than decoherence processes. Using numerical simulations and a theoretical method
based on a cumulant expansion, we analyze qubit dynamics in the presence of 1/f charge noise,
which forms the dominant decoherence mechanism in many solid-state devices. We show that, while
strong-driving effects and charge noise both reduce the quantum gate fidelity, simple pulse-shaping
techniques effectively suppress the strong-driving effects. Moreover, a broad AC sweet spot emerges
when the detuning parameter and the tunneling coupling are driven simultaneously. Taking into
account phonon-mediated noise, we find that it should be possible to achieve Xπ gates with fidelities
higher than 99.9%.

I. INTRODUCTION

Semiconductor quantum dot qubits are promising plat-
forms for quantum information processing. These qubits
are controlled by manipulating either electric voltages or
magnetic fields, using DC pulses or microwave drives.
Microwave driving has several benefits for high-fidelity
gates, including phase control of the rotation axis, am-
plitude control of the gate speed, protection against low-
frequency noise, and the ability to perform the operations
while keeping the qubit centered at a sweet spot. Re-
cently, high-fidelity resonantly driven single-qubit gates
have been realized in several quantum dot architectures,
including single-electron spin qubits [1–3], singlet-triplet
qubits [4], and quantum dot hybrid qubits [5].

Quantum dot hybrid qubits can be operated fully elec-
trically, allowing for fast microwave manipulations, while
maintaining insensitivity to charge noise by operating
at an extended sweet spot. However, gate fidelities are
still limited by detuning charge noise [6, 7]. An obvious
strategy for outpacing noise effects is to increase gate
speeds by applying a strong microwave drive, although
this can also cause control errors. In a previous paper, we
showed that, in the absence of noise, high fidelities can
be achieved by accounting for the strong-driving-induced
Bloch-Siegert shift of the qubit frequency and employ-
ing smoothed pulse envelopes to suppress fast oscillations
and leakage [7]. In this paper, we include the effects of
charge noise with a 1/f spectrum. We find that, while
AC driving reduces the direct effects of low-frequency
noise [8–10], the interplay between strong driving and
charge noise can also suppress the fidelity. Indeed, when
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crosstalk effects dominate, increasing the driving ampli-
tude is typically harmful for the gate performance. Clari-
fying the effects of strong driving on decoherence is there-
fore critical for achieving high-fidelity gates.

In this work, we use numerical and analytical meth-
ods to investigate the crosstalk between strong driving
and charge noise. We show that it is possible to achieve
high-fidelity single-qubit rotations in quantum dot hybrid
qubits under these conditions. We also find that the in-
fidelity caused by decoherence can be greatly reduced by
driving the detuning and tunnel coupling simultaneously
and coherently. In this way, we show that Xπ gates with
fidelities higher than 99.9% can be achieved over a broad
range of control parameters. We further include phonon
decoherence phenomenologically and show that Xπ gate
fidelities can still be larger than 99.9%, provided that the
phonon decoherence time scale is larger than 2 µs.

The paper is organized as follows. Section II briefly
introduces the double quantum dot hybrid qubit. In
Sec. III, we provide an analytical description of the hy-
brid qubit dynamics, subject to charge noise in the detun-
ing parameter, and compare these results to numerical
simulations. In Sec. IV, we propose methods for improv-
ing the fidelity and show that Xπ gates with fidelities
> 99.9% are feasible, even in the presence of realistic
levels of 1/f charge noise and phonon dephasing. We
conclude in Sec. V. Additional technical details of the
calculations are provided in the Appendices.

II. THEORETICAL MODEL

We now present the full theoretical model used in this
work for the quantum dot hybrid qubit. The Hamiltonian
is given by

H = Hq +Hac +Hn, (1)
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FIG. 1. Schematic confinement potential and energy levels of a quantum dot hybrid qubit. (a), (b) A hybrid qubit is formed
in a double quantum dot containing three electrons, as depicted here in the (1, 2) charge configuration. In this arrangement,
the low-energy basis states, shown in the right-hand dots, comprise singlet-like (|·S〉) or triplet-like (|·T 〉) spin states, where S
and T refer to the doubly occupied dot [11, 12]. The (2, 1) charge configuration has only one relevant low-energy basis state
(|S·〉), depicted in the left-hand dots. (a) illustrates the Hubbard Hamiltonian parameters of the undriven system: the energy
detuning between the left and right dots, ε, and the tunnel couplings, ∆1 and ∆2, between |S·〉, and |·S〉 or |·T 〉, respectively.
The parameters ∆1, ∆2, and ε are all controlled by voltages applied to the device top gates [5]. Detuning fluctuations caused
by charge noise, δε(t), are the dominant decoherence mechanism for this system [6]. (b) depicts the ac control of the detuning
parameter εac and the tunnel couplings ∆ac, which are used to implement resonant gates. (c) A typical energy level diagram
for a hybrid qubit, as a function of ε, showing the asymptotic energy splitting of the qubit states, EST. Here, the lowest two
levels (red and blue) correspond to the qubit subspace, while the highest level (green) corresponds to a leakage state. (c) is
obtained by diagonalizing Eq. (2), assuming a realistic value of EST/h = 12 GHz [13], and ∆1 = ∆2 = 0.7EST.

where the three components of the Hamiltonian are de-
scribed below.

The Qubit Hamiltonian, Hq. The quantum dot hy-
brid qubit is formed of three electrons in a double quan-
tum dot, with total spin quantum numbers S = 1/2 and
Sz = −1/2 [11, 12]. For the operating regime of interest,
we consider the three-dimensional (3D) basis composed

of |·S〉 ≡ |↓S〉, |·T 〉 ≡
√

1/3|↓T0〉 −
√

2/3|↑T−〉, and
|S·〉 ≡ |S ↓〉, where |·〉 denotes a dot with one electron,

the singlet state |S〉 = (|↑↓〉 − |↓↑〉)/
√

2, and the triplet

states |T0〉 = (|↑↓〉 + |↓↑〉)/
√

2 and |T−〉 = |↓↓〉 denote
the spin states of dots with two electrons. In this basis,
the qubit Hamiltonian is given by

