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In quasi-one- or quasi-two-dimensional traps with strong transverse confinements, quantum gases
behave like strictly one- or two-dimensional systems at large length scales. However, at short
distance, the two-body scattering intrinsically has three-dimensional characteristics such that an
exact description of any universal thermodynamic relation requires three-dimensional contacts, since
the range of interaction (a few nm) is orders of magnitude smaller than the harmonic oscillator length
of the transverse confinement (∼ 102nm for a 100 kHz trap). A fundamental question arises as to
whether one- or two-dimensional contacts, which were originally defined for strictly one or two
dimensions, are capable of describing quantum gases in quasi-one- or quasi-two-dimensional traps.
Here, we point out an exact relation between the three- and low-dimensional contacts in these
highly anisotropic traps. Such relation allows us to directly connect physical quantities at different
length scales, and to characterise the quasi-one- or quasi-two-dimensional traps using universal
thermodynamic relations that were derived for strict one or two dimensions.

A striking property of dilute quantum gases is that
only a few physical quantities, the so-called contacts,
fully govern a complex quantum many-body system.
Contacts connect distinct physical observables through
universal thermodynamic relations and provide physicists
a unique and powerful tool to bridge few-body and many-
body physics. In the past decade, the study of contacts
and universal thermodynamic relations has become a fun-
damentally important topic in quantum gases [1–20] and
attracted significant interest from nuclear physicists and
other communities [21–23]. Whereas the original work
on contact focused on the s-wave one [1–3], recent stud-
ies have generalized such concept to high partial-wave
contacts [24–29]. It has also been realized that, to have
a complete description of the universal thermodynamic
relations, contacts should be defined as a matrix [30, 31].

Similar to other physical quantities and phenomena,
contacts and universal thermodynamic relations exhibit
distinct behaviours in different dimensions [6–9]. The
three-dimensional (3D) s-wave contact, C3D, is propor-
tional to ∂E

∂(−1/a3D) at the ground state, where E is the

total energy, and a3D is the 3D scattering length. In
contrast, contacts in one dimension (1D) and two dimen-
sion (2D), C1D and C2D, are proportional to ∂E

∂a1D
and

∂E
∂ ln(a2D) , where a1D and a2D are the scattering lengths in

1D and 2D, respectively. Other universal thermodynamic
relations also have qualitative differences in different di-
mensions. Universal relations have also been derived in
arbitrary, either integer or noninteger, dimensions [9].

So far, studies of contacts at low dimensions have been
mainly focusing on theoretically investigating strictly 1D
and 2D systems, where the transverse degree of freedom
is absent. Contacts and universal relations in realistic
low-dimensional systems have not been established. A
crucial question remains unanswered as to whether uni-
versal relations theoretically derived for strictly 1D and
2D systems apply to realistic experiments on quasi-1D

and quasi-2D traps in laboratories. It is well known
that the origin of universal relations is the asymptotic
behaviours of the many-body wavefunction in the limit
where the distance between any two particles approaches
zero. In strictly 1D (2D) systems, the asymptotic form of
the two-body wavefunctions behaves like |z| (ln ρ) when
z → 0 (ρ → 0), where z (ρ) is the relative coordinate of
two particles. Such asymptotic behaviors lay the foun-
dation for all universal relations in strictly 1D and 2D
systems. However, these asymptotic forms do not apply
to quasi-1D or quasi-2D traps when the separation be-
tween two particles approaches zero. In laboratories, a
1D or 2D system is created by applying a tight confine-
ment, for instance, a strong harmonic trap of a harmonic
oscillator length d and frequency ω, along one or two
spatial directions, as shown in figure 1. Such systems are
often referred to as quasi-1D or quasi-2D traps. When
the distance between two particles is much smaller than
d, the two-body interaction inevitably has 3D character-
istics, as the confining potential can barely affect the two-
body wavefunction in such regime. The asymptotic form
of the two-body wavefunction behaves like 1/r, where r
is the relative coordinate of two particles, similar to a
strictly 3D system, and C3D is required to describe uni-
versal thermodynamic relations in quasi-1D and quasi-2D
traps, no matter how strong the transverse confinement
is. Thus, fundamental questions arise, how to define C1D

and C2D in quasi-1D and quasi-2D traps and whether
they control universal relations in such highly anisotropic
3D traps?

