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The dynamical Lamb effect is predicted to arise in superconducting circuits when the coupling of
a superconducting qubit with a resonator is periodically switched ”on” and ”off” nonadiabatically.
We show that by using a superconducting circuit which allows to switch between longitudinal and
transverse coupling of a qubit to a resonator, it is possible of to observe the dynamical Lamb effect.
The switching between longitudinal and transverse coupling can be achieved by modulating the
magnetic flux through the circuit loops. By solving the Schrödinger equation for a qubit coupled
to a resonator, we calculate the time-evolution of the number of excitations in the qubit and the
resonator due to the dynamical Lamb effect. The number of excitations created in the system is
maximum when the coupling is periodically switched between longitudinal and transverse using a
square-wave or sinusoidal modulation of the magnetic flux with frequency equal to the sum of the
average qubit and photon transition frequencies.

PACS numbers:

I. INTRODUCTION

According to quantum field theory, the vacuum is filled with virtual particles which can be turned into real ones by
specific external perturbations [1]. Phenomena of this kind are commonly referred to as quantum vacuum phenomena.
Several quantum vacuum phenomena related to the peculiar nature of the quantum vacuum have been predicted [2–4],
some of which, as the Lamb shift [5] and the Casimir effect [2], have been experimentally found [6–11]. Other examples
of quantum vacuum phenomena include the dynamical Casimir effect (DCE) [12], that is the creation of real photons
from the vacuum, and the dynamical Lamb effect (DLE) [13], which is the excitation of an atom in a cavity, along
with the creation of photons. Both the DCE and the DLE arise due to the fast change in boundary conditions of a
cavity. The dynamical Lamb effect was first encountered in Ref. [13], where the situation of an atom passing through
a cavity at relativistic speed was considered. In this case, the excitation of the atom and the generation of photons
was thought to arise because of the sudden change of Lamb shift of the atom. Therefore, the phenomenon was called
dynamical Lamb effect. In Ref. [14], the same setup of an atom in its ground-state accelerating through a cavity is
considered. There, the DLE was understood as an enhanced generation of thermal radiation due to the nonadiabatic
effects at the cavity boundary and termed cavity-enhanced Unruh effect [4]. Similarly to the dynamical Casimir effect,
a nonadiabatic change in the boundary conditions of the cavity is required for the instantaneous change of the Lamb
shift of the atom which generates the dynamical Lamb effect. However, this is very difficult to obtain in a setup with
physical atoms and cavities.

Recently, the DCE has been experimentally observed in superconducting circuits [15, 16]. The latter provide a way
to model atoms and cavities using Josephson junctions and superconducting transmission lines. The advantage of
a superconducting circuit setup over real atoms and cavities lies in the possibility of tuning the parameters of the
system in a short time-interval, allowing us to enter the nonadiabatic regime where the mentioned quantum vacuum
phenomena may arise [17]. Following the case of the DCE, several proposals have been made for the observation of
the DLE in superconducting circuits [18, 19]. In Ref. [18] it is suggested that by turning ”on” and ”off” the coupling
of a superconducting qubit to a resonator, one can induce a sudden change in the Lamb shift of the qubit. While
in Ref. [19], it was proposed that in a superconducting circuit with a qubit coupled to a resonator, the modulation
of the qubit/resonator coupling strength can be used to mimic the situation of an atom passing through a cavity
at relativistic speed. The proposals of Refs. [18] and [19] generated a number of following publications [20–27].
Both proposals lead to the quantum vacuum phenomena that we call dynamical Lamb effect. In fact, an atom
entering a cavity at relativistic speed experiences an instantaneous change in its Lamb shift due to the nonadiabatic
change in the electromagnetic environment surrounding it. The nonadiabatic effects arising in a system of a qubit
coupled to a single-mode of the electromagnetic field were also studied in Ref. [28]. Similar results were obtained
for a polaritonic system where time modulations of the vacuum Rabi frequency [29] were considered [30–32]. More
specifically, enhanced production of photons was predicted for periodic modulations of the vacuum Rabi frequency.
These results have also been extended to superconducting circuit setups [33–36], providing an open-system approach
to the study of quantum vacuum phenomena arising due to time-dependent modulations of the system’s parameters.
In facts, the first experimental observation of a tunable Lamb shift was achieved in a superconducting circuit [37].
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In Refs. [38, 39], it was shown that it is possible to design a superconducting circuit where the qubit/resonator
coupling is switched between longitudinal and transverse by modulating the magnetic flux through the circuit loops.
A qubit/resonator system longitudinally coupled can be seen as a decoupled system with renormalized energy levels
[47]. Whereas in a qubit/resonator system with transverse coupling the qubit and the photons interact. Therefore,
we suggest the possibility of observing the dynamical Lamb effect by adopting the circuit designed in Refs. [38, 39]
and periodically switching between longitudinal and transverse qubit/resonator coupling. This effectively corresponds
to periodically switching ”on” and ”off” of the qubit/resonator coupling, which has been shown to give rise to the
dynamical Lamb effect [18].

