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We propose a method for learning a quantum probabilistic model of a perceptron. By
considering a cross entropy between two density matrices we can learn a model that
takes noisy output labels into account while learning. Although some work has been
done that aims to utilize the curious properties of quantum systems to build a quantum
perceptron, these proposals rely on the ad hoc introduction of a classical cost function
for the optimization procedure. We demonstrate the usage of a quantum probabilistic
model by considering a quantum equivalent of the classical log-likelihood, which allows
for both a quantum model and training procedure. We show that this allows us to
better capture noisyness in data compared to a classical perceptron. By considering
entangled qubits we can learn nonlinear separation boundaries, such as XOR.
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I. INTRODUCTION

One of the goals of quantum machine learning is to
integrate quantum physics with machine learning to de-
velop novel algorithms for learning classical data, so
called quantum inspired models [1–5]. Along with these
developments another goal has been coming up with ma-
chine learning algorithms for quantum computers, either
by designing specific algorithms for quantum computers
[6, 7], or by speeding up the underlying linear algebra
routines [8]. Examples of the former include employing
adiabatic quantum annealers to train a binary classifier
[6] and using a quantum computer to calculate an clas-
sically intractable kernel function [7], whereas the latter
includes support vector machines [9], support matrix ma-
chines [10], A-optimal projections [11] and principal com-
ponent analysis (PCA) [12]. However, most of these pro-
posals remain unfeasible due to the current limitations of
modern quantum computers, which still lack long qubit
(the quantum mechanical description of a single spin- 1
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particle) coherence times and high gate fidelity [13].
Inspired by the success of deep learning [14], there

has been interest to develop quantum equivalents of
neural networks that can be trained more efficiently or
are more expressive than their classical counterparts
[15–22]. Quantum inspired proposals utilize quantum
effects in different ways: employing a superposition of
perceptrons [17], using qubit weights [18, 20] or learning
a unitary transformation between input and output [19].
Quantum computing work in this direction involves
using an inverse quantum Fourier transform to obtain
a nonlinear step function [21] or tracing out parts of a
quantum circuit to create an autoencoder [22]. However,
all these proposals introduce a classical cost function for
learning, omitting the underlying probabilistic motiva-
tion for their model. The usage of quantum probabilistic
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cost functions is still relatively unexplored.

Constructing quantum probabilistic models from den-
sity matrices is a new direction of quantum machine
learning research [5, 23], where one exploits quantum ef-
fects in both the model and training procedure by con-
structing a differentiable cost function in terms of density
matrices. Density matrices are used in quantum mechan-
ics to describe statistical ensembles of quantum states.
They are represented by a positive semi-definite Hermi-
tian matrix with trace 1. In this work, we will use density
matrices to construct a model that minimizes a general-
ization of the classical likelihood function for learning,
replacing the classical perceptron bit with a qubit. Oth-
ers have attempted to generalize probability theory to
density matrices [24]. However, the equivalent of condi-
tional probabilities, conditional density matrices, do not
preserve positive definiteness so states can be assigned a
negative probability [25]. Our approach bypasses this dif-
ficulty because we construct a data density matrix from
the probability amplitude of the empirical data distribu-
tion, which is always positive semi-definite.
The desired perceptron is a linear classifier that can be

used for binary classification. It assigns a probability

p(y = 1|x) = f(x ·w) (1)

to class y = 1, based on input x and trainable weights
w with f(x) a non-linear activation function. The acti-
vation function of the perceptron is often taken to be a
sigmoid, since it produces an output between 0 and 1 and
is equivalent to logistic regression. The perceptron is of
particular interest in machine learning because it is the
building block of multilayer neural networks, the driving
force behind deep learning.
In section II we will consider a qubit perceptron that

uses a generalization of the classical likelihood function
for learning. Some numerical results for toy data sets are
discussed in section III, where we show that our qubit
model is better at assigning class probability for noisy
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data. In section IV we will consider two entangled qubits
as a perceptron that can learn nonlinear problems by
assigning a non-linear separation boundary.

