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 We examine the steady state electron-positron pair creation rate for supercritical electric 

potentials with arbitrary spatial dependence.  The numerical optimization algorithms predict that the 

set of external fields that can maximize the production rate for positrons with a given energy take 

non-trivial spatial shapes.  We explain the underlying physical mechanisms based on a simple 

analytical model that exploits resonances among the negative energy eigenstates of the Dirac 

Hamiltonian.  The results are rather encouraging from an experimental perspective as they suggest 

that one does not require unachievable infinitely large fields to maximize the possible pair creation 

yield.  In fact, in many cases smaller electric fields lead surprisingly to larger yields for given energy 

ranges. 
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1. Introduction 

 The possibility to use superstrong external electric or electromagnetic fields to break down the 

vacuum state and to generate electron-positron pairs is one of the most interesting predictions of 

quantum electrodynamics [1-5].  It is a fascinating topic of fundamental interest and experimental 

work to develop high-powered laser systems to confirm this predicted process is presently 

underway in several laboratories worldwide [6].  It therefore seems obvious that explorations of the 

optimal space-time profile of the external field to maximize the final particle yield deserves some 

special attention.  The ultimate goal would be to develop a computational algorithm (likely based on 

infinite-dimensional optimization) to identify the best parameter regime to maximize the particle 

yield in a given energy range.  Some first progress to this goal was recently reported by Kohlfürst et 

al. [7,8] and Hebenstreit and Fillion-Gourdeau [9], who suggested for the first time that the 

computational framework of the optimal control theory can be utilized to construct the optimal 

temporal dependence of those subgroups of parametrized external fields that are constant in space.  

These studies were based on the optimization of a few parameters but were recently generalized [10] 

to allow for arbitrary temporal fields, corresponding to an infinite-dimensional parameter space.  In 

this work, we examine the opposite limit for the first time, in which the external field is constant in 

time, but we construct the optimal spatial profile to maximize the steady state pair creation rate for 

particles in a given energy range.  These two optimization goals rely on two entirely different pair 

creation mechanisms.  In the spatially homogeneous case, the electric field's amplitude does not 

have to be supercritical as the creation mechanism here is based on multi-photon transitions from 

the initially occupied Dirac sea to positive energy solutions of the Dirac equation [11-14].  In the 

temporally homogeneous case, the spatial field has to be supercritical leading to an energy 

degeneracy as necessary for example in the Schwinger decay mechanism of the vacuum [15], which 

can be interpreted as a tunneling process [16].   

 Based on recent progress in algorithmic developments [17-24] it has now become possible to 

extend our knowledge obtained from the finite-dimensional optimization to the more general case of 

infinite dimensional optimization.  So far, the permitted variation of the external field was described 

by only two or three parameters, that severely restricted the possible space- [25] or time-dependence 

of the external fields. 

 In this work we apply for the first time infinite dimensional optimization for the spatial 

dependence of the external field.  The preliminary results are surprising and also encouraging.  

Contrary to what one could have expected from the work with temporal fields, the maximal 
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pair-creation yield is not necessarily associated with singular and technically unachievable limiting 

cases (such as infinitely narrow fields of infinite amplitudes or infinite energy).  In other words, one 

does not even require any artificial constraints to the search algorithms to avoid these technically 

undesirable solutions.   

 The article is organized as follows.  In Section 2 we summarize briefly the theoretical 

framework of the Dirac equation and provide references to prior work about the computational 

optimization.  In Section 3 we provide the spatial shapes of the external fields that optimize the pair 

creation yield for a fixed positron energy.  In Section 4 we examine a physical picture based on 

negaton-quasi resonances that can explain the amplification mechanism.  We also introduce a 

simple two-step model potential that can capture the basic idea of the found amplification 

mechanism and provides a fully analytical access to the optimization problem.  In Section 5 we 

generalize the prior finding to examine external fields that can optimize the total yield of particles in 

the entire energy range for the two-step potential.  In Section 6 we return to the numerical 

infinite-dimensional optimization and construct the spatial form of the optimum potential that 

maximizes the total yield.  In Section 7 we complete the discussion with new challenges that can be 

addressed in future works. 