To demonstrate the presence of the dynamical Lamb effect, we calculate the number of excitations in the qubit and
the resonator by solving the Schrödinger equation. In a previous article [24], we used an open-system approach to the
study of the dynamics of the system. The results showed that dissipation can be neglected when typical values of the
parameters of the system are considered. This can be understood from the nonadiabatic nature of the phenomenon
under study, which involves a much faster dynamic compared to the one characteristic of dissipative effects. Therefore,
even though open-system approaches for the study of this problem exist, we do not deem it necessary for this case.
The calculations show that the number of excitations in the qubit and resonator due to the dynamical Lamb effect
reach its maximum values when the coupling is periodically switched between transverse and longitudinal using a
square-wave or sinusoidal modulation of the magnetic flux with frequency equal to the sum of the average qubit and
photon transition frequencies.

The article is organized as follows. In Sec. II the Hamiltonian of a qubit/resonator system with longitudinal or
transverse coupling is described. In Sec. III, a superconducting circuit which allows for the switching between a
longitudinally coupled Hamiltonian and a transverse one is introduced. We show how to switch between longitudinal
and transverse coupling by modulating the magnetic flux threading the circuit. The results of numerical calculations
of the time-evolution of the number of excitations in the qubit and the resonator for different modulation of the
magnetic flux are given in Sec. IV. Conclusions follow in Sec. V.

II. LONGITUDINAL AND TRANSVERSE COUPLING

The possibility of switching between a transverse coupling scheme and a longitudinal one was proposed in Refs.
[38, 39], but this was not envisioned as a fast switching which can lead to the observation of quantum vacuum
phenomena. Furthermore, the proposal of a periodic switching ”on” and ”off” of the qubit/resonator coupling was
originally made in Ref. [18] without any specific suggestions on how to exactly achieve this in practice. In fact,
even though the ability of tuning the qubit/cavity coupling is well established in superconducting circuits [40–45], this
usually entails a modification of the qubit’s and resonator’s transition frequencies. The latter would make it impossible
to use a fixed frequency of switching ”on” and ”off” of the coupling that is resonant with the sum frequency of cavity
and resonator transition frequencies. Adopting the circuit proposed in Refs. [38, 39] for this purpose allows to achieve
this goal because the influence of the switching on the qubit and resonator’s transition frequencies is small enough.
In this paper we propose to achieve nonadiabatically fast periodic switching ”on” and ”off” of the qubit resonator
coupling [18] by adopting the superconducting circuit proposed in Refs. [38, 39]. This allows us to achieve the
parameters regime which satisfies the conditions necessary for the observation of the dynamical Lamb effect.

As a first step, let us show how a system with longitudinal qubit/resonator coupling can be seen as an uncoupled
system, in contrast to the case of transverse qubit/resonator coupling. The Hamiltonians of a qubit longitudinally

ĤL and transversely ĤT coupled to a resonator, respectively, can be written as

ĤL = ~ω0σ̂
+σ̂− + ~ωrâ†â+ ~gzxσ̂z

(
â† + â

)
, (1)

ĤT = ~ω0σ̂
+σ̂− + ~ωrâ†â+ ~gxxσ̂x

(
â† + â

)
, (2)

where ω0 is the transition frequency of the qubit, ωr is the frequency of the photons in the resonator, σ̂+ =
σ̂x+iσ̂y

2 ,

σ̂− =
σ̂x−iσ̂y

2 and â†, â are the creation and annihilation operators for excitations of qubit and photons, respectively,
σ̂x, σ̂y and σ̂z are the Pauli x, y and z operators, while gzx and gxx are the longitudinal and transverse coupling
strengths, respectively. The terms σ̂+â and σ̂−â† in Hamiltonian (2) conserve the number of excitations in the system
and they are called rotating terms. While σ̂−â and σ̂+â† can decrease or increase the number of excitations in the
system and they are called counter-rotating terms. Applying an appropriate unitary transformation [46, 47], the
Hamiltonian (1) can be written in a diagonal form as
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Ĥ ′L = ~ω0σ̂
+σ̂− + ~ωrâ†â−