The main results of this paper are summarized as fol-
lows. (I) In quasi-1D (quasi-2D) traps, C1D (C2D) needs
to be defined from the momentum distribution nσ(k) in
the regime, kF � k � d−1, where kF is the Fermi mo-
mentum, k = |k| and σ =↑, ↓ is the spin index. To be
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explicit, we define k = (k⊥, kz), and obtain

n1Dσ (kz) ≡
∫

d2k⊥
(2π)2

nσ(k)
kF�kz�d−1

−−−−−→ C1D

k4z
, (1)

n2Dσ (k⊥) ≡
∫ ∞

−∞

dkz
2π

nσ(k)
kF�k⊥�d−1

−−−−−→ C2D

k4⊥
. (2)

In the regime, k � d−1, C3D determines nσ(k) in the
large momentum tail,

nσ(k)
k�d−1

−−−−−→ C3D

k4
. (3)

(II) We establish an exact relation between C1D (C2D)
and C3D in quasi-1D (quasi-2D) traps, which is

C3D = πd2C1D, (4)

C3D =
√
πd2C2D. (5)

Eq. (4) and Eq. (5) provide us an unprecedented means
to explore universal thermodynamic relations using two
equivalent schemes, i.e., either through C3D that controls
any physical systems, including highly anisotropic traps,
or using C1D (C2D), which governs nσ(k) in the inter-
mediate momentum regime. These two equations also
enable a new means to explore the fundamentally impor-
tant problem on dimension crossover in ultracold atoms
and related fields [32–36]. (III) Using Eq. (4) and Eq.
(5), we obtain a rigorous proof that the adiabatic relation
derived for strictly 1D (2D) system is exact in quasi-1D
(quasi-2D ) traps.

It is worth pointing out that, formula similar to Eq. (4)
and Eq. (5) were derived in [9] by assuming the validity
of adiabatic relations in quasi-low-dimensional traps. As
we have explained in detail, adiabatic relations derived
for strictly 1D (2D) systems cannot be taken for granted
in quasi-1D (quasi-2D) traps, and even the definition of
C1D and C2D in these traps is questionable. Thus, the
full asymptotic forms of the many-body wavefunctions
in all length scales in quasi-1D (quasi-2D) traps need to
be taken as the starting point. This allows us to obtain
Eqs. (1-5), provide a precise definition of C1D (C2D)
in quasi-1D (quasi-2D) traps, reveal their relations with
C3D, and access the full structure of the large momen-
tum tail, which includes two plateaus in nσ(k)k4, unlike
strictly 1D and 2D systems with only one plateau. Even-
tually, adiabatic relations in quasi-1D (quasi-2D) traps
are proved rigorously, as the consequence, instead of the
prerequisite, of Eqs. (4, 5).

We focus on quantum gases with zero-range interac-
tions such that only s-wave scatterings and s-wave con-
tacts are relevant. We first consider a two-component
fermion gases with total numbers N↑ and N↓ in each
component in a quasi-1D trap. The Hamiltonian is writ-
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FIG. 1: (a) A quasi-1D trap. Atom cloud (purple cloud)
with a strong harmonic confinement in the x-y plane. Red
and blue spheres represent a spin-up and spin-down atom,
respectively. When their separation is much larger (smaller)
than z∗ ∼ d, two-body scatterings have 1D (3D ) features,
and C1D (C3D) controls all physical quantities in the corre-
sponding large (small) length and small (large) momentum
scales. (b) A quasi-2D trap with a strong harmonic confine-
ment along the z direction. C2D (C3D) controls the system
in a scale ρ� ρ∗ ∼ d (ρ� ρ∗).

ten as

H = −
∑

i

h̄2∇2
i

2M
+
∑

i

V (ρi)+g

N↑∑

i=1

N↑+N↓∑

j=N↑+1

δ(rij)
∂ (rij ·)
∂rij

,

(6)
where M is the mass of each atom, ri = (ρi, zi) is the
spatial coordinate of the ith atom, ρi = |ρi|, rij = ri−rj ,
rij = |rij |, V (ρi) = 1

2Mω2ρ2i is a harmonic trapping po-
tential for the ith atom in the x-y plane. Atoms are free
along the z direction. g = 4πh̄2a3D/M is the strength
of the Huang-Yang pseudopotential. V (ρi) is sufficiently
strong such that d =

√
2h̄/(Mω) � k−1F is satisfied.

