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We derive conditions in the form of inequalities to detect the genuine N-partite entanglement of
N systems. The inequalities are expressed in terms of variances of spin operators, and can be tested
by local spin measurements performed on the individual systems. Violation of the inequalities is
sufficient (but not necessary) to certify the multipartite entanglement, and occurs when a type of spin
squeezing is created. The inequalities are similar to those derived for continuous-variable systems,
but instead are based on the Heisenberg spin-uncertainty relation AJ,AJ, > [(J:)|/2. We also
extend previous work to derive spin-variance inequalities that certify the full tripartite inseparability
or genuine multi-partite entanglement among systems with fixed spin J, as in Greenberger-Horne-
Zeilinger (GHZ) states and W states where J = 1/2. These inequalities are derived from the planar
spin-uncertainty relation (AJ;)? 4 (AJy)? > C; where C; is a constant for each J. Finally, it
is shown how the inequalities detect multipartite entanglement based on Stokes operators. We
illustrate with experiments that create entanglement shared among separated atomic ensembles,
polarization-entangled optical modes, and the clouds of atoms of an expanding spin-squeezed Bose-
Einstein condensate. For each example, we give a criterion to certify the mutual entanglement.

I. INTRODUCTION

Genuine multipartite quantum entanglement is a re-
source required for many protocols in the field of quan-
tum information and computation [1-9]. N systems are
said to be genuinely N-partite entangled if the systems
are mutually entangled in such a way that the entangle-
ment cannot be constructed by mixing entangled states
involving fewer than N parties [9-11]. Mathematically, a
tripartite system is genuinely tripartite entangled if and
only if the density operator characterizing the system
cannot be represented in the biseparable form [9-12]
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where S0 Py = 1, P, > 0, and 3,7 = 1. pf is
an arbitrary density operator for the subsystem k&, while
pE is an arbitrary density operator for the subsystems m
and n. The definition of genuine N-partite entanglement
follows similarly.

Criteria to certify genuine N-partite entanglement for
continuous variable (CV) systems have been derived by
Shalm et al. [13] and Teh and Reid [14]. These criteria
take the form of variance inequalities, similar to those de-
rived for CV bipartite entanglement [15-17]. The work
of Refs. [13, 14] extended earlier work by van Loock and
Furusawa, who developed CV criteria for the related but
different concept of full N-partite inseparability [18, 19|
(see also Refs. [20, 21]). Although genuine N-partite
entanglement implies full N-partite inseparability, the
converse is not true, and full N-partite inseparability
is therefore a weaker form of correlation. Nonetheless,
for pure states, full N-partite inseparability is sufficient
to imply genuine N-partite entanglement. Experiments
have confirmed both full N-partite inseparability [19, 22—
25] and genuine N-partite entanglement (N > 3) for CV
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systems [13, 26-29]. Here, “continuous variable (CV)
refers to the use of measurements that have continuous-
variable outcomes e.g. field quadrature phase amplitudes
X and P, or position and momentum. The CV criteria
are derived from the commutation relation [X, P] = 2i
and the associated uncertainty relations.

In this paper, we derive criteria for genuine N-partite
entanglement that are useful for discrete variable systems
involving spin degrees of freedom. In this case, measure-
ments correspond to spin observables, and it is the spin
commutation relation [J,, J,] = iJ, and associated spin-
uncertainty relations that are relevant. The criteria we
derive involve variances and apply to all physical systems,
provided the measurements correspond to operators sat-
isfying spin commutation relations. This approach ex-
tends to N systems that of Hofmann and Takeuchi [30]
and Raymer et al. [31] who used spin-uncertainty re-
lations to derive variance criteria for bipartite entangle-
ment. The question of how to detect genuine N-partite
entanglement has been studied previously but most work
has been in the context of qubit (spin 1/2) systems [32—
42] or systems of fixed dimension [43-48].

The development of criteria to certify the genuine mul-
tipartite entanglement of discrete systems, as in this pa-
per, is motivated by the increasing number of experi-
ments detecting entanglement with atoms. For example,
bipartite entanglement has been created between atomic
ensembles and separated atomic modes [49-51]|, and
multi-partite entanglement has been created among the
separated clouds of a Bose-Einstein condensate (BEC)
[52]. It is sometimes possible to rewrite the spin com-
mutation relation in a form that resembles the position-
momentum commutation relation. This is often true
where the spin observables are expressed as Schwinger
operators, and justifies the use of CV entanglement cri-
teria for the spin system in that case. For instance, Juls-
gaard et al. [49] characterize the entanglement in the
collective spins between two atomic ensembles using CV
criteria. However, as pointed out by Raymer et al. [31],



this is only valid in a restricted sense and will not give cor-
rect results in general. In other words, the complete spin
commutation relation should be used in any derivation of
criteria certifying the genuine multipartite entanglement
of spin systems.

The program of characterizing entanglement in spin
systems has been largely motivated by the observation
that a spin-squeezed system exhibits quantum correla-
tions among the spin particles. Sgrensen et al. [53, 54]
derived an N-partite entanglement criterion that implies
the presence of an N-partite entangled state. Here, an
N-partite entangled state is a state that cannot be ex-
pressed in the form

(N
ZP ol (2)

where ) Pr = 1. A host of criteria [55-59] were subse-
quently derived to certify the presence of N-partite en-
tanglement in spin systems. However, these criteria only
rule out the possibility of N-partite separable states of
the form Eq. (2) and not the more general N-partite
biseparable states of the form Eq. (1) (as extended to
higher N) where all separable bipartitions (and mixtures
of them) are considered. Hence they are not criteria for
genuine N-partite entanglement, where the entanglement
is mutually shared among all IV parties. An exception are
the spin-squeezing criteria of Sgrensen and Mglmer (and
others like it) which imply a genuine k-particle entangle-
ment shared among k particles of an N-particle system
(k < N) [60]. Such criteria differ from those derived in
this paper, however, being based on collective spin mea-
surements made on the composite system, rather than
local measurements made on separated subsystems, and
thus cannot directly test nonlocal models (as described
in Ref. [61]).

The task of characterizing genuine multipartite entan-
glement in spin systems was carried out by Korbicz et al.
[62, 63]. Korbicz and co-workers used the positivity of
partial transpose (PPT) criterion or the Peres-Horodecki
criterion [12, 64] as the starting point to derive entan-
glement criteria, and showed genuine tripartite entangle-
ment for symmetric states. The PPT criterion, however,
is less useful for N-partite separability when N is large
[12]. In this paper, we derive criteria for genuine multi-
partite entanglement for spin systems by ruling out the
possibility of the state in a biseparable form as in Eq. (1)
using the uncertainty relations for spin operators.

The remainder of the paper is structured as follows.
In Section II, we derive criteria for the genuine tripartite
entanglement of three systems using spin measurements.
The generalization to genuine N-partite entanglement is
given in Section IV. These criteria are derived using
methods similar to those developed by van Loock and
Fursusawa [18], Teh and Reid [14] and Shalm et al. [13]
for CV systems. In Section III, we extend variance crite-
ria derived for Einstein-Podolsky-Rosen (EPR) steering
by He and Reid [42], pointing out that these inequalities
apply to certify genuine tripartite entanglement as well

as steering, which is a form of entanglement closely con-
nected with the EPR paradox [61, 65, 66]. The criteria
are derived using planar spin-uncertainty relations [67—
71] and apply to subsystems with a fixed spin J. We show
that the criteria may be used to detect the genuine tripar-
tite entanglement of GHZ states, and the full tripartite
inseparability of W states. Finally, in Section V, we ex-
plain how to generate genuinely-entangled spin systems
based on Stokes operators. We then demonstrate using
three examples the application of the criteria derived in
Sections II and IV to certify the genuine N-partite en-
tanglement.

