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Quantum networks provide a platform for astronomical interferometers capable of imaging faint
stellar objects. In a recent work [Letter URL will be inserted by publisher], we presented a protocol
that circumvents transmission losses with efficient use of quantum resources and modest quantum
memories. Here, we analyze a number of extensions to that scheme. We show that it can be
operated as a truly broadband interferometer and generalized to multiple sites in the array. We also
analyze how imaging based on the quantum Fourier transform provides improved signal-to-noise
ratio compared to classical processing. Finally, we discuss physical realizations including photon
detection-based quantum state transfer.

I. INTRODUCTION

Telescope arrays boost the angular resolution in as-
tronomical imaging [1, 2]. By interfering the light col-
lected at sites across the array, a synthetic aperture with
resolution proportional to the length of the array and
frequency of the light is realized [3]. In practice, how-
ever, transmission losses limit the separation between
sites. The resolution is then restricted, in particular if
the light sources under study are weak, which is typically
the case for imaging in the optical domain [4]. Tsang [5]
demonstrated theoretically that in this setting a nonlocal
measurement, such as in direct detection, is necessary for
good performance. Alternatively, quantum entanglement
can connect sites; quantum teleportation-based interfer-
ence of the stellar light via distributed entangled photon
pairs was initially proposed by Gottesman et al. [6]. How-
ever, estimates of the necessary rate of entanglement dis-
tribution for such an approach suggested a high rate ex-
ceeding 100 GHz, which currently is not feasible. The in-
troduction of quantum memories into the network offers
a significant relaxation of this requirement. In Ref. [7],
we showed that the quantum state of the collected light
can be compressed and stored nonlocally across the net-
work, yielding an exponential reduction in the consump-
tion of entangled resources, as compared to memoryless
schemes. The necessary rate of entanglement distribution
is reduced by several orders of magnitude, which opens
up realistic prospects for employing near-term quantum
networks [8, 9] for high-resolution imaging in the optical
domain.

In this article, we further develop the scheme presented
in Ref. [7] (see Fig. 1) and analyze a number of possible
extensions relevant to the setting of astronomical interfer-
ometry. In particular, we analyze how the limited band-
width of typical quantum memories can be overcome by
means of frequency splitting followed by efficient encod-
ing. Next, we describe how the original two-node scheme
can be extended to a multiple-site array. We also study
how processing the network’s stored quantum data with
a quantum Fourier transform improves imaging. Finally,
Ref. [7] suggests initially transferring the incoming op-

FIG. 1. Memory-based interferometry scheme from Ref. [7].
The quantum state of an incoming photon and associated in-
formation is stored nonlocally between telescope sites in a
binary qubit encoding that can be decoded using pre-shared
entangled pairs. Encoding operations are performed in time
bins set by the detector bandwidth, followed by decoding af-
ter one photon is expected to have arrived. Physical realiza-
tion may involve qubits housed in cavities: (a) reflecting the
photon off cavities, interfering with a coherent state, and de-
tecting photons performs the encoding, while (b) decoding is
done with qubit-qubit interactions followed by measurement.

tical modes to an auxiliary atomic qubit in a Raman-
absorption scheme. Here, we show how to eliminate the
auxiliary atom, by reflecting the photons off cavities and
interfering them with ancillary photonic states in a beam
splitter, followed by photon detection.

The paper is organized as follows. Section II considers
broadband light and coding of the frequency data. In
Section III, operation is generalized to arrays with more
than two telescope sites, and the advantage of a quan-
tum Fourier transform performed over the network is dis-



2

cussed in Section IV. State transfer to memory based on
photon detection is elaborated in Section V, with further
considerations given in the Appendices A and B.

II. BROADBAND OPERATION

The essence of the scheme in Ref. [7] is to transfer the
quantum state of the photon to a logical qubit with a
binary encoding of the arrival time. Digitization of time
is set by the characteristic scale of the inverse detector
bandwidth; this time bin contains an average number of ε
photons (see Fig. 1). After encoding over ∼1/ε time bins
such that one photon is expected, entanglement-assisted
parity checks between the telescope sites determine its
arrival time in a nondestructive manner. Crucially, this
measurement projects out the vacuum component of the
light and fixes the nonlocal quantum state. The phase
information relevant for interferometry can then be pro-
cessed without suffering from the vacuum noise that im-
pairs local detection schemes [5]. The binary code means
that only log2(M+1) memory qubits are needed per site,
where M ∼ 1/ε is the number of time bins integrated
over. Consequently, also only ∼log2 1/ε entangled pairs
are consumed for the parity checks, giving a significant
reduction in entanglement distribution rate compared to
memoryless schemes.