 

2. Optimization algorithm and the computational implementation  

 In this work we calculate the long-time creation rate Γ(E) for electron-positron pairs with a 

desired energy E from the energy eigenstates of the Dirac Hamiltonian.  In one spatial dimension 

(and in atomic units) [26] it takes the form H = c σ1 p + c2σ3 + V(x), where we assume the coupling 

to a positron with charge q =+1 a.u., p is the momentum operator and σ1 and σ3 denote the 2×2 Pauli 

matrices.  In the external field approximation, the interaction of the vacuum state with the 

supercritical external potential is given by V(x).  For simplicity, we assume that the potential is 

supercritical and therefore fulfills V(x → –∞) = V0 with V0 > 2c2 and V(x → ∞) = 0.   

 Following the traditional picture introduced by Dirac, the vacuum is described in this formalism 

by fully occupied negaton [27] states, which are the eigenstates of H0 = c σ1 p + c2σ3 with a negative 

energy less than –c2.  In this model system, the supercritical height V0 can lift the energy of these 

negaton states for x → –∞ to positive values (>c2).  If these incoming states are transmitted to the 

right-hand side (x→∞) (where the potential is zero), then these states change their spinor structure 

(characteristic of negative energy states of H0) to the one that is characteristic of positive energy 
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eigenstates.  Equivalently, the electric field vector associated with V(x) points on average to the 

right side.  As a result, the created positrons (electrons) are ejected to x → ∞ (–∞) by this force field.  

The sum of the total probabilities of the (right traveling) transmitted states is one minus the vacuum 

persistence probability.  The latter is minimized in this work.  Even though it is in principle different 

and has different units, this quantity can be related to the steady state particle production rate, which 

can be computed in quantum electrodynamics in a number of ways [28]. 

 More quantitively, Hund conjectured in 1941 [29] that the field theoretical pair-creation rate per 

energy Γ(E) in the steady state can be computed directly from the quantum mechanical transmission 

coefficient T(E) associated with the same potential V(x), i.e., Γ(E) = T(E)/(2π).  A rigid 

mathematical proof for Hund's conjecture and more details about the supercritical pair creation can 

be found in Ref. [30].  In contrast to the unlimited transmission coefficient for Klein-Gordon 

equation [see Refs. 31-33], the coefficient T(E) for the Hermitian Dirac Hamiltonian is bound 

between 0 and 1.  This means automatically that the resulting pair-creation rate for any positron 

energy E and any potential V(x) cannot exceed the theoretical upper limit of Γlim(E) ≡ 1/(2π).  For a 

better interpretation of the data, we purposely separate in our notation the co-factor (2π) in Γ(E).  

The total rate, defined as the energy integral γ ≡ ∫dE Γ(E), where c2<E<V0–c2, is therefore also 

naturally bound, i.e., γlim ≡ (V0–2c2)/(2π).  It has the units of inverse time, while Γ(E) = dγ/dE has 

naturally the units of inverse time and inverse energy. 

 Unfortunately, there are only a very small number of external potentials known (Sauter potential 

[34] or step-wise potentials [35], see below), for which the potential V(x) can be mapped 

analytically to the corresponding pair-creation rate (or equivalently the transmission coefficient).  

To determine this rate for potentials with arbitrary spatial shape, numerical methods need to be 

employed in general.   

 In this work, we have used techniques such as the iterative QTBM [36] and time-dependent 

wave packet scattering methods [37] to guarantee consistent and accurate final data.  The acronym 

QTBM represents the quantum transmission boundary method, which was originally introduced 

based on the finite difference approximation of the stationary Schrödinger equation on an 

equidistant grid to simulate electron transport in resonant tunneling diodes.  We have generalized it 

to compute the transmission coefficient for the stationary Dirac equation.   

 The functional mapping of the potential V(x) to the corresponding rate is given by the functional 

Γ = Γ{V(x)}.  This is the key relationship for the optimization program.  In order to construct an 
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optimal potential Vopt(x) that leads to a maximum pair creation rate Γopt(E) for a specified positron 

energy, we have used the steepest ascent [38] and conjugate gradient methods based on 

Fletcher-Reeves [39] and Polak-Ribiere [40]. 

 In short, in these iterative schemes one starts with an initial guess for V(0)(x), such as the 

smoothed step function given by the Sauter potential V(0)(x) = V0 [1–tanh(x/w)]/2.  This 

corresponds to an initial transmission rate Γ(0)(E) for a given E.  The algorithm determines then 

numerically the functional gradient S(0)(x) ≡ δΓ(Ε)/δV(x) for this particular potential V(0)(x), which 

then acts as a new search direction to find an improved V(1)(x), leading to a larger rate denoted by 

Γ(1)(Ε).  This is accomplished via a line-search Γ = Γ{V(0)(x)+α S(0)(x)} where the search parameter 

α is constructed to maximize Γ.  The resulting new potential V(1)(x) = 

V(0)(x) + α S(0)(x) serves as the improved potential.  This scheme is then repeated until the iteration 

has converged and V(x) associated with the largest possible rate Γ is obtained.  

