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Ergodicity and chaos play an integral role in the behavior of dynamical systems and are crucial to5

the formulation of statistical mechanics. Still, a general understanding of how ergodicity and chaos6

emerge in the dynamical evolution of closed quantum systems remains elusive. Here, we develop7

an experimental platform for the realization of canonical quantum chaotic Hamiltonians based on8

quantum simulation with synthetic lattices. We map the angular momentum projection states of an9

effective quantum spin onto the linear momentum states of a 87Rb Bose-Einstein condensate, which10

can be alternatively viewed as synthetic lattice sites. This synthetic lattice, with local and dynamical11

control of tight-binding lattice parameters, enables new capabilities related to the experimental12

study of quantum chaos. In particular, the capabilities of our system let us tune the effective size of13

our spin, allowing us to illustrate how classical chaos can emerge from a discrete quantum system.14

Moreover, spectroscopic control over our synthetic lattice allows us to explore unique aspects of15

our spin’s dynamics by measuring the out-of-time-ordered correlation function, and enables future16

investigations into new symmetry classes of chaotic kicked top systems.17

The contrasting behavior of quantum and classical sys-18

tems is most apparent in their nonlinear dynamical re-19

sponse to a periodic drive [1]. While driven classical sys-20

tems can play host to truly chaotic behavior, including21

the loss of information about specific initial conditions,22

it is expected that true memory loss will not occur in23

closed and bounded quantum systems [2]. This stems24

from both the unitary nature of closed quantum systems,25

which strictly forbids memory loss, as well as the rele-26

vance of quantum uncertainty and the effective smearing27

of phase space in small quantum systems. This smearing28

of states in phase space dulls the sensitivity to initial con-29

ditions encountered in classically chaotic systems. Over30

the past few decades a number of experimental systems31

have illustrated this stark contrast between the nonlin-32

ear dynamics of classical and quantum systems, e.g. the33

spectra of atoms in applied electromagnetic fields [3, 4],34

the response of cold matter waves to time-periodic op-35

tical lattices [5–9], and the scattering of complex atoms36

and molecules in an applied field [10, 11].37

The kicked top model, in which the symmetry of a pre-38

cessing spin is broken by a series of nonlinear “kicks” [1],39

is one of the most paradigmatic systems giving rise40

to chaotic behavior. The correspondence between the41

nonlinear dynamics of classical and quantum systems42

has been explored through several experimental realiza-43

tions [12–14] of quantum kicked top models, where the44

spin is quantized with a finite angular momentum value45

J . In a pioneering exploration of chaotic phenomena in46

quantum systems, Ref. [12] studied the dynamics of the47

ground hyperfine manifold (F = 4) of thermal cesium48

atoms. The atoms were subjected to a continuous non-49

linear twist realized through a state-dependent light shift50

of the magnetic sublevels (mF ) and a periodic linear kick51

given by a transverse magnetic field. While such studies52

could be extended to slightly smaller or larger spins with53

different atomic species or Rydberg atoms [15], a more54
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FIG. 1. Experimental scheme. (a) Time-of-flight absorption
image (top) and cartoon (bottom) depicting a J = 2 lattice
where the lattice sites represent the angular momentum sub-
levels mJ . (b) Arbitrary torque vector on the equator of the
Bloch sphere (left) emulated in this system through the tun-
neling links |tn(φn = φ)| (right).

flexible approach to designing effective spins with tunable55

size has recently been realized. Using spectrally-resolved56

addressing of transitions in a multi-level superconducting57

qudit, Ref. [13] demonstrated the engineering of artificial58

spin-J systems and control over linear rotations.59

Here, in the spirit of creating synthetic spins60

through coherent control, we engineer a highly-tunable61

momentum-space lattice [16, 17] with full control over the62

tunneling and site-energy landscapes. In our approach,63

the momentum states of a (2J + 1)-site lattice play the64

role of angular momentum sublevels mJ ∈ {−J, J} (see65

Fig. 1(a)), enabling natural control over the size of the66
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spin J . This simple control over J allows us to study the67