~2g2
zx

ωr
Î , (3)

where Î is the identity operator. Since Ĥ ′L and ĤL are related by a unitary transformation, their eigenvalues are the
same and they describe a qubit and a resonator with the same transition frequencies. Therefore, the two Hamiltonians
describe systems which are characterized by the same observables. However, in (3) the qubit is now decoupled from
the resonator and the zero-point energy is renormalized. In this case, the Lamb shift of the qubit is absent. In contrast,
in the case of Hamiltonian (2) the qubit and the resonator cannot be decoupled by any sort of unitary transformation. The
latter implies, for instance, that the energy levels of the qubit are affected by the Lamb shift. So, we can regard the
system with longitudinal coupling given by Eq. (1) as a system of a qubit and a resonator with the qubit/resonator
coupling turned ”off” and the system with transverse coupling defined by Hamiltonian (2) as the same qubit and
resonator with the qubit/resonator coupling turned ”on”. Thus, the switching between these two coupling regimes
involves a change in the Lamb shift of the qubit.

III. SUPERCONDUCTING CIRCUIT WITH TUNABLE QUBIT/RESONATOR COUPLING
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FIG. 1: Superconducting circuit for a qubit coupled to a resonator with tunable qubit/resonator coupling. By turning ”on” and
”off” the magnetic flux Φx(t) we can switch between a description of the circuit in terms of a transversely coupled Hamiltonian
and a longitudinal one.

Let us consider the circuit in Fig. 1 and define the branch fluxes associated with the qubit and the resonator, as
Φq = Φa − Φb and Φr = Φa + Φb − 2Φc, respectively, where Φa, Φb and Φc are the magnetic fluxes at the nodes a, b
and c. Following Ref. [48], one can write the Lagrangian for the circuit in Fig. 1 by adding the contributions of each
element in terms of the branch fluxes [39]

L =

(
2Cq + C

4
Φ̇2
q +

C

2
Φ̇2
r

)
− 1

4L

(
Φ2
q + Φ2

r

)
+ EJq cos

(
2π

Φ0
Φq

)
+

+kEJ1 cos

(
2π

Φ0

(
Φq + Φr

2k
+

Φx(t)

k

))
+ kEJ2 cos

(
2π

Φ0

(
Φq − Φr

2k
+

Φx(t)

k

))
.

(4)

In Eq. (4), Φx(t) is the external magnetic flux threading the areas enclosed by the left and right loops, k is the number
of Josephson junctions in a branch of the circuit, which the same in each branch, C and L are the capacitance and the
inductance of the loops, respectively, EJ1 and EJ2 are the Josephson energies of the junctions in each branch, EJq
the Josephson energy of the qubit junction and Cq its capacitance. The Hamiltonian of the system can be found by

taking the Legendre transform of the Lagrangian: H =
∑N
i=1

dL
dΦ̇i

Φ̇i −L, where i = q, r are the indices corresponding

to the qubit and resonator flux variables, respectively. This leads to the following Hamiltonian for the circuit
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H(t) =
1

2Cq + C
Q2
q +

1

C
Q2
r +

1

4L

(
Φ2
q + Φ2

r

)
− EJq cos

(
2π

Φ0
Φq

)
+

−kEJ1 cos

(
2π

Φ0

(
Φq + Φr

2k
+

Φx(t)

k

))
− kEJ2 cos

(
2π

Φ0

(
Φq − Φr

2k
+

Φx(t)

k

))
.

(5)

A quantum mechanical model of the circuit can be obtained from its classical Hamiltonian by applying the standard
procedure of second quantization for the qubit and resonator variables separately [39]. Let us first consider the
quantization of resonator variables by setting Qq = 0, Φq = 0 and Φx = 0. If the sum of the Josephson energies kEJ1 and

kEJ2 of the two junction arrays is much greater than the charging energy Ec = e2

2C , where C is the capacitance in parallel
to each array of junctions, the cosine potential energy term in Eq. (5), for small values of Φr, can be well approximated by
a harmonic potential [38, 49]. For the specific values of the parameters of the circuit chosen in Sec. IV (see Eq. (16)) we
have kEJ1 = h× 734.4 GHz, kEJ2 = h× 705.6 GHz and Ec = h× 189.9 MHz. Therefore, kEJ1 + kEJ2 � Ec by about
four orders of magnitude. Thus, expanding the cosine in terms of Φr up to second order, and expressing the resonator’s
variables Qr and Φr in terms of the operators of creation â† and annihilation â of photons in the resonator as