Hq =

− ε2 0 ∆1

0 − ε2 + EST −∆2

∆1 −∆2
ε
2

 , (2)

where ε is the detuning parameter, corresponding to the
energy difference between the dots, EST approximately
corresponds to the singlet-triplet energy splitting in the
doubly occupied dot, and ∆1 (∆2) are the tunnel cou-
plings between the states |S·〉 and |·S〉 (|·T 〉). The various
parameters are labelled in the schematic diagram shown
in Fig. 1(a), and a typical energy diagram is shown in
Fig. 1(c), where the two low-energy states |0〉 and |1〉
comprise the qubit, while the high-energy state |L〉 is a
leakage state. To simplify our analysis later, we trans-
form Eq. (1) to the energy basis, {|0〉, |1〉, |L〉}, yielding
H̄q = diag[E0, E1, EL], where the bar indicates the en-

ergy basis, and {Ei} are the corresponding energy eigen-
values.
The AC Drive, Hac. We consider two different schemes

for AC driving [14], as shown in Fig. 1(b). In the first
case, we modulate the tunnel couplings as ∆i = ∆i0 +
ri∆ac(t), where i = 1, 2 [purple arrow in Fig. 1(b)]. The
AC drive ∆ac is achieved by applying a microwave voltage
signal to one of the device top-gates [5]. It is reasonable
to assume that the same modulation drives both ∆1 and
∆2, although they may be affected differently, which we
take into account through the variable ri. In the second
case, we modulate the detuning as ε = ε0 +εac(t) [orange
arrow in Fig. 1(b)]. We first consider rectangular pulses,
∆ac(t) = A∆ cos(ωdt) and εac(t) = Aε cos(ωdt), for which
the pulse amplitudes A∆ and Aε are piecewise constant
in time, and ωd is the driving angular frequency. The
driving Hamiltonian expressed in the {| · S〉, | · T 〉, |S·〉}
basis can then be written as

Hac = V cos(ωdt) =

−Aε

2 0 A∆

0 −Aε

2 −rA∆

A∆ −rA∆
Aε

2

cos(ωdt),

(3)
where we refer to V as the driving matrix, and we sim-
plify the expression by defining r1 = 1 and r2 = r. Note
that we keep r as a variable here for generality; however
in our simulations, we choose r = 1 for simplicity.
The Noise Hamiltonian, Hn. The parameter ε in

Eq. (2) represents the desired value of the detuning, and
is controlled by voltages applied to the device top-gates.
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FIG. 2. Dynamics of a strongly driven quantum dot hybrid qubit in the presence of detuning fluctuations. For all calculations,
we assume the DC control parameters {ε, EST,∆1,∆2}/h = {80, 12, 8.4, 8.4} GHz. Qubit evolutions are computed, taking |0〉
as the initial state, and applying a resonant AC signal of amplitude A∆/h = 3.5 GHz to both tunnel couplings, with a ratio of
r = 1 between the two driving amplitudes. The resulting density matrix is averaged over many realizations of 1/f charge noise,
Eq. (5), assuming noise parameters

√
2πcε = 2.38 µeV, ωl/2π = 1 Hz, and ωh/2π = 256 GHz. In all panels, the noise-averaged

numerical simulations are plotted as solid lines, while corresponding analytical results, obtained up to second order in the
cumulant expansion, Eq. (6), are plotted as white dashed lines. In (a) and (b), the differences between numerical and analytical
results are also plotted as dotted lines (bottom panels), indicating errors <0.1%. (a) The average occupancy of the initial state,
〈ρ00〉 (blue), and the off-diagonal element, |〈ρ01〉| (green), computed in the lab frame. Here, the smooth sinusoidal envelope
reflects Rabi oscillations, as consistent with the rotating wave approximation (RWA), while the fast modulations are caused by
strong driving. (b) The average occupancy of the leakage state, 〈ρLL〉 (red), in the lab frame. The inset shows the accumulated
leakage. In (a) and (b), the analytical results are seen to capture all the significant features of the simulations, including the
fast oscillations and the asymptotic decay. (c) The asymptotic decay of the density matrix, 〈ρI00〉, in the interaction frame.
The inset shows a blown-up view at short times. Here, the analytical results correspond to the full solution of Eq. (6) (dashed
white line, inset), and its asymptotic form, Eq. (10) (dashed cyan line). Note that the fast oscillations, observed in the inset,
are not captured in Eq. (10), but are accurately described in Eq. (6). As indicated, the Rabi decay time, TRabi ' 24.0 ns, is
determined according to the definition 〈ρI00(TRabi)〉 = (1 + 2e−1)/3.

However, charge noise within the device causes the detun-
ing to fluctuate by δε(t), which represents the dominant
source of decoherence for hybrid qubits [6]. The resulting
noise Hamiltonian in the {| ·S〉, | · T 〉, |S·〉} basis is given
by

Hn = hnδε(t) =

− 1
2 0 0

0 − 1
2 0

0 0 1
2

 δε(t), (4)

where hn is the dimensionless noise matrix. The noise
is characterized by the time correlation function S(t1 −
t2) = 〈δε(t1)δε(t2)〉, where the brackets denote an aver-
age over noise realizations and the noise is assumed to be
stationary with zero mean (〈δε〉 = 0). The corresponding

noise power spectrum is given by S̃(ω) =
∫∞
−∞ dt eiωtS(t)

[15]. In solid-state devices, the charge noise typically ex-
hibits a 1/f power spectrum density. In this work, we
adopt the following model for 1/f charge noise [16, 17]:

S̃(ω) =

{
c2ε

2π
|ω| (ωl ≤ |ω| ≤ ωh)

0 (otherwise)
, (5)

where cε is the noise amplitude, and ωl (ωh) are the
low (high) angular frequency cutoffs. In the simulations

described below, time sequences for δε(t) are obtained
by first generating a white noise sequence, then scaling
its Fourier transform by the spectral density function
given in Eq. (5), following the procedure described in
Refs. [18, 19], and Appendix A.

III. THEORETICAL METHODS

In this section, we perform simulations and analyti-
cal calculations of a strongly driven hybrid qubit in the
presence of charge noise, obtaining excellent agreement
between the two methods. We also obtain simple analyt-
ical expressions for the decoherence rates of the density
matrix in the long-time limit.