This is equivalent to say that the chemical potential µ is
much smaller than 2h̄ω, the energy separation between
the ground and the first vibration level of the harmonic
trap. When the distance between a spin-up and spin-
down atom, which is denoted by r = |r|, r = r1 − r2, is
much smaller than k−1F , the wavefunction of a many-body
eigenstate has a universal asymptotic form

Ψ
r�k−1

F

−−−−−→
∫
dεqφ(r; εq)G(

r1 + r2
2

, ri 6=1,2;σi;E − εq)
(7)

where φ(r; εq) is the wavefunction of the relative motion
of two atoms, εq = h̄ω + h̄2q2/M is the colliding energy,
q is the corresponding momentum, and E is the total
energy of the system. σi is the spin index of the ith
atom. Whereas Eq. (7) is valid for any 3D systems, it
is useful to make use of the explicit form of φ(r; εq) in
quasi-1D traps,

φ(r; εq) =Φ00(ρ)[cos(qz) + f(q)eiq|z|]

− f(q)
∑

n>0

iq

qn
Φn0(ρ)e−qn|z|,

(8)

where Φnm(ρ) is the eigenstate of the harmonic trap with
eigenenergy Enm⊥ = h̄ω(2n+|m|+1) in the x-y plane, n is
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the quantum number for the radial part of the wavefunc-
tion, and m is the angular momentum quantum number.
f(q) = i/[cot η1D(q)− i] is the scattering amplitude and
η1D(q) is the phase shift in 1D. The first line in Eq. (8) is
the contribution from the ground state of the harmonic
trap, the second line is the contribution from excited

states, and qn =
√

(En0⊥ − εq)M/h̄2. For s-wave scatter-

ings, only wavefunctions with m = 0 are relevant. Since
h̄2q2/M is typically of the order of µ� 2h̄ω, qn is posi-
tive for all n > 0. Thus, the second line in Eq. (8) decays
exponentially in the quasi-1D regime where the energy of
the incoming wave in the scattering problem is smaller
than the gap between the ground and the first excited
vibration levels. When |z| � z∗ ≡ 1/q1, Eq. (8) reduces
to a wavefunction in strict 1D. It is also easy to see that
z∗ ∼ d � k−1F . Correspondingly, based on the defini-

tion nσ(k) =
∑N↑+N↓δ↓,σ
i=1+N↑δ↓,σ

∫ ∏
j 6=i d

3rj
∣∣∫ d3riΨe−ik·ri

∣∣2,
δi,j is the Kronecker delta, we obtain the momentum
distribution of the many-body system in the regime
kF � k � d−1,

nσ(k)
kF�k�d−1

−−−−−→ |Φ00(k⊥)|2C1D

k4z
, σ =↑, ↓ (9)

where k = (k⊥, kz), Φ00(k⊥) =
∫
d2ρΦ00(ρ)e−ik⊥·ρ,

C1D = 4N↑N↓

∫
d3R12

∣∣∣
∫
dεqqf(q)G(R12;E − εq)

∣∣∣
2

,

(10)
and R12 is a short-hand notation for a set of
coordinates {(r1 + r2)/2, ri 6=1,2;σi}, d3R12 =∏
i 6=1,2 d

3rid
3 (r1 + r2) /2. Though this power-law

tail comes from the singular behavior of the relative
wavefunction of a pair of particles when they approach
each other, it does show up in the momentum distribu-
tion when k is much larger than kF and other momentum
scales, such as the center of mass momentum of a pair of
particles and the inverse of the scattering length. Thus,
for simplicity, we have just specified that k � kF , as
the center of mass momentum of a pair of particles is in
general much smaller than kF , so is the inverse of the
scattering length in the strongly interacting regime. In
this regime, nσ(k) is a broad distribution along the kx
and ky directions, as expected for a quasi-1D system.
For kF � kz � d−1, the expression in Eq. (9) could be
extend to k⊥ → ∞. Integrating over k⊥, we obtain Eq.
(1).

We now consider r � d, where we have

Ψ
r�d
−−−−−→ (

1

r
− 1

a3D
)

∫
dεqG3D(R12;E − εq). (11)

Correspondingly, nσ(k) has a large momentum tail. It is
given by Eq. (3), and

C3D = (4π)2N↑N↓

∫
d3R12

∣∣∣
∫
dεqG3D(R12;E − εq)

∣∣∣
2

.