Qr =

((
~
2

)2
C(1 + η)

L

) 1
4

i
(
â† − â

)
, Φr =

(
~2 L

C(1 + η)

) 1
4(
â+ â†

)
, (6)

we obtain

Ĥr = ~ωr
(
â†â+

1

2

)
. (7)

In Eq. (7) ωr =
√

1+η
LC is the transition frequency between the energy levels of the system and η is a dimensionless

parameter defined in Table II. This parameter accounts for the flux-dependence of the system. The Hamiltonian (7)
is the Hamiltonian of a harmonic oscillator. The operators of creation and annihilation of photons in the resonator
are bosonic operators which satisfy the commutation relation

[
â, â†

]
= 1. With the definitions given in Eq. (6), and

the commutation relation for â† and â, one can prove that the variables Φr and Qr satisfy the commutation relation
for conjugate variables [Φr, Qr] = i~. Let us now turn back and consider the quantization of qubit variables. Starting
from Hamiltonian (5), we set Qr = 0, Φr = 0 and Φx = 0 and expand the cosine in terms of Φq up to second order [49].
This can be done because the above mentioned Josephson energies kEJ1, kEJ2 and EJq = h × 10 GHz are at least two

orders of magnitude greater than the charging energy Ec = e2

2(Cq+C) = h × 119.6 MHz, for the values of the parameters

of the circuit chosen in Sec. IV, Eq. (16). Then, introducing the operators of creation b̂† and annihilation b̂ of qubit
excitations in terms of Qq and Φq,

Qq = e

(EJq +

(
Φ0

2π

)2
1 + η

2L

)
2Cq + C

2e2

 1
4

i
(
b̂† − b̂

)
, Φq =

(
Φ0

2π

) 2e2

2Cq + C

1

EJq +
(

Φ0

2π

)2
1+η
2L


1
4(
b̂+ b̂†

)
,

(8)
we obtain the following quantum mechanical Hamiltonian

Ĥq = ~ωq
(
b̂†b̂+

1

2

)
. (9)

In Eq. (9) ωq =

√
8

(
EJq+

(
Φ0
2π

)2 1+η
2L

)
2e2

2Cq+C

~ is the transition frequency between the first two energy levels of the system.
The operators of creation and annihilation of qubit excitations are also taken to be bosonic operators satisfying the

commutation relation
[
b̂, b̂†

]
= 1. Again, one can prove that the variables Φq and Qq satisfy the commutation relation

for conjugate variables
[
Φq, Qq

]
= i~ by using the commutation relation for b̂† and b̂, together with the definitions
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TABLE I: Instantaneous values of the parameters given in Table II for the case of square-wave modulation of the external
magnetic flux Φx.

Transverse coupling: Φx = 0 Longitudinal coupling: Φx = kπ
2

ηT = EJ1+EJ2
2k

(
2π
Φ0

)2

L ηL = 0

E∗T
Jq = EJq +

(
Φ0
2π

)2
1+ηT

2L
E∗L
Jq = EJq +

(
Φ0
2π

)2
1

2L

ωTr =
√

1+ηT

LC
ωLr =

√
1
LC

ωT0 =
√

8EcE∗T
Jq − Ec

EJq+
(

Φ0
2π

)2 ηT

2k2L

E∗T
Jq

ωL0 =
√

8EcE∗L
Jq − Ec

EJq

E∗L
Jq

gTxx = EJ1−EJ2
2k2

4

√
2EC
E∗T
Jq

π
Φ0

4

√
L
C

1
1+ηT

gLxx = 0

gTzz = −EJ1−EJ2
16 k3

√
2EC
E∗T
Jq

(
π

Φ0

)2√
L
C

1
1+ηT

gLzz = 0

gTzx = 0 gLzx = −EJ1−EJ2
8 k2

√
2EC
E∗L
Jq

π
Φ0

4

√
L
C

gTxz = 0 gLxz = −EJ1−EJ2
4 k2

4

√
2EC
E∗L
Jq

(
π

Φ0

)2√
L
C

given in Eq. (8). The energy levels of the system for a weakly anharmonic potential are not all equally spaced and
by addressing the system at the right frequency one can induce transitions between two levels alone [50]. Therefore,
we consider only two accessible levels, namely the ground and the first excited state, and replace the creation and

annihilation operators b̂ and b̂†, respectively, with σ̂+ and σ̂−. The latter ones are used to describe excitations in
a two-level system. The transition frequency between the first two levels is also adjusted to take into account the
anharmonicity by replacing ωq with ω0. Therefore, we rewrite the Hamiltonian (9) as