crossover from a highly quantum regime (small J), where68

chaotic behavior is mostly suppressed, towards the nearly69

classical limit (moderate to large J), where chaotic be-70

havior is predicted to emerge.71

Kicked top model. The dynamics of the kicked top sys-72

tem are captured by the time-dependent Floquet Hamil-73

tonian74

H(τ) =
ρ

T
Jx +

κ

2J
J2
z

∑
N

δ(τ −NT ), (1)75

where the first term represents continuous rotation about76

the x axis at a rate ρ/T and the second describes a train77

of effectively instantaneous torsional J2
z kicks of strength78

κ spaced by a period T , withN the kick number and τ the79

time variable. In the classical limit, symmetry-breaking80

by the J2
z kicks gives rise to chaotic dynamics for certain81

initial orientations of the spin, with islands of stability82

in phase space for moderate nonlinear coupling. As κ is83

increased, the onset of global chaos leads to the loss of84

all stable, regular trajectories of the spin. In the limit of85

small J , the lack of well-defined spin orientations due to86

quantum uncertainty results in a general insensitivity to87

initial conditions and a suppression of chaotic behavior.88

Specifically, it dulls the sensitivity to initial conditions89

found in the classical Hamiltonian dynamics.90

Connections between classical chaos and the genera-91

tion of quantum entanglement [18, 19] add further inter-92

est to the interplay between classical and quantum dy-93

namics. For quantum kicked top dynamics in which the94

spin-J object represents the collective spin of many in-95

teracting spin-1/2 particles (e.g., in atomic condensates96

with a spin degree of freedom [14]) scenarios leading to97

classical chaos can generate quantum correlations and98

metrologically useful spin squeezing [20]. Starting from99

a coherent spin state (CSS) the states of the individual100

particles become entangled and the many-body state be-101

comes non-separable under the evolution of Eq. 1. The102

direct measurement of multi-particle correlations gener-103

ated by kicked top dynamics has recently been achieved104

for the small J limit, in a system of superconducting105

qubits with engineered interactions [21].106

Here, instead of studying the collective spin of many107

interacting spin-1/2 particles, we directly mimic the dy-108

namics of a single spin-J quantum object. To successfully109

explore quantum chaos in this system, we must be able to110

engineer an effective spin system, realize the kicked top111

Hamiltonian of Eq. 1, accurately prepare initial states of112

the spin, and measure the final state of the spin after113

some dynamical evolution. In the following sections, we114

describe how we achieve these tasks using momentum-115

space lattice techniques.116

The momentum-space lattice as a synthetic spin. Our117

momentum-space lattice is created from two counter-118

propagating laser beams with a nearly common wave-119

length λ = 1064 nm and wavevector k = 2π/λ. One120

of the beams has only a single frequency component,121

while its counter-propagating partner contains multiple122

discrete frequency components. Initially at rest, the123

atoms transition between discretized momentum states124

pn = 2nh̄k (separated by twice the photon recoil mo-125

mentum) by exchanging photons between the two laser126

beams. That is, the atoms undergo a Bragg diffraction127

process where they are virtually excited by a photon from128

one laser beam and then emit a photon into the counter-129

propagating beam via stimulated emission, resulting in a130

±2h̄k momentum change. The frequencies of the many131

components of the multi-frequency laser are chosen to132

match different two-photon Bragg resonance conditions,133

creating a set of resonantly-connected momentum states134

that serve as the sites of the momentum-space lattice. By135

careful tuning of the number, frequency, amplitude, and136

phase of the components of the multi-frequency beam,137

we exert full control over the number of sites, site en-138

ergies, tunneling strengths, and tunneling phases in our139

lattice, respectively [22]. During an 18 ms time-of-flight140

expansion period at the end of every experimental cycle,141

the atoms at different sites of the lattice naturally sepa-142

rate from each other according to their momenta, which143

allows us to perform site-resolved measurements through144

standard absorption imaging.145

We engineer an artificial spin and realize dynamics146

governed by Eq. 1 by coupling many discrete momen-147

tum states in a controlled and time-dependent fashion148

as described above. By mapping the z-basis projections149

of the spin, i.e. the mJ sublevels, onto the momentum150

states in our lattice, the two terms of Eq. 1 allow for a151

simple realization in terms of lattice dynamics. The Jx152

rotation can be viewed as a kinetic evolution enabled by153