II. CRITERIA FOR GENUINE TRIPARTITE
ENTANGLEMENT

The criteria derived in this section involve variances of
the sum of spin observables defined for each subsystem.
These criteria only require the statistics of a set of ob-
servables and, in this sense, are state independent. In
this work, all the caret symbols that denote the spin op-
erators are dropped, unless specified otherwise, and we
use the symbol A2z to denote the variance of x.

A. The sum inequalities
1. Sum of two variances

Consider the sum of A2y and A2v where
u="hyJy1+hoJy o+ hadeys
v=g1dy1+ gady2 + g3y 3 (3)

and hy and gp (kK = 1,2,3) are real numbers. Here,
Juk, Jy ks Jok are the spin operators for subsystem £,
satisfying the commutation relation [Jy i, Jy k] = iJ. k.
We derive the bound for A%y + A2v such that the vio-
lation of the bound implies the genuine tripartite entan-
glement in the spin degree of freedom. This leads us to
the following Criterion.
Criterion 1. Violation of the inequality

Au+ A% > min {|gihi (o 1)| + [g2h2 (T2 2) + gsha(J.3)]
lg2h2( Tz 2)| + 1g1h1(Jz 1) + g3ha(Jz3)|
lgshs(J=.3)| + [g1h1(J=1) + gaha( z,2>\}

is sufficient to confirm genuine tripartite entanglement.

Proof. Firstly, we assume that the spin state is in

a biseparable mixture state pps = Plzn%)pf‘p%

Py g 77R' Pl pl + Py ZRH 773//012/P3 " as in Eq. (1).
This implies that the variance of an observable A%y is
greater or equal to the sum of the variances of the ob-
servable of its component state A%ug, i.e. [30]

Azu Z Z PRAQUR . (5)
R



The sum of A%y and A2v is then

A%u+ A% > P Z ng) [AQuR + AQUR]
R
+ Py Z nﬁf? [A%up + A%vp/]
R/

+ P3 Z US/), [AQURN + AQUR//] . (6)
R//

To proceed, we consider A?u; + A%y, that corresponds
to an arbitrary bipartition pi plcm:

A2u( + A2UC > |gkhk<Jz’k>|+‘glhl<Jz,l> + gmhm<Jz,m>‘ .
(7)

The lower bound given in this inequality is derived in the
Appendix 1, using the uncertainty relations for spin. We
can always choose for the lower bound the smallest value
of A%u¢ + A%y in Eq. (6). Hence, Eq. (6) becomes Eq.
(4), where we use the fact that r]g) =land ) P, =1.
In Eq. (4), the first term in the bracket {} is implied by
the biseparable state pip23, the second term is implied by
the biseparable state psp13, and the final term is implied
by the biseparable state p3p12. [

The optimal values for gg, hr depend on the specific
spin state. The criterion given by Eq. (4) is a general
result that allows us to derive a host of other criteria.
Examples of optimal choices for different types of spin
states will be given in Section V.

2. Van Loock-Furusawa inequalities for spin

We can also derive the spin version of a set of inequali-
ties derived by van Loock and Furusawa [18]. The quan-
tities By, By and By are defined as

Br = A? (Jx,l — Jmﬁz) + A? (Jy)l + Jy’z + g3Jy73)
B = A (Jop — Jos) + A% (g1 dy 1 + Jy2 + Jy3)

B = A? (Jac,l - Jw,S) + A? (Jy,l + g2Jy2 + Jy,3) .
(8)

By choosing the coefficients g and hy in Eq. (4), we
obtain a set of inequalities satisfied by By, By and Byy;.
For example, the left side of the criterion in Eq. (4) is
equal to By when h; = 1, hg = —1, h3 = 0 and ¢g; =
g2 = 1. The set of inequalities is given below:

Br > ({0 + [{J2,2)])
Brr > ([(J22)] + [{J2,3)])
Brir = ({0 + [(J23)]) - 9)

s

We point out that By > (|(J;1)| + |{J2,2)|) is implied by
both the biseparable states p;p23 and pap13, while Byp >
(I{J22)| + [{J2,3)]) is implied by the biseparable states
p2p13 and p3pia. Finally, Brrr > (|[(J.1)] + [(J23)]) is
satisfied by the biseparable states pjpas and p3p12. Using

the inequalities in Eq. (9), we obtain a criterion that
confirms genuine tripartite entanglement.

Criterion 2. Full tripartite inseparability is observed
if any two of the inequalities (9) are violated. For a pure
state, this is sufficient to imply genuine tripartite entan-
glement. For arbitrary states, genuine tripartite entan-
glement is observed if the inequality

Br+ B+ Brir > (0| + {20 + [{J.3)  (10)

is violated.

Proof. Full tripartite inseparability is observed if each
one of the inequalities (9) is violated, because this certi-
fies entanglement across all bipartitions. Following van
Loock and Furusawa [18], in fact we see that tripartite
inseparability is confirmed if any two inequalities are vi-
olated. This is so because: By > [{(J.1)| + [(Jz2)] is
implied by p1pa3, p2p13; Brr > |(Jz2)| + [(J2,3)| is im-
plied by pa2pi1s, p3p12; and Brrr > [(J.1)| + [(Jz,3)] is
implied by pipa23, p3p12. For pure states, the proof of
full tripartite inseparability confirms genuine tripartite
entanglement. Now we prove the second condition that
applies to all states including mixed states. For brevity,
we index the biseparable states pypa3, p2p13 and p3p12 by
k =1,2,3, respectively. Let Br 1 be the quantity By that
is evaluated using the biseparable state p1p23. Then,

B; > PiBry
k

> PiBi1+ PoBra > (Pr+ P2) ({00 + [(J22)]) -

Similarly, Brr > (Pa+ P3)(|(J.2)| +1{(J.3)|) and
Brrr > (P14 Ps) (|{J21)] + |{J2,3)]). In order to include
all possible mixtures, we take the sum of Bj, Br; and
Byjrr, and use the expansion in Eq. (1). The inequal-
ity they satisfy, derived below, provides a criterion for
genuine tripartite entanglement:

Br+Bii+Brrr > (Pr+Po+P3)(|{J1) |+ Tz 2) | +1(J=.3)])
+ P [( L) + Pe [(Jz2)| + Ps[(J23)]

> (Pr+Po+ Ps) (|( T2 )|+ [(Jz2) [+](J2.8)])
= (‘<JZ,1>| + |<Jz,2>‘ + |<Jz,3>|) )

where ), P, =1. O

The number of moment measurements in the criterion
given by Eq. (10) can be reduced by using a criterion
that only involves two of the three quantities By, By
and Byry. Setting g1 = g2 = g3 = 1, we see that the sum

Br+ Brr > ()| + 2 (L) + [(L3)] (11)

is satisfied by any mixture of all tripartite biseparable
states. The violation of the criterion in Eq. (11) then
implies genuine tripartite entanglement. This is also true
for other combinations By + Brrr > 2[(J.1)| +[(Jz2)| +
|(J2.3)] and Brr + Brrr > [(J2,1)] + [{Jz22)| +2[(J2 3)]-



B. The product inequalities
1. Product of two variances

Criteria involving products rather than sums can
also be derived. Again, we consider the two quanti-
ties Azu = A2 (hljm,l +h2Jz’2+h3JI73) and Az’U =
A2 (g1dy1 + g2dy2 + g3y 3).