Ĥ′q = ~ω0

(
σ̂+σ̂− +

1

2

)
, (10)

Hamiltonian (10) is the Hamiltonian of a quantum two-level system. To obtain a quantum mechanical Hamiltonian
of the system, one can substitute the expressions for the resonator and qubit variables given in Eqs. (6) and (8),
respectively, into Hamiltonian (5). In this way, one can also express the terms in Hamiltonian (5) which involve both
resonator and qubit variables in the argument of the cosine, thus coupling those variables, in terms of creation and
annihilation operators of the photons excited in the resonator and the qubit’s excitation. Thus, getting

Ĥ(t) = ~ωr(t)
(
â†â+

1

2

)
+ ~

ω0(t)

2
σ̂z + ~gxx(t)σ̂x

(
â† + â

)
+ ~gzz(t)σ̂z

(
â† + â

)2

+

+~gzx(t)σ̂z

(
â† + â

)
+ ~gxz(t)σ̂x

(
â† + â

)2

,

(11)

where ωr(t) is the transition frequency of the resonator, ω0(t) is the transition frequency of the qubit and gxx(t),
gzz(t), gzx(t) and gxz(t) are the coupling strengths. The expressions of each of the parameters in Hamiltonian (11)
are given in Table II in the Appendix. It is important to note that all these parameters depend on time through their
dependence on the external magnetic flux Φx(t).

A. Square-wave modulation

We consider two forms of the magnetic flux modulation: a square-wave and a sinusoidal one. Let us first focus on
the case of a square-wave modulation of the magnetic flux

Φx(t) =
kπ

2
θ

(
cos

(
$st+

3π

2

))
, (12)

where θ(·) is the Heaviside function which switches on periodically with period Ts = 1/$s, where $s is the frequency
of the switching of the magnetic flux. By switching the external magnetic flux Φx(t) between the values 0 and kπ

2 ,



6

one can tune the qubit and the resonator parameters in Hamiltonian (11) at each instant of time. This gives the
instantaneous switching between transverse and longitudinal qubit/resonator coupling which can be used to give rise
to the dynamical Lamb effect. Although this kind of modulation is closest to the ideal situation of instantaneous
switching, it can be difficult to achieve with the experimental instruments available now because of the short period
Ts of the square wave required.

In particular, for Φx = 0 we can write the Hamiltonian (11) as

ĤT = ~ωTr
(
â†â+

1

2

)
+ ~

ωT0
2
σ̂z + ~gTxxσ̂x

(
â† + â

)
+ ~gTzzσ̂z

(
â† + â

)2

, (13)

where the expression of the parameters
{
ωTr , ω

T
0 , g

T
xx, g

T
zz

}
are given in Table I. In this case, {gxx, gzz 6= 0; gzx, gxz = 0}

and the Hamiltonian (13) is instantaneously equivalent to the Hamiltonian (2) of a transversely coupled
qubit/resonator system, with the exception of an extra coupling term.

On the other hand, for Φx = kπ
2 , Hamiltonian (11) can be reduced to the following form

ĤL = ~ωLr
(
â†â+

1

2

)
+ ~

ωL0
2
σ̂z + ~gLzxσ̂z

(
â† + â

)
+ ~gLxzσ̂x

(
â† + â

)2

, (14)

where the expressions of
{
ωLr , ω

L
0 , g

L
xx, g

L
zz

}
are also given in Table I. Here, {gxx, gzz = 0; gzx, gxz 6= 0}, which leads

to an instantaneous longitudinal qubit/resonator coupling as in (1), with a spurious coupling term. To suppress the
unwanted terms gTzz and gLxz in Hamiltonian (13) and (14), respectively, we choose specific values of the parameters
of the circuit.