II. QUANTUM PERCEPTRON

Consider a classification problem where we have a data
set consisting of input vectors x ∈ Rd of length d with
corresponding labels y ∈ {1,−1}. In supervised machine
learning it is our goal is to find the parameters w for the
function p(y|x;w) that assigns a high probability to the
correct label y for each input x. The classical negative
log-likelihood is given by

Lcl = −
∑

x

q(x)
∑

y

q(y|x) ln p(y|x;w) (2)

Here q(x) is the empirical probability of observing x,
q(y|x) is the empirical conditional probability of observ-
ing label y for data x and p(y|x,w) is the proposed model
conditional probability distribution of the data. By per-
forming gradient descent we can find the optimal param-
eters for our model, which is equivalent to minimizing
the cross entropy between distributions p and q.
To extend the classical likelihood in equation 2 to the

realm of quantum mechanics we require a description of
our model and the conditional probability q(y|x) in terms
of density matrices. The density matrix contains the clas-
sical uncertainty we have about a quantum state. If this
matrix is rank one, we have what is known as a pure state
in which case there is no classical uncertainty about what
quantum state the system is in. If the density matrix has
rank > 1 then we have a so called mixed state [26]. For
our model we will consider a parameterized mixed state,
since this will allow us to capture the uncertainty in the
data. To perform learning, we require a learning rule
that preserves the Hermiticity, positive semi-definiteness
and trace of the density matrix.
We consider the specific case where the data consists

of N discrete vectors x ∈ {1,−1}d with d bits and y ∈
{1,−1} labels. We define the quantum log-likelihood as a
cross entropy between a conditional data density matrix
ηx and a model conditional density matrix ρx, analogous
to equation 2. For each x we construct a wave function
based on the empirical conditional probabilities q(y|x)

|Ψ〉 =
√

q(1|x) |1〉+
√

q(−1|x) |−1〉 (3)

where the states |1〉, |−1〉 are the eigenstates of the σz

operator. The data density matrix is defined as ηx ≡
|Ψ〉〈Ψ|, with components

ηx(y, y
′) =

√

q(y|x)
√

q(y′|x) (4)

Note that this is a pure density matrix. q(y|x) is an
empirical distribution over the label y for each x, and is
fully determined by its conditional expectation value of

y given x written as b(x).

q(y|x) = 1

2
(1 + b(x)y) (5)

with b(x) =
1

M

(

∑

x′

y′I(x′ = x)

)

and M =
∑

x′

I(x′ = x)

Succinctly put, every time x appears in the data, we add
its corresponding label y′ to the sum. Dividing by M ,
the total number of times the sample x appears in the
data we obtain the conditional expectation value b(x).
We define the empirical probability

q(x) =
M

N

for M occurrences of x and N the total number of sam-
ples.
Our model is a density matrix ρ(x,w; y, y′) ≡ ρx. We

use the following proposal:

ρx =
1

Z
e−βH (6)

where H =
∑

k h
kσk, with hk ∈ R and σk the Pauli

matrices with k = (x, y, z). This is a finite temperature
description of a qubit, where we will set β = −1 for now.
Using that exp(a n̂ · σ) = cosh(a) + sinh (a)

∑

k σ
k and

writing
∑

k h
kσk = h

∑

k
hk

h
σk = with h =

√
∑

k(h
k)2

we find

ρx =
1

Z

(

coshh+ sinhh
∑

k

hkσk

h

)

(7)

Solving Tr{ρx} = 1 gives Z = 2 coshh.

ρx =
1

2
I +

1

2
tanhh

∑

k

hkσk

h

=
1

2
I +

1

2

∑

k

mkσk (8)

where I is a 2 × 2 identity matrix and mk = hk

h
tanhh.

Equation 8 gives us the general description of qubit,
which we have now described in terms of a density ma-
trix. This definition spans the space of 2 × 2 Hermitian
matrices, for all hk ∈ R. From the definition of mk it is
clear that mk ∈ (−1, 1). This means that ρx is positive
semi-definite because the eigenvalues of ρx are

λ± =
1

2
(1±

√

∑

k

(mk)2) ≥ 0 (9)

From the eigenvalues we also see that ρx describes a
mixed state, since it is only rank one if

∑

k(m
k)2 = 1.
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We now parameterize the field hk → hk(x) by setting
hk(x) = w

k · x with w
k ∈ Rd, so that the qubit state

is dependent on classical input data. We can absorb the
inverse temperature−β in the field−βhk → hk by rescal-
ing the weightswk. Note that for each Pauli matrix k, we
have one set of weights wk. To clean up the notation we
omit the argument of hk from now on. We now generalize
equation 2 with our data and model density matrices ηx
and ρx to obtain the negative quantum log-likelihood.