tunneling (undergoing Bragg diffraction) between adja-154

cent sites. The nonlinear J2
z kicks are simply instanta-155

neous site-dependent phase shifts, or alternatively rep-156

resent evolution without tunneling for a fixed time in157

a quadratic potential of site energies. We realize these158

elementary processes in a one-dimensional momentum-159

space lattice [16, 17] populated by atoms from a 87Rb160

Bose–Einstein condensate, as depicted in the time-of-161

flight absorption image shown in Fig. 1(a).162

Linear spin operators: rotations. The linear spin oper-163

ator Jx (Jy) can be visualized as the rotation of a given164

spin state about a torque vector lying on the equator165

(θ = π/2) of the Bloch sphere. A CSS |θ, φ〉 can easily166

be visualized on the Bloch sphere as well, where the spin167

is oriented along the polar and azimuthal angles θ and168

φ, respectively. While interactions lead to no significant169

correlated behavior in our system, which is rather based170

on the direct emulation of a spin-J object, this language171

of a spin on the Bloch sphere provides for an intuitive172

picture of the system dynamics. Alternatively, Jx and173
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FIG. 2. Demonstrations of linear rotations. (a) Evolution of 〈Jz〉 for several spin sizes starting in |θ = 0, φ = 0〉CSS and
evolving under a Jx operator. The solid blue lines are results from simulations of Eq. 3 with no free parameters and the dashed
gray lines show the theoretical π pulse times. (b) Expectation value 〈Jz〉 for a spin-2 state evolving under a Jx operation until
the gray dashed line at ≈ 2.2 h̄/t. At this time, the operation is switched to either J−y (red dots and solid red theory line)
or J−x (open blue dots and dashed blue theory line). (c) (top) Experimental absorption images showing the evolution of a
J = 5 spin starting in |J = 5,mJ = 0〉z evolving under a −Jy operator. (bottom) Simulated absorption images showing the
final atomic distribution and the initial state |J = 5,mJ = 0〉z. All error bars are one standard error of the mean. The error
bars only represent statistical errors, and are not visible due to being smaller than the data markers.

Jy can be understood as the matrix representations of174

the magnetic dipole operator between different |J,mJ〉175

states in a transverse magnetic field.176

In order to implement generic rotations about equa-177

torial torque vectors pointing along any azimuthal angle178

φ, i.e. Jφ = Jx cos(φ) + Jy sin(φ), we tailor the tunnel-179

ing amplitudes and phases between adjacent lattice sites180

as depicted in Fig. 1(b). We introduce tunneling terms181

tn(φn) linking lattice site n to site n+ 1 (or equivalently182

angular momentum state mJ to mJ + 1 with tunneling183

phase φn, taking the form of the matrix elements of the184

desired spin operator:185

tn(φn) = A
√
J(J + 1)− n(n+ 1)eiφn . (2)186

Here, n ∈ {−J, J − 1} is the tunneling term index repre-187

senting a drive-field linking momentum states n and n+1188

and A is a constant with units of energy related to the189

tunneling rate. This tunneling function has a maximum190

amplitude at the center of the mJ manifold, which we191

label t for convenience (see Fig. 1(b)). Using these tun-192

neling links we simulate the tight-binding Hamiltonian193

Htb(φn) =

J−1∑
n=−J

(
tn(φn)c†n+1cn + h.c.

)
, (3)194

where c†n(cn) creates (annihilates) a particle at site n.195

The tunneling phase φn determines the direction of the196

effective torque vector in the x-y plane, where Jx and Jy197

relate to Htb(φn = 0) and Htb(φn = π/2), respectively.198

Figure 2 summarizes our ability to perform these lin-199

ear, equatorial spin rotations. Beginning from stretched200

state |J,mJ = J〉, we monitor the z-axis projection of201

the spin evolving under a Jx operator for several values202

of J (Fig. 2(a)). The observed dynamics are in good203

agreement with theory, with the observed times of spin-204

inversion (π-pulse times) matching well with theoretical205

predictions (dashed lines) for varying J [23].206

We further illustrate our phase- and time-dependent207

control over spin operations in Fig. 2(b). For an initial208

spin state |J = 2,mJ = 2〉, we first apply a Jx rota-209

tion for a time corresponding to a π/2 pulse. We then210

modify our tunneling parameters to instantly change the211

direction of the effective torque vector. For a complete212

inversion of the torque vector to −Jx (evolution under213

Htb(π), open blue circles), we find that the dynamics214

of the spin reverse towards the initial state. If we in-215

stead shift the torque vector to −Jy (evolution under216

Htb(−π/2), red filled circles), we find that the dynamics217

essentially cease, since the spin is aligned along the new218

torque vector. Continued evolution of the spin as seen in219
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Fig. 2(b) is due to the spin having rotated further than220