Real stellar light has a broad frequency distribution.
Meanwhile, interferometers typically have a small band-
width [10] to avoid washing out spatial correlations. Fur-
thermore, detectors operate over a narrow frequency
band in order to ensure high-resolution imaging by, for
example, avoiding dark counts [11]. The amount of light
collected in the interferometer is then limited. Moreover,
the broadband information of stellar light is potentially
useful for astronomy [12]. From the point of view of
near-term quantum networks, the multiplexing scheme
developed here can compensate for slow gate time.

A generalization of the protocol to broadband opera-
tion is shown in Fig. 2. The incoming light is split into
R frequency bands. Quantum frequency conversion [13–
15] enables operation at some convenient frequency, so
that the photons can be stored in receiving atoms in a
Raman-absorption scheme [16, 17] (see Fig. 2(a)). We
assume the incoming light to be weak (ε� 1) such that
at most one photon arrives. Thus, similar to Ref. [7],
M � 1 time bins are integrated over in order to, on
average, record one photon in any of the R frequency
bands. We wish to store both the time and frequency
data of the photon in order to ensure interferometric op-
eration. The same basic idea of binary encoding can be
applied. Write the time bin m and frequency band r as
one string i = (m, r), which as a whole can be expressed
in a binary expansion. If there are M time bins and R
frequency bands, log2(MR + 1) codewords are needed
(the +1 term accounts for the possibility of no photon
arriving) (see Fig. 2(b)).

Consider the encoding operation for the concrete case

FIG. 2. Efficient encoding of photon frequency and time in-
formation in log2(MR + 1) memory qubits. (a) The incom-
ing photon arrives in one of M time bins (see Fig. 1) and
one of R frequency bands. The excitation is transferred to
a frequency-matched receiving qubit (red), and later stored
in memory qubits (green). (b) The time-frequency data has
MR+ 1 possibilities (+1 for vacuum), which can be mapped
to log2(MR + 1) codewords in binary. An example of the
encoding CNOT gates is shown for the 5th time bin and 2nd
frequency band. The number of detectors scales linearly in R,
whereas the coding operation consumes resources logarithmic
in both M and R.

of a photon arriving in the 5th time bin, and 2 possible
frequency bands. From the discussion above, the code
requires dlog2(5 · 2 + 1)e = 4 memory qubits. Assuming
that the photon is equally likely to fall within either of
the bands, we approximate the photonic state on two
telescope sites as

ρ ≈ (1− ε)ρ(0) +
ε

2
ρ
(1)
1 +

ε

2
ρ
(1)
2 , (1)

ρ(0) = |0, 0〉1 〈0, 0| ⊗ |0, 0〉2 〈0, 0| , (2)

ρ
(1)
1 =

1

2
(|0, 1〉1 〈0, 1|+ |1, 0〉1 〈1, 0|+ g1 |1, 0〉1 〈0, 1|

+g∗1 |0, 1〉1 〈1, 0|)⊗ |0, 0〉2 〈0, 0| , (3)

ρ
(1)
2 = |0, 0〉1 〈0, 0| ⊗

1

2
(|0, 1〉2 〈0, 1|+ |1, 0〉2 〈1, 0|

+g2 |1, 0〉2 〈0, 1|+ g∗2 |0, 1〉2 〈1, 0|) , (4)

where |1, 0〉1 denotes the photon arriving at the left tele-
scope site in the first frequency band while |1, 0〉2 corre-
sponds to the left site and the second frequency band.
Thus, ρ(0) denotes vacuum in all modes and ρ(1) are
single-photon states. Since the incoming light is ther-
mal [5], we have assumed that there are no correlations
between the frequency bands. Spatial correlations result
in the coherences g1 for the first frequency band and g2
for the second. As described in Ref. [7], the goal of the
interferometer is to extract these coherences. The pho-
tonic state in Eq. (1) can be transferred to an atomic
equivalent by a Raman-absorption scheme at each tele-
scope site. Subsequent application of logical controlled
not (CNOT or CX) gates between the receiving atom
and the four memory atoms at each site, followed by
measurement of the receiving atom in the X basis, es-
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tablishes the transfer of the photon into memory. For
our particular example, the logical CNOT corresponding
to two frequency bands and the 5th time bin makes the
transformation

|0, 0〉 |0, 0〉 |0000, 0000〉 → |0, 0〉 |0, 0〉 |0000, 0000〉 , (5)

|1, 0〉 |0, 0〉 |0000, 0000〉 → |1, 0〉 |0, 0〉 |1010, 0000〉 , (6)