B. Sinusoidal modulation

While the square-wave modulation of the magnetic flux Φx(t) comes closest to the requirement of periodic and
instantaneous switching ”on” and ”off” of the qubit/resonator coupling needed to observe the dynamical Lamb effect,
this may be difficult to achieve in a realistic experimental setting. For this reason, we turn to another type of
modulation, a sinusoidal one, which can be easily obtained in experiments. In fact, a high-frequency sinusoidal
magnetic flux was used in the first experimental observation of the dynamical Casimir effect [15]. This models the
more realistic situation where a finite amount of time is needed to switch ”on” and ”off” the coupling of the qubit
with the resonator. Thus, we take Φx(t) as

Φx(t) =
kπ

2

(
1

2
+

1

2
cos($st)

)
. (15)

In this case, the magnetic flux doesn’t instantaneously switch ”on” and ”off” but continuously increases or decreases

to its maximum or minimum value, respectively. However, the rise time trise = t
(

Φx = kπ
2

)
− t(Φx = 0), that is the

time required to increase the magnetic flux from the minimum value to the maximum value, and, vice versa, the fall

time tfall = t(Φx = 0)− t
(

Φx = kπ
2

)
, the time needed to decrease it from the maximum value to the minimum value,

are shorter than any parameter with dimension of time (trise, tfall � ω−1
0 , ω−1

r ). Therefore, one can still consider this
modulation to be nonadiabatic. The parameters of Hamiltonian (11) do not take the simple form shown in Table I
for the case of square-wave modulation but vary continuously with the magnetic flux Φx(t). These parameters can
be found by substituting the sinusoidal modulation of the magnetic flux in the corresponding expressions from Table
II in the Appendix.

IV. RESULTS AND DISCUSSION

We numerically solve the Schrödinger equation for the Hamiltonian (11) in the case of periodic switching between
transverse and longitudinal coupling with the initial condition |ψ(t = 0)〉 = |g, 0〉, where g denotes the qubit in
the ground state and 0 is the number of photons in the resonator. In the numerical calculations of the number of
excitations in the qubit and resonator, we use the following values of the parameters of the circuit [39]:
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k = 9, EJq = h× 10 GHz,

EJ1 = h× 81.6 GHz, EJ2 = h× 78.4 GHz,

C = 102 fF, Cq = 60 fF,

L = 5 nH.

(16)
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FIG. 2: Time dependence of the number of excitations in the qubit and the resonator for a frequency of switching of the
magnetic flux $s = ω̄r + ω̄0 for a square-wave modulation (a) and a sinusoidal modulation (b) of the magnetic flux.

The results of our calculations are presented in Figs. 2 and 3. In Figs. 2a and 2b the time-dependence of the
expected number of excitations in the qubit and the resonator for a square-wave and a sinusoidal modulation of the
coupling is presented. The plots shown correspond to specific values of the frequency of switching $s of the magnetic
flux for the two different type of modulation. In both cases, the value of the frequency of switching of the magnetic
flux which maximize the number of excitations in the qubit and the resonator is $s = ω̄r + ω̄0, which is the sum of

the time-averaged qubit transition frequency ω̄0 = 1
T

∫ T
0
ω0

(
t′
)
dt′ and the time-averaged photon transition frequency

ω̄r = 1
T

∫ T
0
ωr
(
t′
)
dt′ over a period of oscillation of the magnetic flux. Because of the different time-dependence of the

qubit and resonator transition frequencies for the different modulations, the number of excitations in the qubit and
the resonator reach their maximum value at a different frequency of switching of the magnetic flux. In the case of a
square-wave modulation, the number of excitations is maximum for $s = ω̄r + ω̄0 = 13.75 GHz. While for the case
of a sinusoidal modulation, the maximum is at $s = 13.90 GHz. Moreover, there are no excitations in the system for
almost all other values of the frequency of switching of the magnetic flux different from $s = ω̄r+ω̄0. Fig. 3 shows the
time dependence of the number of excitations in the qubit and the resonator for a range of frequencies of switching
$s of the magnetic flux. Since the counter-rotating terms in the Hamiltonian (2), which cause the |g, 0〉 → |e, 1〉
transition, become relevant for frequency of switching of the coupling equal to the sum frequency of the qubit and
resonator transition frequencies, the results of Fig. 3 may seem trivial, but they are instructive. In fact, because of
the slight modification of the qubit and cavity transition frequencies during the modulation of the magnetic flux, the
sum frequency is not fixed. Indeed, the frequency of switching of the coupling that makes the counter-rotating terms
stationary is given by the time average of the sum frequency of the transition frequencies of qubit and resonator. The
counter plots in Fig. 3 clearly show that there are no other values of the switching frequency which have any effect
on the system. Figs. 3a and 3b depict the results obtained in the case of a square-wave modulation of the magnetic
flux, while the results obtained in the case of sinusoidal modulation of the magnetic flux are shown in Figs. 3c and
3d.