(12)
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Figure 5: Energy spectra (a) and density distribution of the zero-energy mid-gap edge states (b) for the Raman
dressed optical lattice obtained from the tight-binding model. The parameter chosen are t" = 0.5Er, t# = 1Er,
mz = 0, tso = 0.7Er and � = ⇡/2.

one has

H (qx) = �

t" cos

✓
qxa � #

2

◆
� t# cos

✓
qxa +

#

2

◆�
⌦ Î �


t" cos

✓
qxa � #

2

◆
+ t# cos

✓
qxa +

#

2

◆�
⌦ �̂z

� 2tso sin (qxa) ⌦ �̂y + ~m · ~�
=✏ (qx) ⌦ Î +

X

↵=x,y,z

d↵ (qx) ⌦ �̂↵

(57)

with the eigenvalue

E± = ✏ (qx) ±
q

d2
x (qx) + d2

y (qx) + d2
z (qx) (58)

where ✏ (qx) = � [t" cos (qxa � #/2) � t# cos (qxa + #/2)], dx (qx) = mx, dy (qx) = my � 2tso sin (qxa), and
dz (qx) = mz � [t" cos (qxa � #/2) + t# cos (qxa + #/2)]. For the case that � = ⇡/2, one has

H (qx) = �2t1 cos (qxa) ⌦ Î � 2t0 cos (qxa) ⌦ �̂z � 2tso sin (qxa) ⌦ �̂y + ~m · ~� (59)

with the eigenvalue

E± = �2t1 cos (qxa) ±
q

[2t0 cos (qxa) � mz]
2

+ [2tso sin (qxa) � my]
2

+ m2
x (60)

where t0 = (t" + t#)/2 and t1 = (t" � t#)/2.
Also, starting from the tight-binding model Eq.(51), one can obtain the energy spectra by simply diagonalize

the matrix form of Hamiltonian in the basis

 = (c1", c2", · · · , cN", c1#, c2#, · · · , cN#)
T

(61)

which gives

HTB =

✓
H"" H"#
H#" H##

◆
(62)

where, for the case that � = ⇡/2,

Hij
"" =

8
>><
>>:

mz, j = i
�t", j = i � 1
�t", j = i + 1
0, else

, Hij
## =

8
>><
>>:

�mz, j = i
t#, j = i � 1
t#, j = i + 1
0, else

, Hij
"# =

8
<
:

tso, j = i + 1
�tso, j = i � 1
0, else

, Hij
#" =

8
<
:

�tso, j = i + 1
tso, j = i � 1
0, else

(63)
By choosing t" = 0.5, t# = 1, mz = 0, and turn on tso gradually, one can see that a mid-gap state shows up
at around tso = 0.05, and becomes a well shaped zero-energy mid-gap edge states at around tso ⇠ 0.55 � 0.85.
By continuing increasing tso, the edge states shows delocalization gradually and the gap close when tso reaches
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Also, starting from the tight-binding model Eq.(51), one can obtain the energy spectra by simply diagonalize
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at around tso = 0.05, and becomes a well shaped zero-energy mid-gap edge states at around tso ⇠ 0.55 � 0.85.
By continuing increasing tso, the edge states shows delocalization gradually and the gap close when tso reaches
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(b) 

FIG. 2: (a) A contour plot of the exact momentum distribu-
tion ln(nσ(k)) of a two-body system, with nσ(k) in unit of
d4|Φ00(k⊥ = 0)|2C1D. The total number of vibration levels
considered is N = 300, and a1D = 1000d. (b) Scaled mo-
mentum nσ(0, kz)k

4
z . It is determined by C1D and C3D in the

regime a−1
1D � kz � d−1 and kz � d−1, respectively.

Indeed, Eq. (8) becomes −iqf(q)2
d√
π

( 1
|z|− 1

a3D
) when |z| �

d for ρ = 0, and [32]

a1D = − d2

2a3D

(
1− 1.4603

a3D
d

)
(13)

where cot η(q)/q = a1D and G3D(R12;E − εq) =
−iqf(q)

2
d√
π
G(R12;E − εq). Compare Eq. (10) and Eq.

(12), we immediately see that Eq. (4) holds.
It is interesting to note that Eq. (4) has a simple

geometric interpretation. Though the quasi-1D trap is
highly non-uniform in the transverse directions, it can
be viewed as a cylinder with a uniform distribution of
contact density on the cross section of radius d. Since
the total contact in 3D is the contact density multiplied
by the total volume, one can view C1D as the linear con-
tact density. Thus, C3D is simply C1D multiplied by
the cross-sectional area πd2. Eq. (4) also allows one
to establish an exact relation between nσ(k) in different
momentum scales. From Eq. (1) and Eq. (3), we obtain

nσ(k)k4
∣∣
k�d−1 = (πd2)n1Dσ (kz)k

4
z

∣∣
kF�kz�d−1 , (14)

a unique result originated from the exact relation be-
tween C3D and C1D.