|0, 1〉 |0, 0〉 |0000, 0000〉 → |0, 1〉 |0, 0〉 |0000, 1010〉 , (7)

|0, 0〉 |1, 0〉 |0000, 0000〉 → |0, 0〉 |1, 0〉 |1011, 0000〉 , (8)

|0, 0〉 |0, 1〉 |0000, 0000〉 → |0, 0〉 |0, 1〉 |0000, 1011〉 , (9)

where the notation is

freq. 1︷ ︸︸ ︷
|0, 0〉

freq. 2︷ ︸︸ ︷
|1, 0〉

memories︷ ︸︸ ︷
|1011, 0000〉 , (10)

memories︷ ︸︸ ︷
|101︸︷︷︸
time

1︸︷︷︸
freq.

, 0000〉 , (11)

i.e., the first four qubits denote the state of the two re-
ceiving atoms at the respective sites separated into the
two frequency bands while the remaining qubits are the
memories. As before, we use commas to delimit qubits
at separate sites. Within the memory, the first three
qubits encode the time bin (5 → 101) while the fourth
encodes the frequency band. Time and frequency are en-
coded separately for simplicity, which does not incur a
real penalty here.

Note that the logical CNOT gate described above re-
quires each of the R receiving qubits to interact with the
same memory qubits, i.e., the encoding will happen se-
quentially. The operation needs to be fast compared to
the detection bandwidth such that dead time is negligi-
ble. Instead, the encoding can be done in parallel by
allotting each of the R receiving qubits its own memory,
which now encodes exclusively the time bin, as in Ref. [7]
(see Fig. 3). Another R ancillary qubits are used to store
the frequency information since the receiving qubits are
reinitialized for each time bin. After M time bins, the
frequency information is first read out using log2(R+ 1)
entangled pairs: compress the information stored in the
R ancillary qubits into log2(R+ 1) qubits, and then read
them out through nonlocal parity checks as before. The
arrival time is subsequently read out from the identified
frequency band’s memory using log2M entangled pairs.
This variant of our scheme has parallel operation over fre-
quencies, at the expense of memories scaling as R log2M .
Note, however, that the entanglement consumption still
scales only logarithmically in R and M .

III. MULTIPLE-SITE ARRAY

So far, we have focused on two-site interferometry, but
realistic astronomical interferometers require many nodes
to reconstruct the stellar brightness distribution [10]. An
array of sites with different spatial separation x provides
samples of the visibility g(x). From these samples, the

FIG. 3. Encoding of the time bin (m = 5) for each fre-
quency band in parallel. To keep track of frequency, the re-
ceiving atom is copied to another atom before being reinitial-
ized. Before decoding, these ancillary atoms are compressed
to log2(R + 1) memory atoms (the nontrivial CNOT for fre-
quency band r = 2 is shown). Once the frequency is deter-
mined via nonlocal parity checks, only the corresponding time
memory is decoded, so that total entanglement expenditure
scales logarithmically in both M and R. Memory qubits scale
as R log2M , to leading order.

intensity distribution I(y) is obtained through a Fourier
transform as specified by the Van Cittert-Zernike the-
orem [18]. Here we describe in detail how the scheme
in Ref. [7] can be generalized to networks with multi-
ple nodes. We restrict the discussion to a single fre-
quency band, but the extension to broadband operation
is straightforward.

For a weak source, we can model the light imping-
ing on N telescope sites with a density matrix [5] ρ ≈
(1− ε)ρ(0) + ερ(1) where ε � 1, ρ(0) denotes vacuum in
all modes, and

ρ(1) =
1

N


1 g0,1 g0,2 . . . g0,N−1
g1,0 1 g1,2 . . . g1,N−1
g2,0 g2,1 1 . . . g2,N−1

...
...

...
. . .

...
gN−1,0 gN−1,1 gN−1,2 . . . 1

 ,

in the basis {|1i〉} where i = {0, . . . , N − 1} and |1i〉 is
the state with a photon at the ith site and vacuum in the
remaining modes. We have assumed that the probability
for each telescope site to record the photon is the same
and have defined gi,j = g(xi−xj) as the visibility at sep-
aration xi−xj , where xi is the position of the ith site; for
simplicity of notation assume a linear array, distributed
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between x = 0 and x = d where d is the maximal length.
Note that gi,j = g∗j,i and gi,i = 1.