Criterion 3. Genuine tripartite entanglement is ob-
served if the inequality

)

lg2ho(J.2)| + |g1ha (T2 1) + g3hs(J. 3)],
lg3ha(J.3)| + |g1h1(J=1) + g2ha(J2 2)[} (12)

1 .
AulAv > Emln{|glh1<=]z ]+ lg2he (T 2) + gshs(J. 3)| ,

is violated.
Proof. The product of two variances A%u and A%v
satisfies the inequality

Z PRAQUR] Z PRAQUR]
R R

Z ZPRAQ’U,RAQUR, (13)
R

A2uA?y >

where the Cauchy-Schwarz inequality is used. For an
arbitrary bipartition piplcm, A?ucA?v; satisfies the in-
equality (see Appendix 2):

1
APucA%vg > - {lguhi (o )|+ grhi(T=0) + gl (Tzm) ]

(14)

Identical to the proof for Criterion 1, we can always
choose the bipartition that gives us the smallest value
of AucAve in Eq. (13). Hence, Eq. (13) becomes (12).
O

2. Van Loock-Furusawa product inequalities

The product version of the van Loock-Furusawa in-
equalities can be obtained, using the criterion in Eq. (12).
The quantities involved are Sy, Srr, and Syrr, as defined
below:

Sr=A (JIJ — Jxﬁz) A (Jy@ + Jy’z + ggJy,;;)
Sir=A (JLQ — Jmﬁg) A (glJy,l + Jy’z + Jy’g)
Srr=A (Jx,l — Jz73) A (Jy,l + g2 2+ Jy73) . (15)

By choosing the coefficients ¢g; and h; in Eq. (12), we
obtain a set of inequalities satisfied by Sy, S;; and Syy;.
For example, the left side of the criterion in Eq. (12) is
equal to Sy when hy = 1, hg = —1, h3 = 0 and ¢g; =
g2 = 1. From Eq. (12) then, S7, Syr and Syy; satisfy the

following inequalities:
Stz 5 (K= )] + [(Jz2)])

SII > (|<Jz,2>| + |<Jz,3>|)

=N = DN =

Srrr > = ({0 + [(J23)]) - (16)

N

Criterion 4. Full tripartite inseparability is observed if
any two of the inequalities (16) are violated. Genuine tri-
partite entanglement is present if the following inequality
is violated:

1
St+ S+ 511 2 5 (T + (T2 + [(T23)]) -
(17)

Proof. The first result follows as for Criterion 2. Using
the same notation as in the proof for Criterion 2, we
index the biseparable states pip23, p2p13 and p3pi2 by
k =1,2,3, respectively. Let Sy 1 be the quantity Sy that
is evaluated using the biseparable state p1ps3. Then,

Sr > Z PpSrk
%

1
> P1Sr1+ PS> 3 (P1+ Po) ({210 + [{Jz2)]) -

Similarly, S;r > (Pa+ Ps) (|(Jz2)] + [{(J2,3)]) /2 and
Srrr > (Pr+ Ps) ([(Jz2 1) +1{J2,3)]) /2. In order to in-
clude all possible mixtures, we take the sum of Sy, Sy;
and S7r;. The inequality they satisfy, derived below,
provides a criterion for genuine tripartite entanglement:

(Pr+PoA4-P3) ({2, 1) [+ [( T2 2) | +1( 2 3)])

Sr+Srr+Srr > ’ ;

1(Pl [(J21)| + P2 [{Jz2)| + P3[(J.3)])

+ 5 ,

o (PrAPot Po) (|(Jz,0) [+ (2 2) [ +]{Jz,3)])
- 2

(KT + (T2 + 1(23)])

N | =

where ), P, =1. O

III. INEQUALITIES INVOLVING PLANAR
SPIN UNCERTAINTY RELATIONS

The inequalities in the previous two sections used the
canonical spin uncertainty relations. For certain quan-
tum states such as the multipartite spin GHZ state, the
right side of these inequalities might be zero, giving the
trivial relation that a sum or product of variances should
be positive. Here, we consider the planar uncertainty
relation, where the sum of uncertainties in two of the
orthogonal spin observables has a lower bound that is
a function of the spin value of the state. The planar



uncertainty relation was obtained for spin J = 1/2 [72]
and J =1 [30], and was later calculated for an arbitrary
spin J by He et al. [67]. In that work, they minimized
A?J, + A?J, for a general quantum state written in the
spin-z basis as

J
) = % m;] Ryne™#m|J,m). (18)

Here R,,, ¢, are real numbers characterizing the ampli-

tude and phase of the basis state |J,m), while n is the
normalization factor given by n = E;Zi ;s R?,. Heet al.

found the lower bound C; (Cy > 0) such that for a given
J

A%, + A%, > Cy (19)

Also in that work [67], a criterion that verifies the N-
partite inseparability was derived. Since the total N-
partite separable state is a probabilistic sum of tensor
product of N density operators, the planar uncertainty
relation can be used. This is not the case for genuine mul-
tipartite entanglement where a biseparable state contains
partitions that cannot be expressed as a product state of
those particles/ modes in those partitions.

Nevertheless, the planar uncertainty relation can be
used to detect genuine tripartite entanglement, if we use
an inference variance method [15, 73].

Criterion 5. Counsider the inequality given by

B1+By+ B3 >Cy, (20)
where
By = A? (Ja;,l - O(l)) +A? ( vl — 2?)
22 (Lop = OF)) + A% (1,2 - P)

Bs = A2 (Jx,g . ogf’;)) N (Jy,g — Pf;‘"))

By

(k .
and Olm, lm) are observables defining measurements

that can be made on the combined subsystems that we
denote by I and m. The violation of this inequality suf-
fices to confirm genuine tripartite entanglement of the
three systems denoted 1, 2 and 3. Full tripartite insepa-
rability is observed if

B, > Cjy (21)

for each £k =1,2,3.
Proof.
A? ( y1— P 23))
tors for systems 2 and 3. We derive the following
inequality that holds for an arbitrary pure state with a
separable bipartition pfpgg.
= A (Joa = O ) + 22 (11 - PY)

> A% (Jp1) + A% (1)
> Oy (22)

Consider ~ A? ( —o ) and

where Oé},)) and P2(3) are opera-

This holds also for all mixtures of separable bipartitions
pgpg:g. Similarly, the inequalities

322A2( mrog?)+A2 (J ) — f;) >0y (23)
and

Bs > A? (ch,3 - og’)) + A2 (Jy,3 - Pf;‘)) >0y (24)
follow from the separable bipartitions p$p$s and p$pS,
respectively. For a pure state, if all three inequalities
are violated, we can conclude that the three systems are
genuinely tripartite entangled. For a mixed state the con-
ditions change. We require to falsify an arbitrary bisep-

arable mixed state given by pps = P1 ) ng)p{%p% +
2 4 4 3) R

Py 7752,),05% P+ Ps> p 7753,), PR pR’ as defined by

Eq. (1). We give a proof similar to those given for Crite-

ria 2 and 4. For brevity, we index the biseparable states

2 " "
ZR 773 Pl 023, ZR’ 771?/)95L P13 and ER” UR//P? {%2 by

k =1,2,3, respectively. Thus, we denote B; ; to be the
quantity B1 that is evaluated using the biseparable state

>R nR p1 p%. Then, for the biseparable mixture,

By > PBix
k

> PiBi1 > PCy.

Similarly, for a biseparable mixture, Bs > P,C; and
Bs > P3C;. In order to include all possible bisepara-
ble mixtures, we consider

By + By + B3 >

using ), Pr = 1. Thus, all biseparable mixtures are
excluded when this inequality is violated. [

This inequality has been derived in Ref. [42] in a sim-
ilar context, to give a condition for genuine tripartite
steering. Steering is a form of entanglement linked to the
Einstein-Podolsky-Rosen paradox, and hence a steering
criterion will also be a criterion for entanglement [65].
The entanglement criterion might be made stronger, if
one can make use of uncertainty relations for the opera-
tors Ol(fn) and Pl(nlz)
scenario.