Lq = −
∑

x

q(x)Tr{ηx ln(ρx)} (10)

This is the quantum mechanical equivalent of the clas-
sical log-likelihood which minimizes the “distance” be-
tween the density matrix representations of the data and
the model. This expression also appears in the quan-
tum relative entropy, and for ηx > 0 the quantum log-
likelihood is convex in ρx [27]. Next we rewrite this with
our parameterized ρx.

Lq =−
∑

x

q(x)Tr{ηx ln(ρx)} (11)

=−
∑

x

q(x)
∑

y,y′

〈y′|
√

q(y|x)
√

q(y′|x) ln(ρx) |y〉

with {|y〉} a set of orthonormal vectors in the σz basis.

−
∑

x

q(x)
∑

y,y′

√

q(y|x)
√

q(y′|x)

× 〈y′|
(

∑

k

hkσk − ln(2 coshh)

)

|y〉 (12)

Calculating the statistics for the Pauli matrices gives

∑

y,y′

〈y′|
∑

k

hkσk |y〉 =
∑

y,y′

∑

k

〈y′|hkσk |y〉 (13)

which gives three delta functions that we can plug into
equation 12 together with our definition of q(y|x) from
equation 5.

∑

y,y′

√

q(y|x)
√

q(y′|x) (hxδy′,−y + iyhyδy′,−y + yhzδy′,y)

= hx
√

1− b(x)2 + hzb(x) (14)

The hx term quantifies how often a sample occurs with a
flipped output label and is the distinguishing factor from
the classical perceptron. The source of this term is the
σx matrix in the likelihood which flips the state |y〉 and
scales hx with the off-diagonal elements of ηx. As a final
likelihood we get

Lq = −
∑

x

q(x)

(

hx
√

1− b(x)2 + hzb(x)

− ln(2 coshh)

)

(15)

In order to perform learning we have to find update rules
that minimize the function in equation 15. To find the
minimum we perform gradient descent to update the pa-
rameters wk. Derive with respect to w

k

∂Lq

∂wx
= −

∑

x

q(x)

(

√

1− b(x)2 − hx

h
tanhh

)

x

∂Lq

∂wy
=
∑

x

q(x)

(

hy

h
tanhh

)

x

∂Lq

∂wz
= −

∑

x

q(x)

(

b(x)− hz

h
tanhh

)

x (16)

Update the weights at iteration t with

w
k(t+ 1) = w

k(t)− ǫ

(

∂L
∂wk(t)

)

(17)

These are the learning rules for the quantum perceptron,
with learning parameter ǫ for each gradient. Since the
gradient step of w

y is proportional to w
y, the fixed

point solution is wy → 0 in the limit of many iterations.
In the case that there exists a function f(x) = y (no
noise in the data) for all data points, the statistics
b(x) become either 1 or −1, which gives a fixed point
solution w

x → 0. The hz field then corresponds to the
single field of a classical perceptron and the quantum
perceptron approaches the classical case. However, in
the case that there are samples which have both 1 and
−1 labels, the weight wx becomes finite and the solution
of the quantum perceptron will diverge from the classical
perceptron. This change in behaviour is reflected in the
probability boundaries, which differ from the classical
case (see supplementary material A).

We have yet to address how we actually retrieve the
a class label y from the model. Once trained, we can
construct a state ρx of the qubit based on some input
x. The output labels y ∈ {−1, 1} correspond to the
states |−1〉, |1〉 by construction. An obvious measure of
probability is the expectation value 〈σz〉ρx

, which gives

p(y|x;w) = 1

2
(1+y 〈σz〉ρx

). For a finite temperature sys-
tem we have for the expectation value of some observable
Â

〈

Â
〉

= Tr
{

Âρ
}

(18)

From our definition in equation 8 we see that

〈σz〉ρx

= Tr

{

σz 1

2
(1 +

∑

k

mkσk)

}

= δkzm
k = mz

(19)
where we used that Tr

{

σi
}

= 0 and Tr
{

σiσj
}

= 2δij .
The class probability is then constructed as

p(y|x;w) =
1

2
(1 + ymz) (20)
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III. RESULTS

In this section we apply the quantum perceptron to
some toy data sets and compare with the classical per-
ceptron with a sigmoid activation function i.e. logistic re-
gression. For both the classical and quantum perceptron
we look at the Mean Squared Error (MSE) to evaluate
the performance of both methods.