The photon is encoded at each site in the same way
as for two-site operation, using the protocol of Ref. [7].
After M time bins of encoding, the arrival time of the sin-
gle photon is again decoded with nonlocal parity checks.
Only the particular registers flipped for the codeword
corresponding to the photon’s time bin will have odd
parity. The Bell states |φ±〉 = (|0, 0〉 ± |1, 1〉)/

√
2 from

Ref. [7], providing the nonlocality for the parity checks,
are promoted to GHZ states of the form |GHZ±〉 =

(|0, . . . , 0〉 ± |1, . . . , 1〉)/
√

2 distributed across the array
(see Fig. 4(a)) [19]. The qubits from parallel regis-
ters will either have even parity corresponding to the
state |0, . . . , 0〉 or odd parity corresponding to a W state
|W 〉 = 1√

N

∑
i |1i〉. Performing local controlled Z (CZ)

gates between the memory qubits in a register and the
qubits of the GHZ state gives the transformation

|0, . . . , 0〉
∣∣GHZ+

〉 N×CZ−−−−→ |0, . . . , 0〉
∣∣GHZ+

〉
, (12)

|W 〉
∣∣GHZ+

〉 N×CZ−−−−→ |W 〉
∣∣GHZ−〉 . (13)

Subsequently measuring the qubits of the GHZ state
in the X basis reveals the parity of the register with-
out leaking information about photon location. Using
log2(M+1) GHZ states, one for each register, the arrival
time can thus be decoded while preserving full interfer-
ometric operation. When a photon is recorded, all but
one of the odd-parity registers are redundant and can be
measured out in the X basis, similar to the procedure in
Ref. [7]. The even-parity registers are all in a product
state of |0〉s and can be traced out. Thus, the single-
photon component of the photonic density matrix ρ(1) is
mapped to an atomic equivalent at the telescope sites.

The visibilities gi,j can be extracted one at a time using
W states, similar to the approach in Ref. [6]. A W state
is first distributed across the network. Next, local CNOT
operations are performed between each memory qubit in
a register (control) and the corresponding qubit from |W 〉
(target). All qubits in |W 〉 are subsequently measured in
the Z basis, with two possible outcomes. First, all qubits
may be found in state |0〉, in which case ρ(1) is left intact
and the procedure should be retried with a new W state.
This outcome happens with probability 1/N . Second,
with probability 1−1/N , two qubits are in state |1〉 with
the rest in state |0〉. If qubits i and j are found in state
|1〉, then ρ(1) is transformed into

1

2

(
|0, 1〉ij 〈0, 1|+ |1, 0〉ij 〈1, 0|

+ gi,j |1, 0〉ij 〈0, 1|+ g∗i,j |0, 1〉ij 〈1, 0|
)
⊗ ρ(N−2)0 , (14)

where |0, 1〉ij is the state with the memory qubit at the

ith (jth) telescope in state |0〉 (|1〉). ρ(N−2)0 denotes that
all other memory qubits are in state |0〉. As in Ref. [7],
the visibility gi,j of this two-site state can be extracted
by means of one-qubit measurements.

FIG. 4. Interferometry in a multiple-site array. (a) The pho-
ton arrival data is decoded using log2(M + 1) GHZ states. A
CZ gate is performed between the memory register at each
site and the qubit of the GHZ state. For those registers cor-
responding to a photon, the phase of the GHZ state is flipped
from + to −, which can be read by measuring the qubits of
the GHZ state in the X basis. (b) For pairwise readout, acting
on a shared W state with local CNOT gates and measuring
its qubits in the Z basis projects the network state onto two
sites, with probability 1 − 1/N . Otherwise, the W state is
transformed into |0, . . . , 0〉 and measurement can be retried
with another W state. Two-side readout proceeds as before,
using Bell states for the other registers. After pairwise visi-
bilities are collected, a classical Fourier transform is applied
to acquire the desired intensity distribution.

The W state operation may be done directly, to per-
form the parity check instead of using a GHZ state (see
Fig. 4(b)). If the register has no excitation, then the W
state remains unchanged; otherwise, it transforms into
one of the two possibilities described above. After col-
lapse of the network state to two sites, the other registers
can be processed as in Ref. [7], using Bell states.

Following either of the above procedures, the visibil-
ities in the array are sampled randomly, similar to the
protocol of Ref. [6]. Repeating the procedure gives a
distribution of samples across all possible pairwise com-
binations in the array. Fourier transforming this classical
data then yields the intensity distribution of the source.