To verify the above results, we evaluate exactly nσ(k)
of a two-body system using Eq. (7) and Eq. (8). Its scal-
ing behaviours also describe those of nσ(k) in a generic
many-body system in the regime k � kF . By taking
into account a large enough number of excited states,
we obtain numerically nσ(k), as shown in figure 2(a).
Indeed, in the regime kF � k � d−1, nσ(k) decays
slowly with increasing kx and ky. As aforementioned,
the width of the wavefunction φ00(k⊥) is given by the
inverse of the harmonic oscillator length. Thus, for a
strong confinement, nσ(k) exhibits 1D feature in such



4

momentum scale. In contrast, in the regime k � d−1,
nσ(k) becomes isotropic, a 3D characteristic as expected.
Figure 2(b) shows the scaled momentum distribution
nσ(k)k4, which clearly demonstrates how nσ(0, kz) grad-
ually changes from |Φ00(k⊥ = 0)|2C1D/k

4
z to C3D/k

4
z .

Besides nσ(k), Eq. (4) allows us to connect other uni-
versal thermodynamic relations in 1D and 3D. Here, we
focus on the adiabatic relations. In strictly 1D systems,
where the transverse degrees of freedom are absent, the
adiabatic relation is written as [8]

dE

da1D
=
h̄2C1D

2M
. (15)

In quasi-1D systems, as aforementioned, C1D controls
physical quantities in a large length scale z � d, or equiv-
alently, in the momentum scale k � d−1. A complete
description of the system needs the introduction of C3D

to capture physics in the length scale z < d, or momen-
tum scale k > d−1. A natural question is then, whether
Eq. (15) is still valid.

Interestingly, a simple calculation shows that, Eq. (15)
holds for quasi-1D system. The reason is that, Eq. (4)
provides an exact relation between C1D and C3D, the
latter of which governs any 3D system, including a quasi-
1D trap that is highly anisotropic. Thus the 3D adiabatic
relation [2]

dE

d(−1/a3D)
=
h̄2C3D

4πM
, (16)

is always valid in a quasi-1D trap. It is also known that
a3D and a1D are related by Eq. (13). Substitute this
expression and Eq. (4) to Eq. (16), Eq. (15) is ob-
tained. This immediately tells us that the adiabatic re-
lation derived for strictly 1D systems applies to quasi-1D
traps. In practice, Eq. (1) and Eq. (15) are also partic-
ularly useful, as experimentalists do not need to extract
C3D from nσ(k) in the very large momentum regime
k � d−1, which may become too small to detect. In-
stead, a measurement of nσ(k) in the intermediate regime
kF � k � d−1, which has a much larger amplitude, is
sufficient to obtain C1D that could also fully governs the
quasi-1D trap.

Whereas we focus on the adiabatic relation here, dis-
cussions can be directly generalised to other universal
thermodynamic relations. Eq. (4) shows that any uni-
versal thermodynamic relations established by C3D can
be rewritten in terms of C1D that governs the behaviours
of the quasi-1D systems in the large length scale z � d.
Thus, universal thermodynamic relations in 3D can be
directly transformed to those in 1D.

We now turn to a quasi-2D trap. The Hamiltonian is
written as

H = −
∑

i

h̄2∇2
i

2M
+
∑

i

V (zi)+g

N↑∑

i=1

N↑+N↓∑

j=N↑+1

δ(rij)
∂ (rij ·)
∂rij

,

(17)
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Figure 5: Energy spectra (a) and density distribution of the zero-energy mid-gap edge states (b) for the Raman
dressed optical lattice obtained from the tight-binding model. The parameter chosen are t" = 0.5Er, t# = 1Er,
mz = 0, tso = 0.7Er and � = ⇡/2.
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where t0 = (t" + t#)/2 and t1 = (t" � t#)/2.
Also, starting from the tight-binding model Eq.(51), one can obtain the energy spectra by simply diagonalize

the matrix form of Hamiltonian in the basis
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By choosing t" = 0.5, t# = 1, mz = 0, and turn on tso gradually, one can see that a mid-gap state shows up
at around tso = 0.05, and becomes a well shaped zero-energy mid-gap edge states at around tso ⇠ 0.55 � 0.85.
By continuing increasing tso, the edge states shows delocalization gradually and the gap close when tso reaches
beyond around 8. And changing of mz leads to the shift of energy of mid-gap states accordingly. kzd k?d
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beyond around 8. And changing of mz leads to the shift of energy of mid-gap states accordingly. kzd k?d
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FIG. 3: (a) A contour plot of the exact momentum distri-
bution ln(nσ(k)) of a two-body system, with nσ(k) in unit
of d4|Φ0(kz = 0)|2C2D. The total number of vibration levels
considered is N = 300, and a2D = 1000d. (b) Scaled momen-
tum nσ(k⊥, 0)k4⊥. It is determined by C2D and C3D in the
regime a−1