It is crucial to note that the state |e, 1〉, where e stands for the qubit in the excited state, can only be reached from the
initial state |g, 0〉 through the counter-rotating terms â†σ̂+ + âσ̂− in Eq. (11). Since the counter-rotating terms are also
responsible for the presence of the Lamb shift, the excitations of the system generated by the nonadiabatic switching ”on”
and ”off” of these terms can be seen as the result of a nonadiabatic change in Lamb shift. Therefore, the dynamical Lamb
effect is the main channel of excitation of the qubit and the creation of photons. By considering Hamiltonian (11) in a
frame rotating at the qubit and photon’s transition frequencies (interaction picture), one has that the counter-rotating terms
become dominant over the rotating terms when the qubit/resonator coupling is periodically switched ”on” and ”off” at a
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FIG. 3: Time dependence of the number of excitations in the qubit and the number of photons in the resonator for a range
of frequencies of switching $s of the magnetic flux. We take $s ∈

[
3
4
(ω̄r + ω̄0), 5

4
(ω̄r + ω̄0)

]
. The color-scale in the figures

indicates the number of excitations. Expectation value of the number of excitations in the resonator (a) and the qubit (b), for
a square-wave modulation of the magnetic flux. Number of photons (c) and probability of excitation of the qubit (d), for a
sinusoidal modulation of the magnetic flux.

frequency equal to the sum of the qubit and the resonator time-averaged frequencies. In fact, for the specific modulation of
the qubit/resonator coupling chosen the counter-rotating terms become stationary while the rotating terms acquire a phase
oscillating at high frequency, thus averaging them to zero. In Ref. [20], it is shown that the interplay between rotating and
counter-rotating terms in the Hamiltonian allows for the emission of any number of photons in principle. However, when
the contribution of the rotating terms becomes negligible, as in our case, this ceases to be true and only transitions caused
by the counter-rotating terms are effectively allowed. So, if we consider a qubit and a resonator initially in the ground state,
the transitions |g, 0〉 → |e, 1〉 and |e, 1〉 → |g, 0〉, which create and destroy two excitations in the system, respectively, will
dominate the dynamics of the system. A comparison of Figs. 3a and 3b, and Figs. 3c and 3d, clearly shows that the
number of excitations in the resonator and the qubit coincide and periodically reaches its maximum at one, indicating that
the system is undergoing the transitions described above. Experimentally, the state of the qubit can be measured to have
an indication of the transition. This is done by using an additional resonator coupled to the qubit. In fact, the resonant
frequency of the resonator, and thus its reflection coefficient, depends on the state of the qubit [51]. Although, the coupling
of the qubit to the read-out resonator causes a Lamb shift of the energy levels of the qubit, this shift remains constant
during the dynamics of the qubit/resonator system described above. Thus, the possibility of generating the nonadiabatic
Lamb shift of the qubit needed for the DLE is not affected by the presence of a read-out resonator.
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V. CONCLUSION

In conclusion, we predict that the dynamical Lamb effect could arise in superconducting circuits when the coupling
of a superconducting qubit with a resonator is periodically switched ”on” and ”off” nonadiabatically and demonstrate
that by using a superconducting circuit which allows to switch between longitudinal and transverse coupling of a
qubit to a resonator, it is possible of to observe the dynamical Lamb effect. In particular, the switching between
longitudinal and transverse coupling which gives rise to the dynamical Lamb effect is achieved by turning ”on” and
”off” the magnetic flux through the loops of the superconducting circuit. If the magnetic flux is periodically turned
”on” and ”off” as a square-wave or a sinusoidal modulation with a frequency of switching equal to the sum of the
average qubit and photon transition frequencies, the calculated number of excitations in the qubit and the resonator
due to the dynamical Lamb effect reach its maximum values.
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Appendix A

The analytical expressions of the parameters for the Hamiltonian (11) used in the calculations of the time-evolution
of the number of excitations in the qubit and resonator are given in the table below [39].

TABLE II: Expressions of the parameters introduced in Eq. (5).
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