Figure 2 shows the results of numerical simulations
of the density matrix, using the methods described in
Appendix A, when the qubit is initialized into the |0〉
state. Here and throughout this work, we choose fixed
values of EST and ε, as indicated in the figure cap-
tion, which are representative of quantum dot hybrid
qubits [6]. The tunnel couplings are chosen such that
∆1 = ∆2 = 0.7EST, which approximately corresponds
to a second-order DC sweet spot for this system, in the
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limit of large ε [7]. The AC driving parameter A∆ is also
chosen to be representative, experimentally; in later cal-
culations, the AC parameters are allowed to vary. The
noise parameters are also specified in the figure caption,
and the resulting density matrix is averaged over 10,000
realizations of δε(t). For the results shown in Fig. 2(a),
the qubit exhibits Rabi oscillations, as well as small-
amplitude fast oscillations caused by leakage and the
counter-rotating terms in the qubit evolution, as previ-
ously explained in Ref. [7]. The leakage component of the
density matrix also exhibits fast oscillations, as shown in
Fig. 2(b). However, distinct from Ref. [7], the Rabi os-
cillations here decay due to charge noise. Moreover, the
leakage component accumulates on longer time scales, as
seen in the inset of Fig. 2(b).

To differentiate between the effects of decoherence and
strong driving, we recompute the noise-averaged density
matrix after first transforming to the interaction frame,

defined as ρI = U†0ρU0, where ρ is expressed in the en-
ergy basis, and U0 is the time-evolution operator for the
energy frame, including strong-driving dynamics but not
charge noise, as derived in Appendix B. In this inter-
action frame, noise-free dynamics simply correspond to
ρI(t) = const. However, the numerical results in Fig. 2(c)
decay over time, due to the presence of charge noise.
Here, short-time behavior is plotted in the inset, where
a careful examination shows that small-amplitude, high-
frequency oscillations still persist, as an example of the
crosstalk between noise and strong driving. This partic-
ular effect can be classified as ‘non-Markovian,’ as dis-
cussed below.

We now obtain analytical expressions for the dynam-
ics of strongly driven hybrid qubits in the presence of
charge noise using a technique developed for quantum dot
charge qubits [19], which is based on a cumulant expan-
sion. The method is summarized as follows, with further
details provided in Appendix C. First, we calculate the
qubit evolution in the interaction frame, as governed by
the equation i~ dρI/dt = δε(t)LρI , where LρI ≡ [hIn, ρ

I ],

hIn = U†0 h̄nU0, and h̄n is expressed in the energy ba-
sis. To determine hIn, we follow Ref. [7] in expanding U0

in powers of the small parameter γ ∼ V/~ωd, obtaining

U0 = U
(0)
0 + U

(1)
0 + U

(2)
0 + · · · , where U

(n)
0 ∝ γn. We

then perform a noise average of ρI , similar to Ref. [19],
adopting δε/V as a small parameter in the cumulant ex-
pansion [20], obtaining

〈ρI(t)〉 = e
− 1

~2

t∫
0

dt1

t1∫
0

dt2L(t1)L(t2)S(t1−t2)
ρI(0) (6)

at O[(δε/V )2], which corresponds to a Gaussian approx-
imation. Further, non-Gaussian behavior is encoded in
higher-order cumulant terms, which become more promi-
nent with increasing noise amplitude, cε, and its asso-
ciated, dimensionless expansion parameter, cε/(hfRabi).

To simplify the calculation, we expand our result in terms
of Gell-Mann matrices {λi}i=1,··· ,8, as defined in Ap-

pendix D, obtaining 〈ρI〉 = I3/3 +
∑8
i=1 ~r

I
i λi/2, where

I3 is the 3×3 identity matrix and ~rI is a generalized, 8D
Bloch vector. The noise matrix in the interaction frame
can also be expressed as hIn =

∑8
i=1 h

I
n,iλi, and the Bloch

vector can be rewritten as

~rI(t) = exp[K(t)]~rI(0), (7)

where K(t) is an 8 × 8 matrix. Expanding hIn,i(t) in a

Fourier series, hIn,i(t) =
∑
ω αi,ωe

iωt, we obtain

[K(t)]ij

= − 1

~2

∑
ω1,ω2

8∑
k,l,m=1

αk,ω1
αl,ω2

T
(i)
kmT

(m)
lj I(t, ω1, ω2), (8)

where T
(k)
ij is a structure constant defined as [λi, λj ] ≡∑8

k=1 T
(k)
ij λk, and

I(t, ω1, ω2) ≡
∫ t

0

dt1

∫ t1

0

dt2e
iω1t1eiω2t2S(t1 − t2). (9)

The physics of the noisy qubit dynamics is encoded in
K(t). We can characterize different types of behavior by
decomposing K(t) into a sum of pure-dephasing (Kϕ),
Markovian (KM), and non-Markovian-non-dephasing
terms (KnMnϕ) [19]. Note that pure dephasing is defined,
here, with respect to the interaction frame, and is associ-
ated with the integral I(t, ω1=0, ω2=0) ∼ t2 ln(1/ωlt) [9,
21, 22]. The Markovian terms induce characteristic expo-
nential decay (e−Γt), which is associated with the Marko-
vian approximation and the integral Re[I(t, ω,−ω)]. The
non-Markovian-non-dephasing terms describe any ad-
ditional effects, including the small-amplitude, high-
frequency oscillations observed in Fig. 2(c).

The formalism described above allows us to compare
and contrast various decoherence mechanisms within a
common framework. We now describe the main results.
In Fig. 2, our analytical results are plotted as white
dashed lines, for comparison with the simulations. Fig-
ures 2(a) and 2(b) demonstrate that the analytical calcu-
lations can accurately describe the main features of the
simulations, including decoherence, with deviations be-
tween 〈ρ00〉, 〈ρ01〉, and 〈ρLL〉 and their simulated values
falling below 10−3 in all cases (bottom panels).

We can also obtain simple, approximate expressions for
the long-time dynamics, as described in Appendix E. For
the initial state ρ(t = 0) = |0〉〈0|, we obtain the leading
order behavior [23]

〈ρI00〉(t) =
1

3
+

(
1

2
− a

6

)
e−Γyt−2Γ2

ϕϕ(t) +
1

6
(1− a)e−ΓLt,

(10)
where
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Γy =

(
1

~

)2
{
h̄2
n,1

4

[
S̃(ω + Ω) + S̃(ω − Ω) + 4S̃(ω)

]
+
h̄2
n,5

4

[
S̃

(
EL − E0

~
+

Ω

2

)
+ S̃

(
EL − E0

~
− Ω

2

)]

+
h̄2
n,7

4

[
S̃

(
EL − E1

~
+

Ω

2

)
+ S̃

(
EL − E1

~
− Ω

2

)]}
,

ΓL =

(
1

~

)2
{

3h̄2
n,5

4

[
S̃

(
EL − E0

~
+

Ω

2

)
+ S̃

(
EL − E0

~
− Ω

2

)]

+
3h̄2

n,7

4

[
S̃

(
EL − E1

~
+

Ω

2

)
+ S̃

(
EL − E1

~
− Ω

2

)]}
,

Γ2
ϕ =

(cε
~

)2
(
dfRabi

dε

)2

,

ϕ(t) = t2 [log(1/ωlt))− γE + 3/2] ,

a =
3(EL − E0)2V̄ 2

0L

(EL − E0 − hf)2(EL − E0 + hf)2
+

3(EL − E1)2V̄ 2
1L

(EL − E1 − hf)2(EL + E1 + hf)2
.