It is straightforward to see that the inequality is vio-
lated for the GHZ state [74], defined as

(PL+P,+P3)Cy=0Cy

once these are established for a given

1
= — — 25
|1) 7 (1) = 1) (25)
where | ™11) (] 444)) is the state with z-spins up (down)
for all subsystems k = 1,2,3. This is because, as is well-
known for the GHZ state, the z-spin, z-spin and the y-
spin of any of the three subsystems can be inferred by
joint measurements made on the other two subsystems.
This result is clear for inferring the value of J, ;. The
inequality (20) applies for all spin pairs, and if we re-
place Jy ; with J, ;, it is clear that by taking Plgfz) = Jz(l),



= 0 for each k. For
inferring J 1, it is also clear, since the GHZ state is an

one can achieve A2 (Jz,k — P(k))

lm

eigenstate of J; 1J; 2J, 3 with eigenvalue —1. Thus, Ol(:fl)
is the measurement given as follows: Measure the spin J,
of each of the other subsystems [ and m, and assign the

value of the measurement by multiplying the spins values
together. If the product is +1, then the outcome of o™

lm

is —1. If the product is —1, then the outcome of Ol(m)
+1. In this way, we see that A2 (Jx,k — O;:g) = 0, for
each k = 1,2,3 with [ # m # k. Hence, the inequal-
ity (20) is violated, giving a simple method to detect the
genuine tripartite entanglement of GHZ states (or ap-
proximate GHZ states) in an experiment.

We may ask whether the inequality is also violated for
the W state [75] given by

1
E(IN¢>+I¢N>+IHT>)- (26)

Here we will use the criterion expressed in Pauli spins,
so that B; = A? (az,i — O](.i)) + AZ? (Uw,i — Pj(]i)) where
i # j # k. The conditions then utilize C; = 1 since
J = 1/2 [72]. The spin o, of system 1 can be inferred
by measuring the spin product of 2 and 3. We find that
A%(o,q — Oé?) = 0. Now consider that the spins o, of
systems 2 and 3 are simultaneously measured. We con-
sider the measurement PQ(? to have an outcome of 1 if
both spins are measured as +1; an outcome —1 if the
spins are measured as —1; and zero otherwise. Simple
calculation tells us that A%(o, 1 — P2(§)) = 1. By symme-
try of the W state, this result holds for all permutations of
the subsystems. Thus we see that we are able to confirm
entanglement across each bipartition, since the condition
(22) for Pauli spins reduces to By > 1. Since we find
B = By = By = %7 the condition for tripartite insep-
arability is satisfied. If in an experiment we are able to
verify a pure state, then this implies genuine tripartite
entanglement. We note the above condition for mixed
states, By + By + B3 < 1 is not satisfied. The W state
(26) is genuinely tripartite entangled. That the condi-
tion is not satisfied merely reflects that the criteria we
derive are sufficient, but not necessary, to certify genuine
tripartite entanglement.

Svetlichny derived conditions to detect the genuine tri-

J

W) =

A’u+ A% > min {[gihi(J21)| + |g2h2(J- g
21) + 93hs(J.3) + 94h4<J
J21) + g2ho(Jz 2

|g2h2 (T2 2)| + |g1ha

(J
lgshs(J.3)| + lg1hi(

) )
|gaha(Jza)| + 19101 (T2 1) + gaha(J. 2)
lg1h1(J2 1) + g2ho(J2 2)| + [93h3( ] 3) + 94h4<<]z 4
l91h1(J=1) + g3hs(J2,3)| + |g2ha( 2 2)
) M+ 1g2h2(J. 2)

)

lg1h1(J21) + gaha(J, 4

) s

partite entanglement of three spin 1/2 systems in the
form of Bell inequalities. Further criteria for the certifi-
cation of the genuine tripartite entanglement of GHZ, W
and cluster states have been derived in Refs. [20, 35, 63].
The method given above is not necessarily advantageous
over these earlier methods. It can be readily extended
(by applying uncertainty relation (19)) however to con-
ditions for higher J.
IV. CRITERIA FOR GENUINE N-PARTITE
ENTANGLEMENT

The method used in Section II to derive criteria for
genuine tripartite entanglement can be extended to -
partite systems. The complication arises in that the set
of possible bipartitions scales as (2N - 1), and every
bipartition has to be taken into account in the derivation
of these criteria that certify genuine N-partite entangle-
ment.

Here, we generalize the criterion in Eq.
partite spin systems.

Criterion 6. We denote each bipartition by S, — S5,
where S, and S are two sets of modes in the partitions
in a specific bipartition. Then, the violation of the in-
equality

(4) for N-

A?u+ A*v > min {Sg} , (27)

implies genuine N-partite entanglement, where Sp is
(2% =1 Pk gne, (T k) jom1 Mgk, (Jok,)[)- The
proof for this inequality follows from the proof for the
inequality in Eq. (4).

Criterion 7. Similarly, the corresponding product
inequality is given by

AulAv > %min {SB} . (28)

A. Criteria for genuine four-partite entanglement
1. Sum and product inequalities

Criterion 8. For N = 4, there will be 24~1 —1 =7
bipartitions. They are, using the S, —Ss notation, 1—234,
2 134,3 — 124, 4 — 123, 12 — 34, 13 — 24 and 14 — 23.
The sum inequality in Eq. (27) is then

2) + g3ha(J. 3) + gaha(J; 4)],

+ g4h4<Jz

) 4

)

+ g3h3(J..3)|} = min {Sp.4} . (29)

)



Criterion 9. Similarly, the product inequality for gen-
uine four-partite entanglement is given by

1
Aulv > gmin {Sp.a}, (30)
where Sp 4 is defined in Eq. (29). The violation of in-

equality in Eq. (29) or Eq. (30) implies the presence of
genuine four-partite entanglement.

2. Criteria involving van Loock-Furusawa inequalities

Van Loock and Furusawa [18] derived a set of six in-
equalities to rule out four-partite inseparability. We can
derive similar inequalities to certify genuine four-partite
entanglement. The six spin inequalities are given by

Br =A% (Jpn = Jup) + A% (Jy1 + Ty + g3dy 3+ gadya) > (()] + [(T2)])
B = A% (7, 3)+A (g1dy1 + Jy2 + Jys + gadya) = ((L2)] + (Lo 8)])
B = A (Jog — Jos) + A (Jy1 4 g2y 2 + Jys + gadya) = (1) + [(L28)])
Bry = A% (Jog — Jua) + A% (01 dy1 + 920y2 + Jys+ Jya) = ([(Jas) + [(Toa)])
BV—A2( Jua) + A2 (grdya + Jy2 + g3y s + Jya) = ((Lo2)| + [(Toa)])
BW—A%zl— )+ A (Jy1 + g2y 0 + g3 Tys + Jya) > ()| + [(J20)]) - (31)

Criterion 10. The violation of any three of the above
inequalities implies that the four-partite system is not
in any biseparable states, and thus signifies four-partite
inseparability (refer Ref. [18] for the proof). Genuine
four-partite entanglement is verified if the inequality

6
Y By 2 (Ll + 1)l + [(Tea)| +1(a)] (32)
J=1

is violated. These criteria are sufficient but not necessary
conditions for four-partite inseparability, or genuine four-
partite entanglement.