MSE =
1

N

N
∑

i

(yi − p(yi|xi;w))
2

(21)

We always reach the global minimum through batch gra-
dient descent because the cost functions are convex for
both models. Due to the flatness of the likelihood func-
tion near the global minimum, convergence can be slow.
Setting the threshold for convergence at ∆L < 10−7 and
the learning parameter at ǫ = 0.01 ensures that we obtain
fast and convergence without sacrificing model accuracy
for the problems discussed in this paper.

A. Two dimensional binary problem

In order to demonstrate the difference between the
classical and quantum perceptron we consider a two di-
mensional binary classification problem. If the problem
is linearly separable the classical perceptron converges
to a solution where the two classes are perfectly sepa-
rated. In the case where some samples are ‘mislabeled’
the quantum perceptron should behave differently, be-
cause we account for noise in the learning rule.
Consider the data x = {(1, 1), (1,−1), (−1, 1),

(−1,−1)} with labels y = {−1,−1, 1,−1} respectively.
This problem is trivial since it is linearly separable and
all algorithms converge to the same solution (wx,y = 0
and w

z ≈ wcl). However, if we flip some of the output
labels to simulate mislabeled samples or errors in the
data, we suspect that the quantum perceptron will per-
form better. We make 40 copies of the 4 data points in
the binary feature space and for x ∈ {(1,−1), (−1,−1)}
we flip 30% of the outputs from −1 to 1. The probability
boundaries of the perceptrons differ significantly, as can
be seen in figure 1, which leads to a better assignment of
probability the correct states.

B. Binary Teacher-Student problem

A more complex, higher dimensional problem is the
Teacher-Student problem. The input data x ∈ Rd

consists of 600 random binary vectors of length
d = 8, where x ∈ {−1, 1}d. We take a random
weight vector wteacher ∼ N (0, 1) and determine labels
y = sgn(x · wteacher). We then create 5 duplicates
of each input vector to ensure that there are multiple
copies of each sample in the data set. Next we flip some
percentage of labels for 80% of this data set (the training

− 4 − 2 0 2 4
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− 4

− 2

0

2

4

x
1

Classical Percept ron

-1

+ 1

− 0.8

− 0.4

0.0

0.4

0.8

(a)

− 4 − 2 0 2 4
x0

− 4

− 2

0

2

4

x
1

Quantum  Percept ron

-1

+ 1

− 0.8

− 0.4

0.0

0.4

0.8

(b)

FIG. 1. Separation boundaries in the input space for a two
dimensional problem with x = (x0, x1). The contour lines
indicate the expectation value E[y|x;w] ∈ (−1, 1). The 0.0-
line indicates the separation boundary where p(y = 1|x;w) =
p(y = −1|x;w) = 1

2
. Random jitter is added to the plot

to clarify which samples are noisy. (a) Classical perceptron.
The classical perceptron assigns linear boundaries through
the input space, where the distance between the bound-
aries is scaled with the sigmoid. (b) Quantum perceptron.
The quantum perceptron assigns curved boundaries through
the input space. Samples with mislabelings get assigned
a lower expectation value which results in a lower MSE of
MSE(quantum) ≈ 0.106 for the quantum perceptron versus
MSE(classical) ≈ 0.154 for the classical perceptron. Note
that if we threshold the quantum perceptron boundary at
p(y = 1|x; θ) = 0.5, we get a linear boundary that would
assign similar classes as in figure (a), even though the bound-
ary is tilted with respect to the classical boundary. How-
ever, the quantum perceptron assigns high probabilities to
classes about which it is certain (x ∈ {(−1, 1), (1, 1)}) and
lower probabilities to classes about which it is uncertain
(x ∈ {(−1,−1), (1,−1)}). The classical perceptron does this
significantly worse, which is reflected in the difference in MSE.
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FIG. 2. ∆MSE = MSE(classical) − MSE(quantum) versus
the percentage of labels flipped in the training data. Er-
ror bars indicate the standard deviation over 100 different
wteacher initializations. If the amount of noise is 0%, the
classical and quantum perceptron will converge to the same
solution. If the amount of noise is 50% then both models
cannot learn anything. Between these two points lies an area
where the quantum perceptron outperforms the classical per-
ceptron.

set). This is done by generating a random permutation
of the indices of the samples and flipping the label for
the first x% of them. After training both the classical
and quantum perceptron we predict the labels for the
remaining 20% of the data (the test set) and calculate
the difference in MSE between the two models. The
percentage of flipped labels was incrementally increased
by 5% from 0% to 50%. At each step in this schedule
we learn 100 different x and wteacher to gather statistics
for the mean and variance of ∆MSE. The 100 generated
problems are equal across the different percentages.
This setup allows us to assert whether the algorithms
can still find the original separation of the data even if
noise is introduced. The performance of the quantum
perceptron and classical perceptron is compared in figure
2.