IV. QUANTUM FOURIER TRANSFORM

The GHZ approach maintains coherence across the
network, in the form of a nonlocal state ρ(1). This quan-
tum data can be processed with a quantum Fourier trans-
form (QFT), as was initially suggested in Ref. [6]. The
N qubits may be transferred to one site via quantum
teleportation, in order to perform all subsequent opera-
tions locally (see Fig. 5) – this step is more a matter of
practicality than necessity. A QFT coherently interferes
the off-diagonal elements of ρ(1), corresponding to the
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FIG. 5. After transferring the memory qubits to one site via
quantum teleportation, a quantum Fourier transform is ap-
plied. The measurement probabilities pj of finding the excita-
tion at site j map directly to the source intensity distribution
I(y).

pairwise visibilities in the array, such that the intensity
distribution I(y), where y is the stellar coordinate, can
be extracted from the resulting density matrix directly.
Measurement noise only enters in the direct measurement
of I(y), in contrast to the classical approach above where
the visibilities are first sampled from the density matrix
via measurement and then interfered in a classical Fourier
transform (FT) to obtain I(y). The extra measurement
noise will add in the FT, resulting in a more noisy esti-
mate of I(y) than with the QFT.

To quantify the possible gain of using a QFT, we as-
sume a situation where the array sites are equally dis-
tributed along a line segment of length d. We can
then label the N − 1 sample points of the visibility as
g(j) = gi,i−j , where i > j. Performing the QFT on the
memories amounts to the operation

UQFT ρ
(1)U†QFT = ρ(I) , (15)

where the QFT unitary is

UQFT (N) =
1√
N


1 1 1 . . . 1
1 ω ω2 . . . ωN−1

1 ω2 ω4 . . . ω2(N−1)

...
...

...
. . .

...

1 ωN−1 ω2(N−1) . . . ω(N−1)2

 ,

(16)

with ω = exp (2πi/N). ρ(I) has diagonal elements

ρ
(I)
j,j =

1

N
+

2

N2

N−1∑
k=1

(N − k) Re
{
g(k)e2πixkyj

}
, (17)

where xk = d
N−1k and yj = N−1

Nd j. The diagonal el-

ements thus directly correspond to estimates Ie(yj) of
I(y) for a finite number of sample points and where
the visibilities g(k) have been weighted according to how
much information is contained about them in ρ(1). For
example, g(N−1) only appears once in ρ(1) while g(1) ap-
pears N − 1 times. This structure is referred to as nat-
ural weighting in the literature and results in the mini-
mum error in the estimate for I(y) for point sources [20].
The measurement of Ie(yj) simply consists of project-

ing onto the Z-basis states of ρ(1); the diagonal elements

ρ
(I)
j,j are precisely the probabilities pj of finding the ex-

citation at site j. Assuming that l � N samples of ρ(1)

are measured, the variance of the QFT estimate will fol-
low that of a multinomial distribution: (∆Ieq (yj))

2 =
Ie(yj)(1 − Ie(yj))/l. For the classical approach, where
the same natural weighting as in Eq. (17) is employed
in the FT, we can bound the variance of the estimate of
the intensity distribution by (∆Iec (yj))

2 ≥ 1/l as a con-
sequence of the standard propagation of errors [21] in the
classical FT.

The advantage of the QFT in general depends on the
number of sample points N − 1 of the visibility and the
actual intensity distribution being imaged. These factors
determine the number of terms being coherently inter-
fered in the QFT as opposed to incoherently interfered
in a classical FT. For intuition, consider the example of
a flat intensity distribution, corresponding to nonzero el-
ements only on the diagonal of ρ(1). For an array size
N , the density matrix contains N diagonal elements,
which are coherently summed in the QFT. The vari-
ance is proportional to Ie(yj), which is normalized such
that

∑
i Ie(yi) = 1; for a flat brightness distribution,

Ie(yj) = 1/N . With the classical approach, however, we
have an incoherent sum and consequently, the variance is
a factor of N larger than for the QFT. Another illustra-
tive example is the imaging of a point source. The spa-
tial correlations are maximal and completely described
by relative phases. After performing the QFT, a sin-
gle qubit is flipped corresponding to the position of the
point source, similar to how a lens, via coherent interfer-
ence of the paths, focuses light from different directions
onto different spots in the focal plane. Since the qubit is
excited with unity probability, the variance is zero: the
QFT perfectly identifies the position of the point source.
In contrast, classical processing would result in fluctua-
tions since the visibilities are measured and subject to
shot noise.
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FIG. 6. The stellar photon’s state is transferred to memory in
three ways. (a) The photon is absorbed by an auxiliary atom.
Interactions with code-specified memory atoms realize CNOT
gates. An X-basis measurement decouples the atom and im-
poses a phase correction on the memory to complete state
transfer, as described in Ref. [7]. (b) The CNOT gates can be
realized by reflecting the photon off cavities [22]. The photon
is subsequently absorbed by an auxiliary atom to perform the
X-basis measurement. (c) In photon detection-based state
transfer, measurement of the photonic qubit in the X basis is
approximately realized by interference at a beam splitter with
an ancillary photonic state, followed by photon counting.