Proof. For brevity, we index the biseparable states
P1P234, P2P134, P3P124, P4P1235 P12P34, P13P24 and P14P23
by k =1,2,...,7, respectively. Let B;; be the quantity
B that is evaluated using the biseparable state pjp234.
Then,

By >y PiBrx
2
> P1Br1+ P2Bro+ PsBrg+ PrBry

> (Pr+ P+ Ps+ Pr) (1) + {2 2)]) - (33)

Similarly, By; > (J.2 |
Birr > [(L21)] + |
Brv > (Ps + Py + Ps + Pr) ({J23)] + [(J2,4)]),
By > (Po+Pi+Ps+ Pr)((J.2)| +1(J.4)]) and
By > (Py+ Py + Ps + Fs) (|(J1)] + |(J:.4)|). In order
to include all possible mixtures, we take the sum of
By, Byr, Brrr, Brv, By and Byj. The inequality they
satisfy, derived below, provides a criterion for genuine

four-partite entanglement. The violation of the following

(Py+ P3+ Ps + Ps) (]
(Py+Ps+ Ps+ Pr)(

I3
~

(123)]),
<Jz,3>|)a
|

(

inequality implies genuine four-partite entanglement:

6
Z > (Py+Py+ P+ Py+ Ps+ Ps+ Pr) (|(J.1)

(2P1+P5+P6+P7)
(2P, + Ps + Ps + Pr)

+

+ | z,1
+ |
+ (2Ps+ Ps + Ps + Pr) |

+ |
>

+

<>
<']z72>
<Jz73>
(2P + Ps + Ps + Pr) [(J2.4)]
(P1+P2+P3+P4+P5+P6+P7)(|<J 1)]
(Jz,4)1)
( z3>|4-\< Al (34)

[(Jz2)] + [(Jz3)] + |
= (L)l + [(Jz2) [ + |

where ), P, =1. O

V. APPLICATIONS

We now show how one may create N-partite entan-
gled states satisfying the criteria derived in Sections
II and IV of this paper. In Section VA, we out-
line optical experiments involving polarization entangle-
ment, where the measured observables at each site are
the Stokes operators for two polarization modes. We
then consider, in Section V B, experiments that entangle
spatially-separated atomic ensembles. In Section V C,
we analyze recent experiments that generate entangle-
ment between spatially-separated clouds of atoms formed
from a spin-squeezed Bose-Einstein condensate. Here,
for each separated subsystem, the measured observable
is a Schwinger operator involving two internal atomic lev-
els. The Schwinger and Stokes operators satisfy the same
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Figure 1. Generation of the tripartite-entangled CV GHZ
state. The configuration uses three squeezed-vacuum inputs
and two beam splitters (BS) with reflectivities Ry = 1/3 and
Ry = 1/2. The z; and p; are the two orthogonal quadrature-
phase amplitudes of the spatially separated optical modes i
(i=1,2,3).

commutation relation as spin operators, and hence all the
criteria derived in Sections II-IV are applicable.

A. Polarization entanglement

The polarization of a quantum state can be character-
ized by the Stokes operators defined as [76]

S, = aLaH — aLav

Sy = aLavew + aJ{,aHe*ie
S, = z'a;r/aHe*w - ia}rqavele , (35)

where ag and ay are the annihilation operators of the
horizontal and vertical polarization modes respectively,
and @ is the phase difference between these polarization
modes. In the work of Bowen et al. [76], bipartite po-
larization entanglement was created by first generating
CV bipartite entanglement in the quadrature degree of
freedom, and then transferring the entanglement into the
polarization degree of freedom.

This scheme can be extended to generate genuine tri-
partite polarization entanglement. Genuine CV tripar-
tite entanglement in the quadratures is first created in
an optical setup involving squeezed vacuums and beam
splitters, as shown in Figs. 1 and 2. The three entan-
gled modes from the outputs of these beam splitters are
horizontally polarized. Each of these modes is subse-
quently mixed with a bright coherent beam with vertical
polarization using a polarizing beam splitter. At each
site ¢ = 1,2,3 prior to mixing, one can define pairs of
orthogonally polarized modes (with annihilation opera-
tors ami, av,;). The choice of polariser angle determines
which Stokes observable is measured, after a number dif-
ference is taken. The final readout is given as a difference
current. After the mixing, the genuine CV entanglement
has been transformed into genuine tripartite polarization
entanglement, as illustrated in Figure 3.

(X2,p2)
(X1,p1)
Squeezed R
2
beam R1 V(X?p3)

| A ™

X
- .
Squeezed  vacuum

p beam

Figure 2. Generation of the tripartite entangled EPR-type
state. The configuration uses two squeezed-vacuum inputs, a
coherent-vacuum input, and two beam splitters BS with re-
flectivities R1 = Rz = 1/2. The z; and p; are the two orthog-
onal quadrature-phase amplitudes of the spatially separated
optical modes 7 (i = 1,2, 3).
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Figure 3. The experimental setup to generate genuine tri-
partite polarization entanglement from genuine tripartite CV
entanglement. In this schematic diagram, an EPR-type gen-
uine tripartite-entanglement is generated as shown in Figure
2. The outputs are mixed with coherent fields, as described
in the text. The S;; denotes the polarisation Sy i, Sy or
Sk for the site k (kK = 1,2,3). The (gr, hi) are the gains
used in the criteria, and are introduced in the final currents.
By using a third squeezed input state at the second beam
splitter instead of the vacuum input, the CV GHZ genuine
tripartite entanglement (refer Figure 1) can be transformed
into an equivalent genuine tripartite polarization entangle-
ment. Alternatively, by using only one squeezed input, one
may transfer the genuine tripartite entanglement depicted in
Figure 4.

To verify the tripartite polarization entanglement, we
consider the sum inequality

A?[Sy1+h(Sy2+ Sys)] + A% [S.1+g(S.2 + Se3)]
> 2min{a} + 2|gh| a2, |gh| ol + o [L+gh|},  (36)

where a,, is the coherent amplitude of the vertically po-



larized coherent beam. The variances are

A? [S%l +h (Sy,g—i-Sy,g,)] = (X%AQ [PH71+h(PH72+PH,3)]

A? [SZ71+g (SZ7Q+SZ,3)] = Q3A2[XH71+9(XH72+XH73)} .
(37)

Here, Sy, Syxr and S, are the Stokes operators de-
fined in (35) for each mode pair at site k. Xp and
Py, are the X and P quadratures for beam k. The h
and g are gain factors defined in the criteria, where we
take hy = 1, hg = hg = hand g1 = 1, g0 = g3 = g.
Note that the commutation relations satisfied by these
Stokes operators are [S,S,] = 2iS,, which differ from
the spin commutation relations by a factor of 2. As a
result, the sum and product inequalities below have an
extra factor of 2 compared to the sum and product in-
equalities in Eqgs. (4) and (12) respectively. With these
variances, the sum inequality Eq. (4) and the product
inequality Eq. (12) are respectively transformed into a
continuous-variable genuine tripartite entanglement sum
and product criterion, according to

A?[Sy1+h(Sy2+8y3)] +A%[S.1+9(S:2+S:3)]
2a2min{1 + 2 |ghl, |gh| + |1 + gh|}

A’ Xpg1+9Xuo+Xps)+A2[Py1+h (Pya+Pus)]
2min{1 + 2|gh|, [gh| + [1 + gh|}
>1 (38)

and

ASy1+h(Sy2+Sy3)]AlS.1+9(S.2+5.3)]
min{a2 + 2|gh| a2, |gh| a2 + a2 |1 + gh|}

v u

AXgi1+9(Xua2+Xua3) A[Pui+h(Pa2+Prs))
min{1 + 2|gh|, |gh| + |1 + gh|}
> 1. (39)

Hence, any CV genuine tripartite quadrature entangle-
ment then implies genuine tripartite polarization entan-
glement.