Here, Γy and ΓL represent decoherence rates associ-
ated with the Markovian approximation (ΓL specifically
describes leakage processes), Γϕ is the pure-dephasing
rate, a describes the asymptotic occupation of the leak-
age state, and we define h̄n =

∑8
i=1 h̄n,iλi. Note that

the terms ϕ and a are induced by strong driving and
are therefore responsible for the crosstalk with decoher-
ence processes. Equation (10) [plotted as a cyan dashed
line in Fig. 2(c)] accurately describes the coarse features
of the simulation, except at extremely short times (in-
set), where it incorrectly assigns a non-zero leakage. A
more accurate description of the short-time behavior, and
other fine-scale features, requires retaining the full an-
alytical expressions, as shown in the inset of Fig. 2(c)
(dashed white line). Since ϕ(t) ∼ t2 log(t) dominates the
decay of the density matrix for typical gate times (see
below), it suggests that reducing Γϕ would significantly
improve qubit performance.

IV. HIGH-FIDELITY Xπ GATES

In this section, we first obtain an analytical expression
for the fidelity at the asymptotic time scales relevant for
quantum gates. We then demonstrate that, by driving
the detuning and tunnel coupling simultaneously, in a
specific ratio, pure dephasing can be fully suppressed,
Γϕ = 0, in principle enabling significant improvements in
the fidelity. Finally we show, via simulations and analyt-
ical calculations, that in the presence of charge noise and
strong driving effects, the fidelity of an Xπ gate can be
higher than 99.9%.

A. Asymptotic Fidelity Results

We define the asympotic time regime as 1/ωl �
t/(2π) ∼ 1/Ω � 1/ω � 1/ωh, where ω represents any
angular frequency associated with resonant driving, other
than the Rabi frequency Ω, which is the slowest frequency
in the system. In this regime, Eq. (10) approximates the
noise-averaged, driven density matrix in the interaction
frame. As outlined in Appendices E and F, we can use
this to compute the process fidelity as a function of time,
obtaining the simple expression

F I = 1− 1

12
[3Γx + 6Γy + ΓL]t− 1

2
Γ2
ϕϕ(t)− 1

3
a, (11)

where

Γx =

(
1

~

)2
{
h̄2
n,1

2

[
S̃(ω + Ω) + S̃(ω − Ω)

]
+
h̄2
n,5

4

[
S̃

(
EL − E0

~
+

Ω

2

)
+ S̃

(
EL − E0

~
− Ω

2

)]
+
h̄2
n,7

4

[
S̃

(
EL − E1

~
+

Ω

2

)
+ S̃

(
EL − E1

~
− Ω

2

)]}

is also associated with the Markovian approximation. For
typical system parameters, we find that the Γϕ term
in Eq. (11) dominates the infidelity. Suppressing this
contribution requires suppressing dfRabi/dε, or equiva-
lently, dV̄01/dε, where V̄ij refers to a particular compo-
nent of the V matrix in the energy basis. Remarkably,
we find that it is possible to satisfy this condition ex-
actly, dfRabi/dε = dV̄01/dε = 0, over a continuous range
of driving parameters Aε and A∆, as consistent with an
AC sweet spot [24]. In the present case, it is easy to show
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FIG. 3. Xπ gate fidelities of a strongly driven quantum dot hybrid qubit in the presence of 1/f detuning noise. Plots show the
dependence of the fidelity on the detuning driving amplitude, Aε, and tunnel coupling driving amplitude, A∆, using simulation
parameters that are the same as Fig. 2. Panels (a)-(d) are computed in the laboratory frame, while panels (e) and (f) are
computed in the interaction frame, which represents an upper bound on the fidelity in the laboratory frame, since in this
case, strong-driving effects are viewed as part of the coherent evolution in the interaction frame. (a), (b) Simulation results
obtained for (a) rectangular pulse envelopes, or (b) smoothed-rectangular pulse envelopes, with rise and fall times of 0.83 ns.
For the rectangular pulse envelope, the fidelity exhibits fringes due to strong driving. The dashed white line corresponds to
an AC sweet spot, where dfRabi/dε = 0; in a broad region near this line, we observe fidelities >99.9%. For the smoothed-
rectangular pulse envelope, the fidelity fringes are suppressed, and the quality of the AC sweet spot is improved. In (c), the
inset shows simulation results, similar to (a) and (b), where we phenomenologically include the effects of phonon-induced
dephasing according to Eq. (13), with Tph = 3 µs. Here, we observed broad regions with fidelities >99.9%, and the location
of the fidelity maximum is indicated with a star. In the main panel, we plot a series of fidelity maxima, obtained in the same
manner, as a function of Tph, where the starred point corresponds to the inset. (d) Analytical results obtained from Eq. (6),
keeping expansion terms up to O[(V/~ωd)2]. The simulation results in (a) and analytical results in (d) are nearly identical,
except in the lower-right portion of the plots, where higher-order terms in the expansion are nonnegligible. (e), (f) Here, in
the interaction frame, the main fringes due to strong driving are absent, and any suppression of the fidelity can be attributed
to charge noise, or crosstalk between charge noise and strong-driving effects. In (e) we plot the full analytical results based
on Eq. (6), expanding up to O[(V/~ωd)2]. In (f), we plot the asymptotic results based on Eq. (11). We see that the simpler
asymptotic results accurately reproduce the main features of the full analytical results, allowing us to determine the location
of the AC sweet spot straightforwardly.

that V̄0L, V̄1L, and thus a are suppressed at such tunings,
further improving the fidelity.