V. PHOTON DETECTION-BASED STATE
TRANSFER

In Ref. [7], we suggested transferring the photonic exci-
tation to an auxiliary atom through a Raman-absorption
scheme. Atom-atom gates then realize the CNOTs in the
memory encoding (see Fig. 6(a)). Note that the auxiliary
atom can be reused for each time bin, with the require-
ment of fast two-qubit gates and measurement. Other
methods of operation may be desirable depending on the
experimental details. Instead of transferring the photonic
excitation to an atom right away, the CNOTs may be re-
alized by reflecting the photon off cavities [22] specified
by the binary code (see Fig. 6(b)). As argued in Ref. [7],
only the nontrivial CNOT operations that cause a bit flip
should introduce error in order for the scheme to have ef-
ficient error accumulation. In this photon-atom gate im-
plementation, the absence of a photon does not introduce
any error on the atoms. The quantum state transfer to
memory is completed by measuring the photonic qubit
in the X basis, where the measurement result determines
a phase correction to be applied to the atomic state [7].
Similar to before, the photon may be absorbed by an
auxiliary atom, which is then straightforward to measure
in the X basis. However, quantum state transfer without
the need for atomic absorption and measurement may be
desirable: the experimental setup is simplified and fast
photonic detection can be employed. We show that the
photonic X-basis measurement can be approximately re-
alized by local beam splitter interference.

The purpose of the X-basis measurement is to erase
the which-path information of the photon, allowing for a
coherent transfer of the state to the atomic qubits up to
a phase correction (similar to one-bit teleportation [23]).
The particular difficulty comes from the photonic qubit
states corresponding to the absence |0〉 or presence |1〉

of a photon, for which a projection onto the X basis,
|±〉 = (|0〉 ± |1〉)/

√
2, is not readily available. In con-

trast, atomic qubits can be manipulated via spin rota-
tions. An approximate rotated-basis measurement can,
however, be achieved by mixing the incoming light with
an ancillary photonic state on a 50:50 beam splitter and
counting the photons at the outputs (see Fig. 6(c)). For
illustration purposes, we first describe how to emulate
photonic X-basis measurements with an ancillary pho-
tonic superposition state |+〉. We then extend the results
to the experimentally more feasible situation where the
ancillary states are coherent states.

The photonic state |+〉 has equal weight of vacuum and
photon, and can be used to obscure the absence/presence
of the stellar photon when mixed with the stellar light in
a beam splitter. If both photodetectors measure no pho-
tons or one measures 2 photons and the other 0 (Hong-
Ou-Mandel effect), we can tell exactly whether a stellar
photon arrived or not. However, if one detector measures
no photons and the other detects one, then we cannot
tell if the photon came from the locally injected light or
the stellar source. There is a subtlety: reflection off the
beam splitter imparts an, in principle, distinguishable
phase shift. Concretely, the beam splitter action is:

|0+〉 BS−−→
∣∣0′+〉 =

1√
2

[|00〉+
1√
2

(|01〉+ |10〉)] ,

|1+〉 BS−−→
∣∣1′+〉 =

1√
2

[
1√
2

(|01〉 − |10〉)

+
1√
2

(|02〉 − |20〉)] , (18)

where, e.g., |0+〉 ≡ |0〉1 ⊗ |+〉2 are the beam splitter
modes. Including the memory qubits with logical states
{|0̄〉 , |1̄〉}, the full state after the CNOT operation and

beam splitter interference is (
∣∣0′+〉 |0̄〉+ eiθ

∣∣1′+〉 |1̄〉)/√2,
where θ is the phase of the incoming light, assumed to
be in state (|0〉+eiθ |1〉)/

√
2. Postselecting on measuring

only one photon in either of the detectors, we obtain the
atomic state (|0̄〉 − eiθ |1̄〉)/

√
2 if the first detector clicks

(|10〉 is measured) and (|0̄〉 + eiθ |1̄〉)/
√

2 if the second
detector clicks (|01〉 is measured). Consequently, per-
fect state transfer is obtained if a logical phase-flip gate
Z is applied on the memory conditional on measuring a
photon only in the first detector. The total success prob-
ability of the operation is 1/2.