There are two types of states that show genuine tri-
partite entanglement in the quadratures. These are the
CV GHZ and CV EPR-type states, defined in Refs. [1§]
and [14], and illustrated in Figs. 1 and 2 respectively.
It has been shown previously that these two states vi-
olate both the quadrature sum inequality in Eq. (38)
and the product inequality in Eq. (39) with specific val-
ues for the gains, g1 = hy = 1 and ¢g;~1 = g, his1 = h
[14]. The gains g, h are chosen such that the variance
sum and product are minima, and are given in Table I.
With these gain values, as shown in Ref. [14], Criteria
1 and 3 are always violated for any nonzero squeezing
of the squeezed vacuum inputs, implying the presence of
genuine tripartite entanglement. The inequalities of Cri-
teria 2 and 4 are also useful in showing genuine tripartite

CV GHZ[CV EPR
g h g h
00 0 0] 0

0.25/0.36[-0.27(0.33]-0.33

0.50[0.68]-0.40 |0.54[-0.54
0.75/0.86]-0.46 |0.64[-0.64
1.00[0.95[-0.49 [0.68(-0.68
1.50[0.99]-0.50 [0.70[-0.70
2.00]/1.00[-0.50 [0.70[-0.70

r

Table I. Values of the gains g and h that minimize the variance
sum and product in Criteria 1 and 3.
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Figure 4. Generation of tripartite entanglement using a
squeezed vacuum beam with squeezing along the P (or X)
quadrature. All other beam splitter ports have vacuum in-
puts. The reflectivity for the first beam splitter is Ry = 1/3
and Ry = 1/2 for the second beam splitter. A calculation of
the genuine tripartite entanglement generated from this con-
figuration is given in Appendix 3.

entanglement. The optimal gains for these inequalities
can be found in Ref. [14].

Genuine tripartite entanglement is also created using
a third configuration involving only one squeezed input,
shown in Fig. 4. Normally, two squeezed vacuum in-
puts are combined across a beam splitter to create strong
EPR-correlations between the output modes [19, 73]. Tt
is also possible to create EPR-entangled modes, using
only one squeezed vacuum input [15]. While the EPR
correlations are weaker, the entanglement is sufficiently
strong that a subsequent beam-splitter interaction with a
non-squeezed vacuum input can create genuine tripartite
entanglement. A summary of this calculation is given in
the Appendix 3, where we show how the entanglement
that is generated can be detected by Criterion 5 of Ref.
[14] with the gains h = —1/2 and g = 1/2. This tripartite
entanglement is not sufficiently strong to generate tripar-
tite EPR-steering correlations, but can be transformed
into genuine tripartite polarization-entanglement using
the configuration of Fig. 3. The spin sum-inequality
given by Criterion 1 is then useful to detect the genuine
tripartite entanglement.



B. Tripartite entanglement of atomic ensembles

Tripartite entanglement can also be created among
three atomic ensembles by successively passing polarized
light through the ensembles. Here, we outline a general-
ization of the scheme of Julsgaard et al. that creates bi-
partite entanglement between two atomic ensembles [49].
The observables for the atomic ensembles are the collec-
tive Schwinger spins defined by the operators:

A 1

Jy = 5 (alc@ — aia,)

A 1 . )

Jy, = 3 (aia_eze + ataJre_ze)

A 1 . )

J, = 3 (iaJ[_a+e_ze - iaia_ew) , (40)

which satisfy the commutation relation [jm jy} = iJ,.

Here, a4, a_ are the operators for spin-up and spin-down
along the spin-z axis, respectively. We label the opera-
tors for each ensemble by the subscript & (k =1,2,3).

Firstly, three atomic ensembles are prepared such that
the mean collective spins for these atomic ensembles are
pointing along the z-axis: J;1 = —2J,0 = —2J,3 = J,.
A linearly polarized light along the z-axis is then applied
to the ensembles. The light-spin interaction is given by
tAhe HaAmiltonian Hiyy = wS,J,103, where J,193 = J,1 +
J.2+ J.3. The light variable then evolves in terms of the
inputs to give an output of

S;Ut = S;Il + Oéjzlgg 5 (41)
while the spin variables evolve as

Jout __ 7in +ﬂ'§z

yl = Yyl

~ A~ 1 4

out __ in

y2 T Yy2 §ﬂSZ

Fou 7in 1. a

;)Qt = Jdy2 — iﬁsz- (42)

By measuring Sgut, jz]_ + jzz + jzg can be in-
ferred. Also, jyl + ij + jyg can be measured us-

ing another light pulse without affecting the measured
value of J,; + J,o + J,3. This is possible because

|:jzl + Jao + Jas, jyl + jyz + jyg} = 0. Hence, the quan-
tity A2 (le + Jo2 + jz3) +A? (Jyl + Jy2 + jy3> can be
arbitrarily small. Using the sum inequality Eq. (4) and

product inequality Eq. (12) with gain values g; = h; = 1,
(i =1,2,3), a genuine tripartite entanglement is certified

among the atomic ensembles if A2 (jzl + Ju + jzg) +
A? (jyl + ij + jyg) < 2J, for the sum inequality and

A (jzl + jz2 + jz3) A (jyl + jyg + jyg) < J, for the
product inequality.

10
C. Entangled Bose-Einstein condensate clouds

In the experiment of Kunkel et al. [52], a 8"Rb Bose-
Einstein condensate is first generated in the magnetic
substate mp = 0 of the F' = 1 hyperfine manifold,
before a spin-squeezing operation coherently populates
the mp = +1 states and entangles all the atoms in the
condensate. The condensate is then allowed to expand
into three spatially separated partitions. The tripar-
tite entanglement among these partitions is verified by
measuring Fp . and Fr o) for each partition k, where

P [(dll +&11> doei¢+h.c.} /N2, d;{ is the cre-

ation operator for a state mp = j. These operators

satisfy the commutation relation {ﬁb,b }7—'7,/2_4 = 22’Nk,

where Nj is the number operator for the partition k.
By applying 7/2 pulses and rotations, these observables
are measured by reading out the population difference
between the states mp = £+1. If the number of atoms
in group mp = 0 is large, then the measurement be-
comes similar to a homodyne detection of the amplitudes

((dil + &T,l> e'® + h.c.) associated with the atoms of

each of the partitions, carried out with the second larger
group of atoms (given by do) acting as the local oscillator,
as explained in Refs. [77, 78]. More generally, spin rela-
tions must be used. In the atomic experiment of Kunkel
et al., the genuine N-partite entanglement (up to N = 5)
mutually shared among the clouds is certified using cri-
teria similar to that derived in Ref. [14], for quadrature
phase amplitudes, but properly accounting for the spin
and number operators that apply in this case.

In another experiment based on the two hyperfine
states |[1) = |F = 1,mp = —1) and |2) = |[FF =2,mp =
1) of a 8"Rb BEC, Fadel et al. [50] prepare the system in
an atomic spin-squeezed state, and allow the condensate
to expand into two separated partitions (which we denote
A and B). This creates a bipartite entanglement between
the two clouds, which is detected using the entanglement
criterion [17, 50]

A (ngZ,A + SZ,B) A (gy‘sy,A + S.%B)

< 2 (g, 115 4)] + (5250 (1)

Here, S. 4/p and S, 4,p are the collective Schwinger spin
operators [79, 80| along the z- axis and y-axis respec-
tively, for partition A/B. Explicitly, the collective spin
operator S, 4/p is given as the number difference

1
Sz4/B = B <Nzl,A/B - NZQ,A/B) ; (44)

where N Zl A/B and Ni A/B are the number of atoms in
the internal spin states |1) and |2) respectively, along
the spin z-axis, for partition A/B. The collective spin
operators along the y-axis S, 4,p are defined accordingly
following Eq. (40), but noting the switching of the labels
x,y, z. Other proposals exist to create a similar bipartite



entanglement that can be detected using a similar spin
criterion [81-83)].