We illustrate the effectiveness of the AC sweet spot
technique by simulating the Xπ gate fidelity for a 2D
sweep over the driving amplitudes Aε and A∆, as shown
in Fig 3(a). Here, we compute the process fidelity, as de-
scribed in Appendix E, by comparing the noise-averaged

simulation results to an ideal Xπ rotation. The loca-
tion of the AC sweet spot is determined numerically and
plotted as a white dashed line. Near this line, we observe
a broad region with gate fidelities greater than 99.9%.
Further away from the line, in the upper-left portion of
the plot, we observe fast oscillations, which arise due to
strong driving (e.g., counter-rotating terms; see the dis-
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cussion below). In the lower-right portion of the plot,
we observe a region of low fidelity; here, the two driving
fields interfere to produce a slow gate that is strongly af-
fected by charge noise. To demonstrate the effectiveness
of our theoretical formalism, we also compute the Xπ

gate fidelity theoretically, using Eq. (6). These results,
shown in Fig. 3(d), quantitatively reproduce all the fea-
tures of the simulations.

B. Suppressing Strong-Driving Effects

In the previous section, we noted that the oscilla-
tions observed in the top-left corner of Figs. 3(a) and
3(d) are caused by strong driving. To substantiate this
claim, we determine the Xπ gate fidelity in the inter-
action frame, where the ‘ideal’ density matrix, used to
compute F I , encompasses the full coherent evolution,
including strong driving effects. The results, plotted in
Fig. 3(e), exhibit strongly suppressed oscillations, indi-
cating that the oscillations in Fig. 3(d) indeed arise from
strong driving. Closer inspection of Fig. 3(e) reveals
weak, residual oscillations, which arise at higher order
in the strong-driving γ expansion, and are a manifesta-
tion of the crosstalk between strong-driving effects and
charge noise. In Fig. 3(f), we also plot the simplified
form of F I obtained in Eq. (11), which contains strong-
driving corrections, including as the Bloch-Siegert shift
of the resonant frequency, but no strong-driving fast os-
cillations. The results reproduce the essential features in
Fig. 3(e), explaining why this result can accurately pre-
dict the position of the AC sweet-spot line, as plotted in
Fig. 3(a).

In experiments, it is easy to account for the Bloch-
Siegert shift by recalibrating the resonance frequency.
However, avoiding the fidelity oscillations in Fig. 3(a)
may require careful tuning. A simpler approach is to
incorporate a smooth pulse envelope p(t) into the driv-
ing term H̄ac = V̄ p(t) cos(ωdt) [25, 26], as opposed to
the rectangular pulse envelope used in Fig. 3(a). To
investigate this possibility, we consider a “smoothed-
rectangular” pulse envelope, defined as [7]

p(t) =


tg [1−cos(πt/tr)]

2(tg−tr) (0 ≤ t ≤ tr),
tg

tg−tr (tr < t < tg − tr),
tg [1+cos(π[t−tg+tr]/tr)]

2(tg−tr) (tg − tr ≤ t ≤ tg),
(12)

where tg is the pulse width, and we choose a rise time of
tr = h/EST ∼ 0.83 ns, to give a pulse that is sufficiently
adiabatic. Figure 3(b) shows the improved simulation re-
sults for the gate fidelity in the presence of charge noise,
using this pulse form. In comparison with Fig. 3(a), we
now observe a suppression of strong-driving effects and
a broad regime with gate fidelities >99.9%. In fact, the
gate fidelities obtained with the smoothed rectangular
pulse are nearly identical to those in Fig. 3(e), which do
not include direct strong-driving effects, therefore repre-

senting an upper bound. This suggests that charge noise,
rather than strong driving, limits the fidelity in this case.

C. Phenomenological Treatment of Phonons

A full treatment of phonons is outside the scope of
this work; however, the following considerations allow us
to estimate their effect. Dephasing is known to be the
greatest threat from phonons for hybrid qubits, occurring
on time scales of order microseconds [27]. We account for
this process here by phenomenologically expressing the
total fidelity as

Fch+ph ≈ F − tg/Tph, (13)

as appropriate for Markovian processes at short times.
Here, F is the fidelity obtained in previous sections, de-
scribing the effects of charge noise, tg is the gate time,
and Tph is the phonon decoherence time. As apparent in
this expression, phonon dephasing effects are less effec-
tive for shorter gates.

In the inset of Fig. 3(c), we plot the results of a typical
Xπ gate fidelity calculation based on Eq. (13), includ-
ing both charge noise and phonon effects, and assuming
smoothed rectangular pulse envelopes. While Tph = 3 µs
is held constant throughout this plot, we note that tg
is a function of both Aε and A∆. Here we observe a
relatively large region with fidelities >99.9%, with the
maximum fidelity occurring at the spot marked with a
star. Repeating this calculation for a range of Tph, we
obtain the fidelity maxima shown in the main panel of
Fig. 3(c). Generally, we conclude that fidelities >99.9%
can be achieved when Tph > 2µs.

V. SUMMARY AND CONCLUSIONS

We have studied the dynamics of a strongly driven dou-
ble quantum dot hybrid qubit in the presence of 1/f de-
tuning charge noise, both analytically and numerically.
Our analytical results accurately reproduce the numer-
ical simulations, and therefore provide insight into the
dependence of the fidelity on the experimental parame-
ters. In particular, the asymptotic fidelity in Eq. (11) is
quite accurate for typical gate times, and can therefore be
used to design high-fidelity gate protocols. Using these
results, we have shown that high-fidelity Xπ gates can
be achieved by simultaneously and coherently driving the
detuning and tunnel coupling, and that unwanted fast os-
cillations caused by strong driving can be suppressed by
using smoothed rectangular pulse envelopes. The pre-
dicted gate fidelities are above 99.9%, over a wide pa-
rameter regime, even in the presence of phonon-induced
dephasing, which we treat phenomenologically here.

Moving forward, we note that our analytical formal-
ism, based on a cumulant expansion, can be readily gen-
eralized to systems with multiple qubits. For example,
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quantum dot spin qubits [1–3], single-triplet qubits [4],
charge qubits [19, 28–30], and hybrid qubits [5], as well
as one and two-qubit gate operations, may all be inves-
tigated using the methods described here. In each case,
the gate performance can be improved by identifying op-
timal working points or working strategies, such that the
device is less susceptible to the dominant decoherence
channel, or other control errors.
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Appendix A: Details of the Numerical Simulations

The numerical simulations described in the main
text are performed using the following procedure. We
first generate noise realizations {δεα(t)}α=1,...,αmax whose
power spectral density depends on the frequency (f)
as 1/f , as described in Eq. (5). We then solve the
Schrödinger equation i~ d

dt |ψ(t)〉 = [Hq +Hac +Hn]|ψ(t)〉
numerically for each given realization, α, yielding so-
lutions denoted as ρα = |ψα〉〈ψα|. Finally, we take
an average over the different solutions, according to

〈ρ〉 = 1
αmax

αmax∑
α=1

ρα, where for this work, we assume

αmax = 10, 000. The full numerical procedure was previ-
ously described in Ref. [19], and we refer the interested
reader there for details.