We propose mixing with the more practical coherent

states |α〉 = e−|α|
2/2
∑∞
i=0

αi
√
i!
|i〉, which can be readily

produced classically. For a two-site telescope array, we
consider the transfer of a state of the form |ψ〉 = (|0, 1〉+
eiθ |1, 0〉)/

√
2 to the atomic memories. After the logical

CNOT operation with the memory atoms, the state will
be of the form |Ψ〉 = (|0, 1〉 |0̄, 1̄〉 + eiθ |1, 0〉 |1̄, 0̄〉)/

√
2.

Mixing the stellar light with a coherent state |α〉 in a
beam splitter at each site makes the transformation

|0, 1〉 |α, α〉 2×BS−−−→ |0′α, 1′α〉 , (19)

|1, 0〉 |α, α〉 2×BS−−−→ |1′α, 0′α〉 , (20)
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where {|0′α〉 , |1′α〉} describe the two output modes of a
beam splitter. Detection of (i, i′) photons at the first
site and (j, j′) photons at the second site is described by
the measurement operator |ii′, jj′〉 〈ii′, jj′|. The atomic
state following the measurement is

ρ =
1

p(ii′, jj′)
〈Ψ|ii′, jj′〉 〈ii′, jj′|Ψ〉 , (21)

where p(ii′, jj′) = tr{〈Ψ|ii′, jj′〉 〈ii′, jj′|Ψ〉} is the prob-
ability of measuring the combination (i, i′) photons at
the first site and (j, j′) photons at the second site. The
off-diagonal terms in ρ, describing the coherence between
the two sites, are proportional to (i− i′)(j − j′). Hence,
a corrective Z gate should be applied to the memory at
each site based on which port detects more photons.

For deterministic operation, all measurement outcomes
are accepted with corresponding phase corrections to the
memory. For this approach, relatively strong coherent
states are desirable for which the state transfer fidelity
saturates at 0.82 (see Fig. 7a). The fidelity can be
boosted by heralding on particular detection outcomes
similar to the operation with ancillary |+〉 states. In
particular, perfect state transfer is achievable with weak
coherent states by conditioning on events where the dif-
ference in photon numbers between the two output ports
of a beam splitter is the same. Here, a maximum suc-
cess probability of ∼0.22 is obtained (see Fig. 7b). This
success probability enters in the two-site protocol in the
following way. The arrival time of the photon is first
decoded via nonlocal parity checks with Bell pairs. For
successful operation, the photonic erasure for that par-
ticular time bin must have succeeded at both sites, which
on average happens with probability ∼0.22 for coherent
state inputs.

While so far we have considered a two-site array for
simplicity, similar principles apply for general N nodes
in the network. For the deterministic operation, the state
transfer fidelity of the total network state is f(N ; f2) =
(1 + (N − 1)(2f2 − 1))/N , where f2 is the fidelity for
the two-site operation. Here, we have assumed that the
multiple-site photonic state is a W state, reflecting equal
probability of the photon arriving at any node. The fi-
delity decreases with N toward a constant 2f2 − 1. For
the probabilistic operation where perfect state transfer
can be obtained, the multiple-site operation will reflect
the possible outcomes of N probabilistic measurements.
Let p1 be the success probability per site (p1 ≈

√
0.22).

Clearly, the probability for the measurements to succeed
at all N nodes is pN1 , which decreases exponentially with
N . Nonetheless, even though some measurements fail,
there can still be coherence between the sites with suc-
cessful measurements. All coherence is lost only in the
cases where all but one measurement fail or where the
stellar photon is found at a site where the measurement
fails. Notably, the second situation can be discriminated
by the protocol by a measurement of the atomic memo-
ries. After decoding the arrival time of the photon, mem-
ories corresponding to failed photon erasure are measured

1 2 3 4 5
α

0.7

0.75

0.8

fa

0.82

0.6 0.8 1. 1.2 1.4
α

0.16

0.18

0.2

0.22

pb

(0.88,0.219)

FIG. 7. Extremal regimes for mixing at a beam splitter with
the coherent state |α〉 in the two-site case: accepting (a) all
measurement outcomes (success probability p = 1), (b) only
| i− i′| = | j − j′| (fidelity f = 1).

to determine if a photon interacted with them. The prob-
ability of a failed total measurement over the array is

pfail = p1(1− p1)N−1 +
N∑
i=1

(
N

i

)
(1− p1)ipN−i1

i

N

= (1− p1)(1 + p1(1− p1)N−2) . (22)

For large N , pfail → (1−p1). Thus, while the determinis-
tic operation maintains coherence over the full network,
probabilistic operation will in general preserve k ≤ N
sites with success probability ∼p1. The probability to
have coherence between k ≥ 2 sites given a successful
measurement is

p(N, k; p1) =

(
N

k

)
pk1(1− p1)N−k

k

N(1− pfail)
. (23)

The interferometric information can be extracted from
the k successful sites via either the W state or QFT ap-
proach described earlier.