desired prior to the sudden shift of the torque vector.221

State preparation. As demonstrated in Fig. 2(a,b),222

we are able to prepare our spin in the stretched state223

|J,mJ = J〉 by a simple definition of the synthetic lattice224

site index with respect to the discrete momentum values225

(mJ = J+p/2h̄k), and a corresponding choice of the ap-226

plied Bragg resonance frequencies. We can furthermore227

initiate the spin in any state with well-defined angular228

momentum in the z basis |J,mJ〉 by simply defining the229

corresponding site of our synthetic lattice to match our230

zero-momentum condensate. These initial states with231

mJ 6= ±J would represent states that are squeezed with232

respect to the operators Jx, Jy, and Jz [24]. While233

there are no significant correlations between the atoms in234

these experiments, the ability to prepare arbitrary initial235

states of our synthetic spin does allow us to explore the236

evolution of squeezed states under a classically chaotic237

Hamiltonian. Fig. 2(c) shows the evolution of the state238

|J = 5,mJ = 0〉 under a −Jy spin rotation. This angular239

momentum state displays interesting dynamics as it is240

rotated. For example, when measured after a π/2 rota-241

tion (an evolution time of ∼ 4.3 h̄/t) a highly-modulated242

mJ distribution is observed, in excellent agreement with243

a direct numerical simulation (bottom plot).244

In addition to states with definite mJ , we may also pre-245

pare coherent states pointed in any direction |θ, φ〉. To246

prepare such a state, we start by initializing our atoms247

at the north pole of the Bloch sphere, i.e. mJ = J .248

Since this state is equivalent to |θ = 0, φ = 0〉CSS, we249

can apply a rotation of the spin to transform it to any250

coherent state. In the following experiments we create251

arbitrary states with parameters |θi, φi〉 by applying tun-252

neling links tn(φi +π/2) for a time corresponding to a θi253

pulse. This takes the initial state, which is aligned at the254

north pole of the Bloch sphere, down along a constant255

azimuthal angle φi to a polar angle θi. Thus preparing256

the CSS |θi, φi〉. Figure 3(a) shows a series of time-of-257

flight absorption images illustrating this procedure. The258

atoms start in mJ = 2 and make their way to mJ = −2259

during the pulse duration. The schematic of this pro-260

cedure on the Bloch sphere is shown in Fig. 3(b) where261

the state vector (red arrows) rotates about a Jy operator262

(blue arrow) from |θ = 0, φ = 0〉CSS to |θ = π, φ = 0〉CSS.263

State measurement. One nice feature of momentum-264

space lattices is the straightforward ability to measure265

population at each lattice site directly through time-of-266

flight absorption imaging. In the context of studying the267

dynamics of an effective spin-J particle on a (2J + 1)-268

site lattice, this relates to directly measuring the mJ269

state distribution in the z basis. Further information270

about the quantum state of this artificial spin can be ac-271

cessed by measuring the spin projection along alternative272

spin axes, i.e. along the Jx and Jy spin directions. We273

mJ

x

y

z

0-1 1-2 2(c)

M
ea

s.
 b

a
si

s

mJ (z basis)

3.8

0-1 1-2 2
(a)

T
im

e 
(u

n
it
s 

of
 �

/
t)

0

(b)

x

z

y
Jy

|θ, φ〉

(d)

x

z

y

θ = 0.50π

φ = 0.41π

FIG. 3. State preparation and measurement. (a) Absorption
images (in the z basis) of a J = 2 spin rotating from |θ =
0, φ = 0〉CSS to |θ = π, φ = 0〉CSS under a Jy operator. (b)
Bloch sphere representation of the state rotation shown in
(a). The state vector is depicted by the red arrows and the Jy
operator by the blue arrow. (c) Images (averaged over many
shots) of a J = 2 spin in the state |θ = 0.50π, φ = 0.41π〉CSS

as measured along the x, y, and z bases. (d) Bloch sphere
depiction of the measured vector shown in (c).