Appendix B: Evolution of the Hybrid Qubit in the Absence of Charge Noise

In this Appendix, we sketch out the perturbative derivation of the time evolution of a strongly driven hybrid qubit
in the absence of charge noise, which is in principle exact, when keeping all orders of the expansion. While portions
of these results were first derived in Ref. [7], we present them again here for completeness, because they will be used,
below, in our cumulant expansion analysis.

In the absence of noise, the dynamics is governed by the Schrödinger equation

i~
d

dt
U0 = [H̄q + H̄ac]U0. (B1)

Expressing Eq. (2) in its eigenbasis {|0〉, |1〉, |L〉}, we have H̄q = diag[E0, E1, EL], where {Ei} are the energy eigenval-
ues, and the AC driving Hamiltonian is given by H̄ac = V̄ cos(ωdt). In the large-detuning regime, ε � EST,∆1,∆2,
V̄ is given by

V̄ ≈ (B2)

A∆

−∆1

ε + ∆2r
ε−EST

∆1r
ε + ∆2

ε−EST
1

∆1r
ε + ∆2

ε−EST

∆1

ε −
∆2r
ε−EST

−r
1 −r 3∆1

ε + 3∆2r
ε−EST

+Aε


∆2

1

2ε2−
∆2

2

2(ε−EST)2 − ∆1∆2

ε(ε−EST) −∆1

ε

− ∆1∆2

ε(ε−EST) −∆2
1

2ε2 +
∆2

2

2(ε−EST)2
∆2

ε−EST

−∆1

ε
∆2

ε−EST
1− 3∆2

1

2ε2 −
3∆2

2

2(ε−EST)2

 .

We derive U0 using the dressed-state approach of
Ref. [7]. We first extend the semiclassical Hamiltonian,
Hsemi = H̄q + H̄ac cos(ωdt), into a quantum Hamiltonian
HQM by imposing the condition

〈α|HQM|α〉 = Hsemi +N~ωd, (B3)

where the coherent state |α〉 is defined as a|α〉 =
e−iωdtα0|α〉, with a the photon annihilation operator and
N = 〈α|a†a|α〉 the number of photons. The quantum
Hamiltonian can be written as HQM = Hdot +Hph +Vint.
Here, the uncoupled dot Hamiltonian is given by Hdot =∑
i=0,1,LEi|i〉〈i| ⊗ Iph, the uncoupled photon Hamilto-

nian is given by Hph = Idot⊗~ωda†a, and the interaction

term is defined as Vint = V̄ /2
√
N ⊗ (a†+ a). By evaluat-

ing the dynamics of the quantum Hamiltonian, UQM(t) =

e−
i
~HQMt, the time evolution of the semiclassical Hamil-

tonian can be obtained as U0(t) = 〈α(t)|UQM(t)|α(0)〉.

To simplify the calculation, we note that predominant
modes of coherent states occur in the range n ∈ [N −
∆N,N + ∆N ], where ∆N/N � 1. We therefore express
the quantum Hamiltonian in the basis of |i, n〉 for qubit
state |i〉 and photon state |n〉 for n ∈ [N−∆N,N+∆N ].
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In this way, we obtain

〈i, n|Hdot|j,m〉 = Ei δi,jδn,m, (B4)

〈i, n|Hph|j,m〉 = n~ωd δi,jδn,m, (B5)

〈i, n|Vint|j,m〉 =
V̄ij
2

(δn,m+1 + δn,m−1). (B6)

To increase the accuracy of U0 when Aε is large
[e.g. the rightmost part of Fig. 3(d) in the main
text], we make the following modification in the per-
turbation: We first diagonalize the leakage subspace,
i.e. the 〈L, n|HQM|L,m〉 part of the Hamiltonian. The

new basis now is {|0, n〉, |1, n〉, |L̃, n〉} where |L̃, n〉 =∑∞
m=−∞ Jm(−[V̄ ]LL/~ωd)|L, n + m〉, and Jm(x) is a

Bessel function of the first kind. Rewriting the Hamil-
tonian in this basis, the magnitude of the off-diagonal
elements Ṽij is now at most O[Aε Jm(−Aε/~ωd)]. We
then proceed to evalulate U0 perturbatively over V̄ /~ωd
using the method of Ref. [7]. A similar diagonaliza-
tion scheme has been applied to floquent treatment of

strongly driven two-level system, for example in Ref. [25].
This is equivalent to performing the basis transforma-

tion UL = diag[1, 1, e−
iV̄LL
~ω sin(ωt)] before going into the

dressed space, similar to the basis transformation for the
two-level system in Ref. [31]. We use this modification
when we perform the analytical calculation of fidelity,
plotted as Fig. 3(d) and (e) in the main text.

Appendix C: Evolution in the Presence of Charge
Noise

To incorporate the effects of detuning noise, we first
move to the interaction frame. Here, the equation of
motion for the density matrix ρI is given by

i~
d

dt
ρI = δε(t)LρI , (C1)

where ρI = U†0ρU0, LρI ≡ [hIn, ρ
I ], and hIn = U†0 h̄nU0.

The evolution can be evaluated in terms of the cumulant
expansion [20]

〈ρI(t)〉 = exp


∞∑
n=1

(−i)n

~n

t∫
0

dt1 · · ·
tn−1∫
0

dtn〈L(t1)δε(t1) · · · L(tn)δε(tn)〉c

 ρI(0), (C2)

where 〈· · · 〉 is the ensemble average over δε(t) and 〈· · · 〉c is the cumulant average. To second order in δε, this gives
Eq. (6) in the main text.

To further simplify the calculation, we express the density and noise matrices in terms of the 3×3 Gellman matrices,
{λi}i=1,··· ,8, which are presented in Appendix. D. The Gellman matrices can be categorized into two subsets: the
first set Λq = {λ1, λ2, λ3, λ4} does not mix qubit and leakage states, while the second set Λsup = {λ5, λ6, λ7, λ8}

mixes the two subspaces. Using these matrices, we can write ρI = 1/3I3 + 1/2
8∑
i=1

~rIi λi where I3 is the 3×3 identity

matrix, and ~rI is the generalized Bloch vector. Similarly, we can express the noise matrix in the interaction frame as
hIn =

∑
i

hIn,iλi. As noted in the main text, Eq. (6) may then be replaced by Eq. (7), where

[K(t)]ij = − 1

~2

t∫
0

dt1

t1∫
0

dt2[

8∑
k,l,m=1

hIn,k(t1)hIn,l(t2)T
(i)
kmT

(m)
lj ]S(t1 − t2),

= − 1

~2

∑
ω1,ω2

[αk,ω1
αl,ω2

T
(i)
kmT

(m)
lj ]I(t, ω1, ω2).