The experiment of Fadel et al. observed bipartite en-
tanglement and EPR steering, but did not investigate
tripartite entanglement. It is likely however that one
could detect a genuine tripartite entanglement for clouds
generated by further splitting the BEC. This would seem
possible, given the result obtained in the Appendix 3
and depicted in Fig. 4, where tripartite entanglement is
generated using only one squeezed input, followed by a
sequence of splitting of the modes using beam splitter
interactions. This works, because entangled modes can
be created from a beam splitter with only one squeezed
vacuum input [15]. The tripartite entanglement created
in the three modes of Fig. 4 can be detected using the
Criterion 5 of Ref. [14] with the gains h = —1/2 and
g = 1/2. If one considers transforming into an equivalent
tripartite entanglement in the Schwinger operators, then
the suitable criterion would be Criterion 3 in Eq. (12)
with the gains h = —1/2 and g = 1/2.

A realization of a beam splitter interaction for the BEC
can be obtained in several ways. An analogy of optical
beam splitters with the splitting of a condensate (which
is envisaged to be a realization of the final beam splitter
of Fig. 4) is explained in Ref [84]. The splitting into two
modes is described by the interaction Hamiltonian

H[+ = ei‘ﬁaiaﬂ) + e_i¢a+a3_0 5 (45)

where ay,ayo are the annihilation operators for modes
labelled Ay and A4 o respectively, and ¢ is the phase
difference between these two modes. The transformation
is equivalent to the beam splitter relations

Gy out = Q4 COST — ie’¢a+o sint

440,0ut = G40 COST —ie Pa, sinT, (46)
where 7 is the interaction time and a4 ous

a+ (T) yat0.0ut = G40 (7). One can adjust the effective
transmission to reflection ratio by adjusting the interac-
tion time between the two modes.

We thus consider two separated clouds A and B that
show spin entanglement with respect to the difference
operators g,5, 4 + 5. p and g4,Sy 4 + Sy, so that the
criterion of Eq. (43) is satisfied. These two clouds are
analogous to the entangled outputs after the first beam
splitter BS of the configuration shown in Fig. 4. Each
cloud is identified with Schwinger spin observables. For
example, S, 4 and Sy 4 are measurements that can be

made on cloud A, where S, 4 = % <a1a+ — aia,) and

a4, a_ correspond to the two atomic levels. To generate
the tripartite entanglement, the system A is transformed
according to a beam splitter interaction (splitting) mod-
eled as Eq. (45). Since the splitting is insensitive to the
internal spin degrees of freedom, there is a similar in-
dependent interaction for a_. The outputs of a+; and
a+o are then spatially separated, so that three separate
clouds are created, labelled A1, A2 and B, these being
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Figure 5. Generation of four-partite entanglement using a
squeezed beam along the P (or X) quadrature. All other
beam splitter ports have vacuum inputs. The reflectivity for
the first beam splitter Ry = 1/4, R, = 1/3 for the second
beam splitter and R3 = 1/2 for the third beam splitter.

analogous to the three outputs of the configuration of
Fig. 4. The final Schwinger operators at A; and A, are
defined by the a4+, at Ay, and the a4y at A;. The differ-
ent Schwinger components can be measured using Rabi
rotations or equivalent [50, 78]. The calculation carried
out in Appendix 5 predicts a tripartite entanglement be-
tween the three clouds that could be detected by Criteria
1 and 3. Using Eqs. (55) and (56) in Appendix 5, the
inequality of Criterion 3 is then

A[gz(sz,Al+Sz,A2)+Sz,B]A[gy(Sy,A1+Sy.A2)+Sy,B]
1 .
2 gmin{lgzgy| [(Se,a1) + (Se,a2)| + [(SeB)]
(929y(Sz,a1) + (Sa,B))| + 1929y [(Sz,42)|} - (47)

The violation of this inequality implies genuine tripar-
tite entanglement. We show in Appendix 5 that, assum-
ing the number of atoms is large, S; 41 + S.,42 = S 4,
Sy7A1 —|—Sy,A2 RSy, A, and S%Al +Sx,A2 ~Sg,A- The cri-
terion for genuine tripartite entanglement will therefore
be satisfied if there is sufficient entanglement as mea-
sured by the bipartite criterion given in Eq. (43). As-
suming S; 4 and S; g correspond to the Bloch vectors,
with the directions of axes being chosen to ensure (S; 4)
and (S, p) are positive, we see that the beam splitter
transformation (refer Appendix 5) ensures the signs of
Sz a1 and Sy a2 are also positive. The right-side of the
inequality is then either precisely that given by the right-
side of Eq. (43) (if g.gy, > 0), or is less than this value
(if g.g, <0).

We note from the results reported in Refs. [14, 18, 24|
that we can generate N-partite entangled states (N > 3)
by successive use of beam splitters with vacuum in-
puts, once an initial entangled state is created from two
squeezed inputs or some other means. This has been
implemented for a BEC by Ref. [52] (for N = 5). We
show in the Appendix 4 that we can also create genuinely
4—partite entangled states from a single squeezed input
(refer Fig. 5), followed by multiple beam splitter com-
binations and vacuum inputs (with no squeezing). This



may provide an avenue (using successive splittings) for
the generation of multi-partite entanglement in experi-
ments such as Ref. [50].

VI. CONCLUSION

In summary, we have derived several different criteria
for certifying genuine N-partite entanglement using spin
measurements. The criteria are inequalities expressed in
terms of variances of spin observables measured at each
of the N sites.

In Sections II and IV, we derive criteria based on
the standard spin uncertainty relation, involving |(J)|.
These criteria are valid for any systems, provided at each
site the outcomes are reported faithfully, as results of ac-
curately calibrated quantum measurements [9, 85] . We
present in Section V three examples of application of
these criteria. In these examples, entanglement is created
that can be detected using Stokes or Schwinger operators
defined at each site. These observables arise naturally in
atomic ensembles, where the creation and detection of
multi-partite entanglement is important for testing the
quantum mechanics of massive systems. The criteria we
develop may be useful for this purpose. In particular
we specifically propose how to extend the experiments of
Julsgaard et al. [49] and Fadel et al. [50], to generate
three or more genuinely-entangled spatially-separated en-
sembles of atoms. The experiment of Kunkel et al. [52]
succeeded in generating genuine 5-partite entanglement.

Where Stokes operators are defined for atomic systems,
it is possible to introduce a normalization with respect to
total atom number. This concept was introduced by He
et al. [81, 86] and Zukowski et al. [87-90]. These authors
show how the detection of entanglement and nonlocality
can be enhanced using such a normalization. It is likely
that the criteria derived in Sections II and IV may also
be further improved using this technique.