perform these measurements, related to measuring the274

coherences between z-basis states, by applying a linear275

rotation about a chosen torque vector prior to z-basis276

imaging. That is, to measure along the x(y) axis we277

apply a −Jy(Jx) rotation for a time corresponding to a278

π/2 pulse prior to time-of-flight absorption imaging. Fig-279

ure 3(c) shows a particular CSS as measured in the x, y,280

and z spin bases, while Fig. 3(d) shows the reconstructed281

state vector on the Bloch sphere, relating to mean-values282

〈Jx〉, 〈Jy〉, and 〈Jz〉 of this separable CSS [25].283

Nonlinear kick operation. To realize the kicked top284

model, we additionally need to implement a nonlinear285

J2
z kick. In the context of collective spin states [20],286

where such a nonlinear spin operation is derived from287

direct interactions (such as in multi-mode condensates288

with mode-dependent interactions [14] or through the289

collective, long-ranged interactions of many ions [26]) or290

field-mediated interactions (such as for atoms in optical291

cavities [27]), such a term gives rise to the build up of292

correlations and entanglement between the constituent293

particles.294

In experiments such as ours that are directly based295

on effectively spin-J particles [12], the J2
z kick term re-296

lates instead to engineering a quadratic, mJ -dependent297

phase shift to the z-basis magnetic sublevels, creating298
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FIG. 4. Squeezing of the artificial spin. Absorption images of the y-basis spin projection as a function of the effective squeezing
time α when starting in (a) |θ = π/2, φ = −π/2〉CSS and (b) |J = 2,mJ = 0〉z. (c) Density distributions for initial state
|θ = π/2, φ = −π/2〉CSS shown at effective time α/π = 0.5 (left) and α/π = 1.0 (right). (d) Spin length L versus the effective
squeezing time α. The red squares and simulation line are for initial state |θ = π/2, φ = −π/2〉CSS and the blue dots and
simulation line are for |J = 2,mJ = 0〉z. All error bars are one standard error of the mean.

nontrivial phase differences between adjacent mJ states299

that impact their further evolution under subsequent lin-300

ear rotations. For the case of emulating an artificial spin301

within a synthetic lattice of states, such a J2
z kick can302

be created through application of a quadratic potential303

of the site-energies in the absence of tunneling.304

Alternatively, we directly engineer effective instanta-305

neous relative phases at the different mJ sites. This is306

accomplished by suddenly shifting the tunneling phase307

between two adjacent mJ states to reflect the phase dif-308

ference acquired during the instantaneous J2
z kick. This309

approach is unique to systems based on driven tun-310

neling, which allow phase-dependent control of tunnel-311

ing. As a concrete example for J = 2, a J2
z kick with312

κ = π/8 leads to a relative phase accrual of 3π/8 be-313

tween the states mJ = 1 and mJ = 2. In our system,314

this phase difference is implemented by instantaneously315

shifting the phase of the mJ = 1 → mJ = 2 tunnel-316

ing link as t1(φ1) → t1(φ1 + 3π/8), or more generally317

φn → φn + (2n+ 1)κ for the n→ n+ 1 tunneling phase.318

Results319

Nonlinear dynamics of the artificial spin. We first320

examine the dynamics of our artificial spin under evo-321

lution governed by an effective squeezing Hamiltonian322

Hsq = α0J
2
z . For any initial state, the mJ population323

distribution will be unaffected in the z basis. Therefore324

to explore the influence of the J2
z term, we measure the x325

and y spin distributions by rotating into these measure-326

ment bases. The phase accrual of the z-basis mJ states327

is accounted for by an appropriate modification of the328

phase terms of the various tunneling elements used to329

rotate the spins for measurement of Jx and Jy.330

For certain initial states |θ, φ〉, evolution under Hsq331

leads to the generation of correlations in the uncertainty332

of the spin value along the x, y, and z directions. With333

increasing evolution time, the spin distribution under-334

goes periodic cycles of becoming squeezed (having re-335

duced spread along one spin direction, with increased un-336

certainty along another) and then returning to a simple337

CSS. We again emphasize that no significant correlations338

between the atoms are induced by these dynamics, but339

nonetheless, correlations of the (single-atom) spin distri-340

butions along the different spin projection axes can be in-341

duced by the nonlinear J2
z term. To characterize this be-342

havior, we directly measure the spin distributions along343

the different spin directions Jx, Jy, and Jz. We combine344

these measurements to determine the spin length345

L =
〈Jx〉2 + 〈Jy〉2 + 〈Jz〉2

J2
(4)346

of our artificial spin. For initial CSSs, the length of the347

spin vector is J and the spin length is one, and these prop-348

erties would be unchanged by simple linear rotations.349

When the net length of the spin vector becomes zero, the350

spin length L takes a value of zero. In Fig. 4(d) we show351

the dependence of the spin length L with increasing ef-352

fective evolution time τ , i.e. as the parameter α ≡ α0τ/h̄353

increases. These measurements were carried out for two354

different initial states: the CSS |θ = π/2, φ = −π/2〉CSS355

and the Jz eigenstate |J = 2,mJ = 0〉z.356

The y-basis spin dynamics of the initial CSS are shown357

in Fig. 4(a). Initially aligned along the −y axis (at α =358

0), the CSS (red squares in Fig. 4(d)) should have a spin359

length of one. In experiment, imperfections in the state360

preparation and measurement rotations cause deviation361

of the measurements at α = 0. At a larger effective362

evolution time (α = π/2), the spin has rearranged itself363

such that half of the probability density is concentrated364
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on each of the−y and +y axes (Fig. 4(c), left) resulting in365