Determining the cumulant K(t) therefore reduces to evaluating I(t, ω1, ω2) in Eq. (9). This integral can be solved
analytically for a generic noise spectrum, leading to a complete analytical result for the dynamics that provides a
rather accurate description. It can also be approximated in the asymptotic limit, as in Appendix E, yielding results
that the capture key features of the decay profile and the process fidelity.
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Appendix D: Gellman Matrices

For completeness, we reproduce here the Gellman matrices, {λ}i=1,··· ,8, which are linearly independent, traceless,
and Hermitian, as originally defined in Ref. [32]:

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 , λ4 = 1√
3

1 0 0
0 1 0
0 0 −2

 ,

λ5 =

0 0 1
0 0 0
1 0 0

 , λ6 =

0 0 −i
0 0 0
i 0 0

 , λ7 =

0 0 0
0 0 1
0 1 0

 , λ8 =

0 0 0
0 0 −i
0 i 0

 .

Appendix E: Asymptotic Results in the Long-Time Limit

In the presence of noise, the dynamics of the density matrix in the interaction frame is governed by the Schrödinger
equation

i~
d

dt
ρI = δεLρI ≡ δε[hIn, ρI ]. (E1)

In the large detuning regime, the noise matrix can be approximated (by expanding in powers of the tunnel couplings)
as

h̄n '


∆2

1

2ε2−
∆2

2

2(ε−EST)2 − ∆1∆2

ε(ε−EST) −∆1

ε

− ∆1∆2

ε(ε−EST) −∆2
1

2ε2 +
∆2

2

2(ε−EST)2
∆2

ε−EST

−∆1

ε
∆2

ε−EST
1− 3∆2

1

2ε2 −
3∆2

2

2(ε−EST)2

 , (E2)

similar to the second term of Eq. (B2). We note that, by choosing ∆1 = ∆2 ∼ 0.7EST, as noted in the main text,
the main term controlling the dephasing is h̄n,3 ≈ 0, consistent with a higher-order DC sweet spot [7, 10].

In this work, we focus on detuning charge noise with a 1/f power spectral density, as defined in Eq. (5). The
corresponding time correlation function is given by

S(t) = 2c2ε [Ci(ωh|t|)− Ci(ωl|t|)] , (E3)

where Ci(x) is the cosine integral. For this case, we derive the the asymptotic results, Eqs. (10) and (11), discussed
in the main text, as follows.

(1) First, calculate the Fourier components αi,ω, as defined in hIn(t) = U†0 h̄nU0 =
∑
i,ω

αi,ωe
iωtλi, and insert these

results into Eq. (8).

(2) Next, approximate I(t, ω1, ω2) [Eq. (9)] in the regime of interest and only retain non-oscillatory terms. (a) For
the decay profile, Eq. (10), we consider the long-time limit, 1/ωl � t/(2π) � 1/ω � 1/ωh, where ω is any
angular frequency relevant to the hybrid qubit. (b) For the gate infidelity in the rotating frame, Eq. (11), we
consider the limit 1/ωl � t/(2π) ∼ 1/Ω� 1/ω � 1/ωh, where Ω is the Rabi angular frequency.

(3) Finally, evaluate K(t) in Eq. (8). In the long-time limit, the dominant contribution to K arises from pure
dephasing in the rotating frame, Kϕ = DϕI(t, ω1 = 0, ω2 = 0), where Dϕ is an 8×8 matrix of coefficients.
To evaluate exp[K(t)], we first perform a Schrieffer-Wolff decomposition Dϕ, up to O[γ2], to decouple the
qubit and leakage subspaces. The decoupled subspaces exhibit distinct behaviors: the qubit subspace exhibits
slow dephasing, with [Dϕ]ij ∼ O[γ2], while the leakage subspace exhibits fast dephasing with [Dϕ]ij ∼ O[γ0].
Consequently, the elements in eKϕ all vanish at this order, except in the space spanned by Λq. Similarly, we
evaluate the leading order terms in KM and KnMnϕ, which occur at O[γ0]. For pedagogical purposes, we retain

the leading order terms in each of these categories, and evaluate the exponential eK(t) = eKϕ(t)+KM(t)+KnMnϕ(t).

The final asymptotic results are summarized as the follows.
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(a) For the time limit appropriate for the decay profile, we obtain

I(t, ω1, ω2) ≈


c2ε t

2 [log(1/ωlt)− γE + 3/2] , (ω1 = ω2 = 0),
c2ε t (π/|ω1|+ 2i log |ω1/ωl|/ω1), (ω1 = −ω2 6= 0),
2i t (log(1/ωlt)− γE + 1)/ω2, (ω1 = 0 and ω2 6= 0),
0, (Otherwise),

(E4)

where γE ≈ 0.5772 is Euler’s constant, and

[eK(t)]1−4,1−4 (E5)

≈


(1− a

3 )e−Γx t 0 0 b(e−Γx t + e−ΓL t)
0 (1− a

3 )e−Γy t−Γϕ ϕ(t) 0 0
0 0 (1− a

3 )e−Γy t−Γϕ ϕ(t) g(e−Γy t−Γϕ ϕ(t) + e−ΓL t)
b(e−Γx t + e−ΓL t) 0 g(e−Γy t−Γϕ ϕ(t) + e−ΓL t) (1− a)e−ΓL t

 ,

where [eK(t)]ij = 0 otherwise. Here, ϕ(t), Γx, Γy, ΓL, Γϕ, and a are defined in the main text, and we further
define

b = −
√

3(EL − E0)(EL − E1)V̄0LV̄1L

(EL − E0 − h f)(EL − E0 + h f)(EL − E1 − h f)(EL + E1 + h f)
, (E6)

g = − 3
√

3(EL − E0)2V̄ 2
0L

6(EL − E0 − h f)2(EL − E0 + h f)2
+

3
√

3(EL − E1)2V̄ 2
1L

6(EL − E1 − h f)2(EL + E1 + h f)2
. (E7)

In Fig. 4, we plot the resulting figure of merit, fRabi/ΓRabi, where the Rabi decay rate ΓRabi is identified
from Eq. (E5), where we define 〈ρI00 (t = 1/ΓRabi)〉 ≡ (1 + 2e−1)/3, for the initial state ρI(t = 0) = |0〉〈0|.
The white dashed line in the figure is obtained by maximizing the figure of merit, or equivalently, by setting
Γϕ ∼ (dfRabi/dε)

2 = 0, as consistent with an AC sweet spot [24]. This condition determines the optimal
combination of driving amplitudes, as described in the main text.