2D � k⊥ � d−1 and k⊥ � d−1, respectively.

where V (zi) = 1
2Mω2z2i is a harmonic trapping potential

for the ith atom along the z direction. The system is free
in the x-y plane. The discussions are essentially parallel
to those in quasi-1D traps. Starting from Eq. (7) and
the two-body wavefunction in a quasi-2D trap for s-wave
scattering,

φ(r; εq) =
π

2
cot η2D(q)[J0(qρ)− tan η2D(q)N0(qρ)]Φ0(z)

+
iπ

2

∑

n>0

(−1)n

√
(2n− 1)!!

(2n)!!
Φ2n(z)H

(1)
0 (iqnρ),

(18)

it is straightforward to derive Eq. (5), the tails of the
momentum distribution and the adiabatic relation. In
Eq. (18), η2D(q) is the 2D phase shift, J0 (N0) is the

Bessel function of the first (second) kind, H
(1)
0 is the

Hankel function of the first kind, Φn(z) is the eigen-
function of harmonic oscillator along z-axis with eigen
energy Enz = h̄ω(n + 1/2), εq = h̄ω/2 + h̄2q2/M and

qn =
√

(E2n
z − εq)M/h̄2. When ρ > ρ∗ ≡ 1/q1 (ρ < ρ∗),

the wavefunction in Eq. (18) is 2D-like (3D-like).

Figure 3 shows the numerical results for the momen-
tum distribution of a two-body system. Again, its scaling
behaviours capture those of a generic many-body system
in the regime, k � kF . When kF � k⊥ � d−1, we
obtain the 2D analogy of Eq. (9),

nσ(k)
kF�k�d−1

−−−−−→ |Φ0(kz)|2
C2D

k4⊥
, (19)

which shows that nσ(k) decays slowly in the kz direction,
a characteristic quasi-2D feature. Integrating over kz, we
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obtain Eq. (2), and

C2D = (2π)2N↑N↓

∫
d3R12

∣∣∣
∫
dεqG(R12, E − εq)

∣∣∣
2

.

(20)
By considering the asymptotic behavior of φ(r; εq) at ρ�
d and z = 0, one can also obtain that

φ(ρ, 0; εq)
ρ�d
−−−−−→

√
d
√
π

2

(
1

ρ
− 1

a3D

)
, (21)

which is consistent with Eq. (11), and [36]

a2D =

√
2π

τ
d exp

(
−
√
π

2

d

a3D
− γ
)
, (22)

where τ = 0.915 · · · and γ is the Euler’s con-
stant, cot η2D = 2

π ln (qa2De
γ/2), G3D(R12;E − εq) =√

d
√
π/4G(R12;E − εq). Thus, when r � d or equiva-

lently, k � d−1, the system is 3D-like, as shown in fig-
ure 3. nσ(k) becomes isotropic and is governed by C3D.
Compare Eq. (12) with Eq. (20), it is clear that Eq. (5)
holds. We can also see that

nσ(k)k4
∣∣
k�d−1 =

√
πd2n2Dσ (k⊥)k4⊥

∣∣
kF�k⊥�d−1 . (23)

Similar to the discussions in quasi-1D cases, we find out
that the adiabatic relation,

dE

d ln a2D
=
h̄2C2D

2πM
. (24)

which was originally derived for strictly 2D systems [6],
still holds for quasi-2D traps. By taking Eq. (22) and Eq.
(5) into Eq. (24), it recovers the 3D adiabatic relation in
Eq. (16).

In conclusion, we have shown an exact relation between
C3D and C1D (C2D) in quasi-1D (quasi-2D) traps, which
correlates not only physical quantities at different length
or momentum scales but also universal relations in dif-
ferent dimensions. We hope that our work will provide
physicists a new angle to explore the dimension crossover,
and inspire more studies of the central role of contacts in
many-body quantum phenomena of quantum gases and
related systems.
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