a minimum spin length. Later, at α = π, the spin realigns366

along the +y axis and forms the state |θ = π/2, φ =367

+π/2〉CSS, as depicted in Fig. 4(c). This process is also368

demonstrated in the y-basis absorption images shown in369

Fig. 4(a). We note that the slight offset of the data in370

Fig. 4(d) is primarily due to an additional phase shift371

caused by atomic interactions in the synthetic lattice of372

momentum states (see Ref. [28] for more information).373

In contrast to these dynamics of the CSS, the Jz eigen-374

state |J = 2,mJ = 0〉z is entirely unaffected by the J2
z375

operation, as by definition this state can support no im-376

portant relative phase structure. This independence is377

illustrated by the data shown in Fig. 4(b) where the y-378

basis absorption images reflect no change across the en-379

tire range of α values. Likewise, as seen in Fig. 4(d) (blue380

dots), the spin length of this non-CSS remains fixed at381

L = 0 for all values of the effective evolution time α.382

While the initial CSS and non-CSS show wildly dis-383

parate dynamical behavior in their spin length under384

the nonlinear spin Hamiltonian, they surprisingly be-385

have quite similarly when considering instead the evo-386

lution of their out-of-time-ordered correlation functions387

(OTOCFs) [29]. These functions have been proposed388

as a suitable measure of dynamically-generated entan-389

glement and the scrambling of information in complex,390

many-body systems [27, 30, 31], possibly even serving391

as a probe of many-body localization in disordered sys-392

tems with interactions [32, 33]. Recently OTOCFs have393

been measured in ion based systems [34, 35] and in nu-394

clear magnetic resonance systems [36, 37]. Here, we use395

the wide tunability of our synthetic lattice parameters to396

measure OTOCFs for the first time with an atomic quan-397

tum gas. In particular, we demonstrate the suitability of398

this measure for tracking the complex evolution of arbi-399

trary initial states, including non-CSSs.400

Essentially, OTOCFs probe the overlap between an ini-
tial state and that same state after some complex evo-
lution characterized by a series of forward- and reverse-
time operations. Following the terminology of Ref. [27],
we define the OTOCF as

F (α) = 〈W †αV †WαV 〉 , (5)

where

Wα = U(−α)WU(α) (6)

and

U(α) = e−iαJ
2
z , (7)

for commuting operators W and V , which we set to be401

W = V = e−i
π
4h̄Jx . We perform the J2

z operations with402

an effective evolution parameter α as described above.403

Each of the V and Wα operations involves tunneling for404

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

α/π

(a)

2|F|

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

α/π

(b)

2|F|

FIG. 5. Out-of-time-ordered correlation function. |F |2 for ini-
tial states (a) |θ = π/2, φ = −π/2〉CSS and (b) |J = 2,mJ =
0〉z as a function of the effective dynamics time α. Shaded
regions indicate the results of numerical simulations incorpo-
rating the uncertainty in the calibrated tunneling rate. All
error bars are one standard error of the mean.

a time equivalent to a π/4 rotation, such that the full405

experimental duration (ignoring state preparation and406

readout) is equivalent to that of a global π pulse. For a407

given initial state |Ψ〉, we measure |F (α)|2 by first ap-408

plying the operator F (α) (by stepwise Hamiltonian evo-409

lution realizing the operators V , Wα, V †, and W †α), then410

rotating to a measurement basis in which |Ψ〉 is an eigen-411

state, and finally determining the fraction of the conden-412

sate wavefunction which overlaps with the initial state413

|Ψ〉. The OTOCF distinguishes between regular and414

chaotic dynamics by exhibiting exponential decay under415

chaotic conditions. In the large-spin limit, the exponen-416

tial decay of OTOCFs under chaotic conditions can be417

related to the Lyapunov exponent of the associated clas-418

sical map [38]. Here, we expect that the numerical value419

of the OTOCF will generally be near one if simple, reg-420

ular dynamics occur (perfect overlap |F (α = 0)|2 = 1421

if there is no dynamical evolution) and nearer to zero if422

complex dynamics take place (somewhat similarly to the423

behavior of the spin length L).424

In Fig. 5 we measure the OTOCF under evolution425

of our squeezing Hamiltonian for the same two initial426
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states discussed previously: |θ = π/2, φ = −π/2〉CSS427