(b) For the calculation of the gate infidelity in the rotating frame, we note that the condition t/(2π) ∼ 1/Ω makes the
calculation somewhat more complicated. Fortunately, the DC sweet-spot condition, h̄n,3 = 0, causes αi,±Ω = 0,
at O[γ2], which simplifies the calculation. After lengthy manipulations, we finally arrive at Eq. (11) in the main
text.

Appendix F: Process Fidelity

Following Ref. [33], a generic quantum process E on a
three-dimensional Hilbert space may be expressed as

E(ρ0) =
∑
m,n

Emρ0E
†
nχmn, (F1)

where {Em} is a basis for the vector space of 3 × 3 ma-
trices, χ is the process matrix, and ρ0 represents any ini-
tial density matrix. The process fidelity is then defined
as F = Tr[χsysχideal], where χsys is the actual process
matrix, describing the system evolution, including non-
ideal contributions from strong driving and decoherence,
and χideal describes the ideal evolution. Since χideal does
not involve the leakage channel, we simplify the calcu-
lation of F by projecting ρ0 and E onto the 2D logical
subspace and solving for the corresponding 4×4 χ matri-
ces [7]. In this case, we choose Em from the Pauli basis
{I, σx,−iσy, σz} and follow the standard procedure for
computing F [33]. For an Xπ gate, the ideal operation is

defined as

Uideal =

(
0 −ie−iẼ0tg/~

−ie−iẼ1tg/~ 0

)
(F2)

where Ẽ0 and Ẽ1 are the qubit energies renormalized by
the Bloch-Siegert shifts.

By moving to the interaction frame, defined by U0,
we can focus specifically on the effects of decoherence on
the fidelity, F I . Here, we compare the χ matrix of the
actual process, χIsys, with the ideal process, defined as

χIideal = diag[1, 0, 0, 0]:

F I = Tr[χIsysχ
I
ideal]. (F3)

As noted in the main text, χIsys is not affected by strong

driving effects, which are already included in U0. F I

therefore describes the fidelity due to decoherence (only),
and serves as an upper-bound on the fidelity in the lab-
oratory frame, where F is suppressed by strong driving
effects as well as decoherence.
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FIG. 4. Simulation results for the figure of merit, fRabi/ΓRabi,
of a strongly driven quantum dot hybrid qubit, as a func-
tion of the detuning driving amplitude Aε and the tunnel
coupling driving amplitude A∆, for the same DC control pa-
rameters and charge noise parameters used in Figs. 2 and
3 of the main text. Here, ΓRabi = 1/TRabi is the Rabi de-
cay rate, estimated from Eq. (E5), and fRabi is the Rabi fre-
quency. The dashed white line corresponds to an AC sweet
spot, dfRabi/dε = 0, for which the Γϕ dephasing term van-
ishes, up to O[(V/~ωd)2], yielding an optimal figure of merit.
This line accurately matches the simulations, and is the same
white dashed line plotted in Fig. 3. At the AC sweet spot,
the figure of merit can be >1000, consistent with Xπ fidelities
approaching 99.9%.

Appendix G: Comparison Of Different Drives

In this section, we compare the performance of three
different methods of AC driving: detuning driving, tun-
nel coupling driving, and simultaneous driving of the de-
tuning and the tunnel coupling, along the AC sweet spot
(dashed line) in Fig. 4. In each case, we numerically sim-
ulate the Xπ gate fidelity in the presence of 1/f detuning
charge noise and phonon effects, introduced as in Eq. (13)
of the main text. Here, we take Tph = 5 µs as the phonon
decay rate. In Fig. 5, we plot the resulting infidelities as
a function of detuning parameter, ε, and the appropri-
ate amplitude for each type of drive. We find that the
optimal, combined drive is superior to the other options
over the entire parameter space. Moreover, the optimal
drive exhibits a broad regime of parameters for which the
fidelities are >99.9%.

Appendix H: Infidelity Caused by Phase Errors

For the optimal driving method, we now show that
the infidelity is sensitive to the relative phase between
the two driving terms, even when the driving amplitudes
are tuned to an AC sweet spot. In our simulations, we
include a variable phase shift φ to the tunnel coupling
driving term in the modified driving Hamiltonian, given
by

Hac =

 −Aε cos(ωdt)
2 0 A∆ cos(ωdt+ φ)

0 −Aε cos(ωdt)
2 −rA∆ cos(ωdt+ φ)

A∆ cos(ωdt+ φ) −rA∆ cos(ωdt+ φ) Aε cos(ωdt)
2

 . (H1)

[Compare to Eq. (3).] Figure 6 shows the simulated de-
pendence of the infidelity on φ. As a benchmark, for this
example, we find that achieving an infidelity below 0.1%
requires phases errors below 0.02 rad ≈ 1◦.
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FIG. 5. Comparison of the infidelities of Xπ gates, for three different AC driving methods: detuning driving, tunnel coupling
driving, and optimal driving at an AC sweet spot, in the presence of detuning noise and phenomenological phonon dephasing.
The results are presented in the laboratory frame, and assume rectangular pulse envelopes. We use the same DC control
parameters and noise parameters as Figs. 2 and 3, with a variable detuning parameter ε. (a) Detuning driving. Here, the
vertically oriented, low-fidelity feature is caused by leakage. The fidelity attains a maximum value of F = 0.9973 at the point
{ε,Aε}/h = {120, 27} GHz. (b) Tunnel-coupling driving. The fidelity attains a maximum value of F = 0.9989 at the point
{ε,A∆}/h = {120, 2} GHz. (c) Optimal, simulatanteous driving of the detuning and tunnel coupling parameters at an AC sweet
spot. The fidelity is higher than in (a) and (b) for almost every parameter value, and attains a maximum value F = 0.9993
at the point {ε,Aε, A∆}/h = {88, 35, 3.64} GHz. Importantly, we observe a broad range of parameters where F > 0.999,
particularly when ε & 90 GHz.
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