By removing the need for auxiliary receiving atoms,
we circumvent atomic state detection, which may be
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advantageous in terms of experimental control and op-
eration time. The requisite levels for photonic tech-
nology have already been demonstrated in demonstra-
tions of Bell inequality violations [24] and boson sam-
pling [25]. Number-resolving detectors [26] in practice
do not work perfectly; in this application, only the dif-
ference in photon number between beam splitter ports is
relevant, which may ease implementation. However, the
simulated X-basis measurement is imperfect, operating
with sub-unity fidelity or success probability. The oper-
ation could be improved by mixing more photonic states
in a multiple-port beam splitter (see Appendix A). Ex-
perimentally, the main limitation of the photonic state
transfer approach will likely be imperfect photon detec-
tion. While a detailed study is beyond the scope of this
article, we note that in general, imperfect detection will
decrease the visibility since unsuccessful events can be
mistaken as successful (see Appendix B).

VI. CONCLUSIONS

We have analyzed extensions of our quantum network-
assisted interferometry proposal [7] to the cases of re-
alistic broadband operation, multiple-site (N > 2) tele-
scope arrays, and circumvention of auxiliary atoms. The
generalization to R frequency bands was demonstrated,
maintaining efficient scaling of entangled resources. For
multiple-site operation, coherent extraction of the stel-
lar intensity distribution by a direct implementation of
the Van Cittert-Zernike theorem via the quantum Fourier
transform (QFT) was shown to yield significant improve-
ment in signal-to-noise ratio compared to visibility read-
out and classical post-processing. This result was ob-
tained assuming perfect operation. An interesting ex-
tension of this work would be to study the effect of a
noisy QFT on the imaging capabilities. We also an-
alyzed an implementation of our proposal using direct
photon-memory interaction. In particular, a photonic
X-basis measurement is accomplished by mixing with
ancillary photonic states at beam splitters followed by
photon counting. The scheme then minimizes the need
for atomic measurement, at the expense of introducing
photon-resolving detectors, beam splitters, and ancillary
photonic states. The considerations in this article rein-
force the power of quantum networks as a platform for
astronomical interferometry and provide a path toward
implementation.
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Appendix A: Multiple-port beam splitter

The photon detection-based state transfer can be
viewed like a quantum teleportation [27]. The entan-
gled resource state is the stellar photon entangled with
the quantum memory, and the beam splitter with the an-
cillary input state realizes an (imperfect) Bell measure-
ment. Upon applying a corrective unitary based on the
measurement outcomes registered by the detectors, the
state of the stellar light is transferred to memory. The op-
eration can be improved with a better Bell measurement,
but a no-go theorem [28] excludes a perfect deterministic
measurement for single-photon qubits and linear optics.
Nonetheless, an approximation arbitrarily close to ideal
may be constructed, like in the famous protocol of Knill
et al. [29]. The idea is to better hide the which-path in-
formation of the photon by sending it through a multiple-
port beam splitter, which may be constructed from layers
of ordinary 2-port beam splitters. A P + 1-port realizes
the QFT unitary UQFT (P + 1) (Eq. (16)), which gener-
alizes the Hadamard gate and provides a change of basis.
Generalizing the above procedure, the photon reflected
off the memory cavities is input along with P ancillary
photonic states into a P + 1-port beam splitter. Again,
the detector measurement outcomes determine the phase
correction to apply to complete state transfer.

Appendix B: Imperfect photon counting

The phase correction necessary to complete photon-
detection based state transfer depends on the measure-
ment outcome. Detector errors decrease the coherence
of the target qubit through the application of incorrect
recovery operations. Ultimately, the visibility is reduced.
We consider this effect in the case of operation with an-
cillary |+〉 states. The inefficient detectors are modeled
as beam splitters with transmission amplitude η. Sig-
nal comes in one port and vacuum in the other, followed
by perfect detection of one output mode while the lossy
mode is traced over. As expected, the fidelity and suc-
cess probability of the state transfer decrease with η (see
Fig. 8).
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FIG. 8. Fidelity f and success probability p of photonic state
transfer when mixing with an ancillary |+〉 state and detecting
photons with efficiency η. Measurement outcomes of 0 or 2
total photons are postselected out. The performance of the
operation drops with η.
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