and |J = 2,mJ = 0〉z. In the case of an initial CSS428

(Fig. 5(a)), the effective squeezing dynamics reflect those429

seen in the spin length, with |F (α)|2 taking a maximum430

value at α/π = {0, 1, 2}. For an initial non-CSS, how-431

ever, while the spin length was completely invariant as432

a function of α, the OTOCF measurement in Fig. 5(b)433

shows complex nontrivial dynamics. Thus, the OTOCF434

serves as a suitable probe for complex dynamics of the435

underlying Hamiltonian for more general initial states.436

We note that the deviations between data and the-437

ory in the case of Fig. 5(a) (especially for α = 0 and438

π) cannot be explained solely by incorrect pulse tim-439

ing stemming from tunneling rate instabilities (which440

are approximately 4%). Rather, these deviations are441

due primarily to the loss of coherence between the sites442

of the synthetic lattice due to increasing spatial sep-443

aration of the different momentum states. Since the444

state |θ = π/2, φ = −π/2〉CSS requires a state prepa-445

ration and readout pulse, the momentum states have446

more experimental time to separate than in the case for447

|J = 2,mJ = 0〉z, where a state preparation and read-448

out is not necessary. This conclusion is supported by449

Fig. 5(b) which shows much better agreement between450

theory and data for the initial state |J = 2,mJ = 0〉z451

than for |θ = π/2, φ = −π/2〉CSS. Additionally, we have452

verified through numerical simulations including mean-453

field effects that the deviations between data and theory454

in Fig. 5(a) for α = 0 and π are not caused by coherent455

interactions. We find that including mean-field effects in456

our simulations at the level appropriate for our system457

only slightly changes the expected result in a way that is458

not qualitatively important for the present work.459

Chaotic behavior in the kicked top model. Having460

demonstrated all of the necessary ingredients to simu-461

late kicked tops with our artificial spins, we now engineer462

the full kicked top model and use it to explore unique463

aspects of chaotic behavior in a well controlled quan-464

tum system. For different initial CSSs and spin sizes465

J , we study the spin length following evolution under466

Eq. 1. In Fig. 6(a), for a spin size J = 2 and the initial467

state |θ = π/2, φ = −π/2〉CSS, we show the dynamics of468

the spin length as a function of the number of applied469

kicks. Evolution under two different sets of kicked top470

parameters are shown: the filled orange circles relate to471

(ρ, κ/2J) = (π/8, π/5) and the open blue circles relate472

to (ρ, κ/2J) = (π/8, π/2). In both cases, the spin length473

almost immediately decreases to near minimum after a474

single kick, showing the chaotic nature of the system un-475

der these conditions.476

Our realization of the quantum kicked top model al-477

lows us to access the complete range of nonlinear cou-478

pling strengths with no deleterious side effects. This is479

in contrast to studies with cesium atoms [12] and with480

superconducting qubits [21], where only limited ranges481

of kick strength were explored. Using this full control482

of κ, we explore the onset of chaotic behavior as the483

nonlinear coupling strength κ is increased. Because the484

presence of chaotic behavior in the system is very sensi-485

tive to the initial state, and because the classical phase-486

space boundaries (in terms of φ and θ) between stable487

islands and chaotic regions change with increasing κ, we488

seek to reconstruct a global picture of how a typical ini-489

tial state would evolve under given kicked top param-490

eters. As such, we sample seven representative initial491

CSSs |θ = θi, φ = φi〉CSS spread throughout phase space492

(illustrated in Fig. 6(b)), and measure the spin length av-493

eraged over these different cases. Moreover, to account494

for the fact that the dynamics of L for a given orbit do495

not necessarily reach some constant value independent496

of the kick number, but in general undergo a complex497

evolution, we additionally average over the measured en-498

tropy L for five and six kicks. The averaged (over ini-499

tial state and kick number) spin length L̄ is plotted as a500

function of nonlinear coupling strength κ in Fig. 6(c). A501

general agreement with the theoretical prediction (solid502

line) is observed, with a steady decay towards a smaller503

spin length for increasing κ, signaling the onset of chaotic504

behavior. For small values of κ the discrepancy between505

the theory and the data may be due to the lack of tunnel-506

ing stability in our system (of approximately 4%) which507

causes incorrect pulse timing, leading to an accumulation508

of error following many kick periods, state preparation,509

and state readout.510

Finally, we use our unique ability to tune the size of511

our artificial spin to explore the initial crossover from512

the fully quantum regime towards the onset of classically513

chaotic behavior. For increasing J values, where the ini-514

tial CSSs become more and more sharply defined in terms515

of their Jx, Jy, and Jz expectation values (normalized to516

J), one expects to reach a point where classical-like sensi-517

tivity to initial conditions can manifest even in quantized518

systems. A general correspondence between the onset of519

classical chaos and the development of high entanglement520