We have shown that the quantum probabilistic descrip-
tion is better than a classical perceptron in capturing un-
certainty in toy data sets. At the cost of introducing an
additional parameter w

x, the model is more expressive
which allows for a better characterization of the data.

IV. ENTANGLED PERCEPTRON

In this section we demonstrate the use of entanglement
for learning. This can be achieved by extending the pre-
vious ideas to a multi-qubit system. Consider the Hilbert

space H = HA ⊗ HB, with i, j = 0, 1. Let {|φi〉} be an
orthonormal basis for the 2 × 2 Hilbert spaces HA and
HB. We can write down an arbitrary state in H as

|φ〉 = 1√
N

∑

i,j

hij |φi〉 ⊗ |φj〉 (22)

where hij ∈ C. We must normalize |φ〉 accordingly to
ensure that 〈φ|φ〉 = 1, with 〈φ|φ〉 =

∑

ij h
ij∗hij ≡ N .

This state can be described with a density matrix that is
rank one because we are dealing with a pure state. Since
ρ 6= ρA ⊗ ρB in general the state can be entangled. If
we now look at the reduced density matrix ρB by tracing
out qubit A we end up with a mixed state.

ρB =
1

N

∑

i,j,j′

hij∗hij′ |φj〉 〈φj′ | (23)

If we take hij = w
ij · x with w

ij ∈ C
d then we have

constructed a quantum state parameterized by our in-
puts. With the data density matrix we used in equation
4 we can again minimize the quantum log-likelihood in
equation 10 by replacing ρx with ρB. We can now learn
nonlinear problems as can be seen in figure 3. An expla-
nation on quadrics and the shape of the boundaries as
well as additional examples can be found in supplemen-
tary material B.
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FIG. 3. The XOR problem. Perfect classification of this
nonlinear data set requires 4 classical perceptrons in a 2
layer configuration or a kernel transformation (x0, x1) →

(x0, x1,
√

x2

0
+ x2

1
). We show that the problem can be learned

perfectly with two qubits.

V. CONCLUSION

We extended the classical likelihood to a quantum log-
likelihood and constructed a quantum perceptron from
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density matrices. The resulting algorithm is more resis-
tant to noisy data when learning and takes this noisy-
ness into account when predicting. This is due to the
fact that there is a cost for flipped output labels in the
quantum log-likelihood. For toy data sets we observed
that the quantum perceptron is better at assigning prob-
ability to noisy samples, which resulted in improved per-
formance. When we considered the extension to two en-
tangled qubits, we could also learn nonlinear separation
boundaries.
In this work we have only considered binary classifica-

tion, but the quantum perceptron can easily be extended
to multiclass regression for C > 2 classes by consider-
ing the SU(C) generators instead of the Pauli matrices.
These generators span the space of C×C traceless Hermi-
tian matrices. We are then working with qudits, which
generalize the properties of qubits to d-level quantum
systems.
A caveat of the quantum perceptron is that in order

to outperform a classical perceptron, we require multiple
copies of a sample x with conflicting labels y to be present
in the data, otherwise b(x) = ±1 for all data points and
the algorithm simply reduces to the classical perceptron.
Most real world data sets however contain either a large
number of features or continuous variables so that copies

of samples x with conflicting labels are rare. This lim-
its the increase in performance to edge cases where there
is discrete input data with a small number of features.
Nonetheless, we have shown that at the cost of introduc-
ing a single parameter w

x the density matrix construc-
tion is a more general model than the classical percep-
tron.

To conclude, we have shown that it is possible to learn
a quantum model using a quantum cost function and
that this can lead to improved performance for toy data
sets. We believe that this modeling paradigm could be
a fruitful direction for developing algorithms for Noisy
Intermediate Scale Quantum computers, since the quan-
tum probabilistic approach is still relatively unexplored
in the current literature. The code with the Tensorflow
model of the quantum perceptron and ways to reproduce
the figures in this paper can be found on GitHub [28].
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