In Section III, we have outlined criteria derived from
the planar spin uncertainty relation A%J, + A2J, > C;
valid for a system of fixed spin J. This is useful for states
where (J,) = 0, such as the GHZ states. Such criteria
were developed previously for genuine tripartite steering.
Although genuine tripartite steering implies genuine tri-
partite entanglement, we have extended the results of
the earlier work by giving details of the application of
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these criteria to certify the genuine tripartite entangle-
ment and the full tripartite inseparability of the GHZ
and W states respectively. While other methods exist to
detect the genuine tripartite entanglement of these states
(for example [33, 35, 63]), the criteria we present in Sec-
tion IIT are readily extended to higher spin J.
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APPENDIX

1. Lower bound of the sum inequality for an
arbitrary bipartition

We derive the inequality in Eq. (7) for an arbitrary
pure state bipartition pi Psz~

APug + A%y,

= A (hydyr) + A (Mot + P dom)

+ A% (gedyr) + A% (g1 Tyt + GmTym)

> \grh (e ks Ty k]l + g1 [Teis Ty il + gmban [Te.ms Jy.ml|
= |gkhk<Jz,k>| + |glhl<Jz,l> + gmhm<Jz,m>| . (48)

Here, the uncertainty relation A? (hJ,) + A% (gJ,) >
(lgh [Jz, Jy]|) is used to obtain the first inequality in Eq.
(48). The spin commutation relation [J,,J,] = iJ, is
used in the last line.

2. Lower bound of the product inequality for an
arbitrary bipartition

We derive the inequality in Eq. (14) for an arbitrary
bipartition piplcm.
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= [A? (i Jo i) + A2 (hi Tt + b Jom)] [A2 (gedyk) + A% (91T y0 + gmdym)]
(hie e i) A2 (gedy k) + A% (M deg + b dem) A% (g1 Ty 0 + Gmdy.m)
(Mg + b m) A% (gedy i) + A% (hidw ) A* (@1 g0 + gmdym)
( (gk‘]y k) + A (hidzq + hmJem) A? (@ dy1 + gmJy,m)

2

A UCAQUC
=A?
+ A2
> A% (hpdo i) A
+2A (hlJ:rl + hndzm) A (grdyi) A (hiedz k) A(gidy + 9mdy,m)
= [A (o) A (gr Ty i) + A (Mdog + hindwm) A (G Ty + G dym)]?
|gkhk<Jz,k>| lgihi(J=1) + gmbm (Jzm)|
- 2

In going from the second equality to the first inequality,
the inequality for two real numbers z and y, 22 + y° >
2zy, is used. The uncertainty relation in the final line is
A (hJz) A(gdy) = (Igh[Jx, Jyl1)/2.

3. Generating genuine tripartite entangled states
using 3 beam splitters and one squeezed input

Here we consider the configuration of Fig. 4. The
output mode operators aout, bous and cout are
1 n 2 b
Qout = —7=0in 5 Yin
t 73 3
1 2 1 1
bou = = \/7(1111 - 7bin + —=¢Cin
Ve ( 3 3 ) V2
1 \F 1 1
Cout = —= 5 in — 7bin — —7=Cin - 0]

Now, we consider X, out — 1/2(Xpout + Xecous) and
Py out +1/2 (Pyout + Peout). Their variances are then

X ou XC ou
AzXaout*( bout + Xe out) :ﬁAszmzﬁ
’ 2 2 ’ 2
Py P. 2 1
AQ Pa,out + M = *AQPa,in + *AQPb,in
2 3 6
2 1
—Ze72r 4 = 1
3¢ + 5 (51)

and their sum is

(Xb,out + —Xc,out ):|
+

A2 a,ou (
D) + [ t+ D)
E

2 —2r
- 2
O e (52)

giving a minimum of 10/6 = 1.6667 for large
squeezing parameter 7. The sum inequality for
those variances is A2 [Xgout — 1/2 (Xpout + Xeout)] +

(

A? [Pa.out +1/2 (Pyout + Peout)] > 2, as shown in Crite-
rion 5 of Ref. [14] with the gains h = —1/2 and g = 1/2.
This inequality is violated and hence the final output
state in Fig. 4 is genuinely tripartite entangled. We can
also consider the input to be squeezed along X, in which
case the gains g and h will have opposite sign.

4. Generating genuine four-partite entangled states
using 4 beam splitters and one squeezed input

Here we consider the configuration of Fig. 5. The
output mode operators dout, bout 5 Cout and doys are

3
Qout = 7 in \/7bin
Cout = —= (

Now, we consider Xg out —

bout = Qin —

2
bin) + \/gcin
1 1
~—~Vin —=Cin T 1n
it Tt

1

b : ! d
QAin in — —7=Cin — —=in -
4 V4 V6 V2

1/3 (Xb,out + Xc70ut + Xd,out)

—_ S‘H
w

— %‘H
Ny

>

Qin —

dout = (53)

Sl S

and Pa,out + 1/3 (Pb,Out + Pc,out + Pd70ut). Their vari-
ances are then
A2 (X, g — Kot T Xeow ¥ Xao)|_dpay, 4
’ 3 3 ’ 3
P ou Pc ou P, ou 1
AQ aout+( . ot : ot d t) :AZPain""*AQPbin
3 3 ’
1
_ ,—2r -
=e 7+ 3
(54)
and their sum is 5/3 + e72", giving a mini-
mum of 5/3 = 1.6667 for large squeezing pa-

rameter 7. The sum inequality for those vari-
ances 1is A2 [Xa,out - 1/3 (Xb,out + Xc,out + Xd,out)} +
A2 [Pa,out + 1/3 (Pb,out + Pc,out + Pd,out)} Z 16/97 as



shown in Criterion 8 of Ref. [14] for N = 4 and with
the gains h = —1/3 and g = 1/3. This inequality is
violated and hence the final output state in Fig. 5 is
genuinely four-partite entangled. We note we can also
consider the input to be squeezed along X, in which case
the gains g and h will have opposite sign.

5. Beam splitter operation as a model for splitting
BEC clouds

We define the mode operators ay = (ay1 —iaiz) /v2
and a_ = (a_; —ia_s)/v/2, and their corresponding
auxiliary mode operators ayacy = (at1 —iay2) /v/2 and
vac— = (ay1 —iays) /+v/2. This allows us to model the
splitting of a BEC cloud with the beam splitter opera-
tions where the mode operators a, ayac4 are the inputs
of a beam splitter. Since the different spin species does
not interact, the mode operators a_, ayac_ are also the
inputs of a beam splitter and are split independently of
the other spin species. With these mode operators, the
Schwinger spin operators after splitting are

Sz,a1 = % (allaJrl — aila_l)

— i <a+a+ —ala_ ) + F (Gyact s Gyac—) (55)
Sz,a2 = % <a+2a+2 —a a_ 2)

= i <a1a+ —ala_ ) + G (Gyacs, Avac—) - (56)
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Here we take the orientation of z,y, z so that S, corre-
sponds to the number difference. S, 41 and S, a2 are
the Schwinger spin operators along the z-axis for clouds
Al and A2 respectively, F' and G are terms containing
(yact o 15 Ovac—s al.._. Similar Schwinger spin opera-
tors along the x and y-axes have the same expressions as
Egs. (55) and (56) but the spin up and down are relative
to their respective axis. From Egs. (55) and (56), we
see that S, a1 + S, 420 = S.a+ F+ G = S, 4. Here
we assume the terms F' and G involving the incoming
unoccupied modes can be neglected in the calculation of
the variances, relative to the leading terms which come
from the incoming modes with a high occupation (the
number of atoms being assumed large). Using a similar

argument, we consider Sy = (aia e 4+ al ate w) .

1 ) )
Sp.a1 = 5 (alla_lew + aT_laHe*“’)
1 ) )
=1 (ala_ew + aJr_aJre*w) + F(ayact, Gvac—)
Loy i60 T —if
So,42 = 2 (a+2a_2e +a' yaiqe )

1 ) )
=7 (az_a_ew + aT_aJre_w) + G(@yact, Gvac—)

So, for large numbers of atoms, Sy a1 + Sy a2 = Sy 4 +
F+G= Sy,A and similarly, Sw,Al =+ S.’L’,A2 R Oz, A-
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