entropy in a quantum system has been observed for sys-521

tems as small as J = 3/2 [21]. Likewise, in the related522

chaotic system of kicked rotors, classical diffusive behav-523

ior has been observed for quantum systems of just two524

interacting rotors [9]. In Fig. 6(d), we look at the decay525

of the averaged spin length L̄ for a wide range of J val-526

ues from 1/2 to 3, for the case of (ρ, κ/2J) = (π/8, π/2).527

For the smallest case of J = 1/2 the spin should remain528

in a state with unity spin length at all times and for all529

initial states. As the system size grows, however, theo-530

retical calculations (solid line) predict a steady trend to-531

wards smaller averaged spin length, signaling a crossover532

to increasingly classical-like chaotic behavior. We indeed533

observe a similar trend in the dynamical evolution of our534

artificial spins, with mostly regular evolution for small J535

giving way to significantly smaller spin length for larger536

J .537
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FIG. 6. Chaotic behavior in the kicked-top model. (a) Spin length L for initial state |θ = π/2, φ = −π/2〉CSS measured after
each kick in a set of eight kicks. The open blue dots and dashed blue simulation line are (ρ, κ/2J) = (π/8, π/5) and the closed
orange dots and solid orange simulation line are (ρ, κ/2J) = (π/8, π/2). (b) Simulated spin length of the effective spin for
different initial states. The color represents spin length averaged over N ∈ {5, 6} kicks, with respect to the color bar at right.
The seven open black dots represent the measurements taken to calculate the averaged spin length L̄. (c) L̄ as a function of the
kick strength κ for (ρ, J) = (π/8, 2). Shaded regions indicate results from a numerical simulation incorporating the uncertainty
in the calibrated tunneling rate. (d) L̄ as a function of the size of the spin J for (ρ, κ/2J) = (π/8, π/2). Solid line connects
points obtained from a numerical simulation. All error bars are one standard error of the mean.

Discussion538

Our study based on Hamiltonian engineering in a syn-539

thetic lattice offers a new approach to exploring the corre-540

spondence between quantum and classical dynamics, of-541

fering the possibility of directly tuning the size of a driven542

synthetic spin. Here, we have been limited to exploring543

only modest values of J , due to the increasing duration544

required for rotations of the effective spin for increasing545

J values. However, straightforward improvements to our546

experiment should allow us to probe signatures of chaos547

in artificial spins of size J ∼ 10 − 20. Currently, we be-548

lieve we are limited primarily by the spatial separation549

of the wavepackets relating to the many discrete momen-550

tum orders. This loss of near-field coherence may be551

mitigated in the future, however, by creating more spa-552

tially extended condensates, or through refocusing (echo)553

protocols.554

Our demonstration of a synthetic lattice approach to555

kicked top studies also suggests that related platforms,556

having similar levels of local and dynamical parameter557

control, could also be used to explore quantum chaos. In558

particular, the high degree of control in discrete photonic559

systems [39] should enable similar explorations, perhaps560

with extensions to much larger effective spin sizes.561

In addition to the tunable size of our spins, the wide562

control afforded by synthetic lattice techniques should563

also enable further studies on the dynamics of modified564

kicked tops belonging to distinct symmetry classes [40].565

Going beyond the somewhat artificial construction of a566

synthetic spin, this system also allows for generic studies567

of Floquet systems. In particular, for regimes in which568

the atomic interactions are important [28], this system569

can be used to probe Bose-Hubbard Floquet dynamics.570

Synthetic lattices should even enable the precise imple-571

mentation of random unitary operations at the single-572

particle level. This raises the interesting prospect of ex-573

ploring boson sampling problems [41] with few-particle574

Fock states in synthetic lattices.575

Lastly, we remark on the influence of atomic interac-576

tions on the dynamics in our kicked top. Under present577

experimental conditions, the tunneling energy t domi-578

nates heavily over the mean-field interaction energy of579

our condensate atoms U (with t/U >∼ 5), such that we580

do not expect any large modification of the dynamics581

as compared to non-interacting particles. However, by582

working at smaller values of t, we can enter the regime583

where interactions lead to correlated dynamics. That is,584

cold collisions give rise to an effective nonlinear interac-585



9

tion in the collective spin of many spin-1/2 particles [14]586

(i.e. nonlinear interactions in a momentum-space dou-587

ble well [28]). The use of a synthetic spin, as compared588

to a real spin, also opens up the intriguing possibility of589

exploring the driven dynamics of a system of many collec-590

tively interacting large-J particles, in which the atomic591

interactions enrich the system with effective spin-spin in-592

teractions. In particular, recent studies of double well593

momentum space systems [28] can be easily extended to594

triple well systems and beyond.595
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