 As the QTBM method is less CPU time consuming than the time-dependent wave packet 

scattering method, we have used it in the optimization algorithm to compute Γ.  However, in order 

to examine the accuracy and reliability of this method, we have also employed the slower 

time-dependent scattering method, which does require the calculation of the wave function.   

 In our particular case, we found that the algorithm's convergence rate can be increased 

significantly, if the functional derivative is multiplied at each iteration step by a Gaussian window 

function W(x) centered at x=0.  This spatial restriction on the gradient also automatically guaranteed 

that the potential V(x) for large positive and negative values of x was not modified, as required by 

the given boundaries V(x→–∞) = V0 and V(x→∞) = 0.   

 Let us now illustrate the rapid convergence of this iterative scheme.  We start with an initial 

guess of the potential given by V(x) = V0[1–tanh(x/w)]/2 with amplitude V0 = 2.5c2 and spatial 

turn-on width w=0.3/c.  In this case, there are also analytically available expressions for the rate [37] 

that predict Γ = 0.272/(2π) for energy E = 1.25 c2, which is exactly in the middle of the permitted 

energy range (c2 < E < c2–V0) of the created positrons, sometimes also called the Klein window.   
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Figure 1   The first five potentials V(n)(x) to optimize iteratively the pair creation rate Γ(E) for 
potentials with asymptotic potential height V(x→ – ∞) = V0 = 2.5c2 and E=1.25c2.  The initial potential 
was chosen V(0)(x) = V0 [1–tanh(x/w)] with w = 0.3/c, leading to a starting value of Γ(0) = 0.27/(2π).  
The spatial axis with discretized along 2000 grid points with an equidistant spacing Δx = 5×10–5.  As a 
window function for the functional gradient we used W(x) = exp[–(x/0.01)2].  In the inset we display 
the monotonic growth of the associated pair creation rate Γ(n)(E) as a function of the number of 
iterations n.  After only 4 iterations it becomes very close to its upper theoretically permitted value 
shown by the dashed line Γlim(E) = 1/(2π). 
 

   

 The spatial axis was discretized between x = –0.05 a.u. and x = 0.05 a.u. into N=2000 grid 

points.  The algorithm determined then the functional derivative δΓ(Ε)/δV(x) at each of these 

points.  This derivative was then multiplied with the Gaussian window function, given here by W(x) 

= exp[–(x/0.01)2].  In Figure 1 we show the initial Sauter potential and the corresponding sequence 

of the first four iterated potentials V(n)(x).  For n≥4 the spatial profile is converged.  In the inset of 

the Figure we show the sequence of improvements to the rate Γ(n).  Consistent with the data for 

V(n)(x), we see that only about 4 iterations the rate grows from Γ = 0.272/(2π) to nearly 0.9996/(2π), 

which is remarkably close to Γlim.   

 We should finish this section with a brief computational note.  From a technical point of view, 

the infinite-dimensional optimization was realized via the simultaneous optimization of N=2000 

independently adjustable parameters.  In our case, these parameters were given the magnitudes of 

the potential at each of the 2000 spatial grid points.  We found that this number was sufficiently 

large to provide numerically converged data while at the same time permitting us to perform the 

calculations on a Del PowerEdge R 815 system (which has 4 processors with 16 cores each) within 
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a reasonable CPU time and computer memory.  The CPU-time associated with the Fletcher-Reeves 

based conjugate gradient algorithm scales quadratically with the number of required grid-points N. 

 

3. The computational results for the optimum fields 

 We should note that the chosen width of the Gaussian window function determines that spatial 

range (centered around x=0), in which the potential can be modified by the optimization algorithm.  

We observed that for a smaller window width the algorithm converged to other potential shapes, 

that were qualitatively similar to the optimal shown in Figure 1, but they developed peaks that were 

narrower and had a much larger amplitude.  It is therefore clear that for a given positron energy E 

there can be several optimum potentials that can lead to a large positron production rate.  As all of 

these potentials predict a value very close to the upper limit, Γlim = 1/(2π), the question whether 

there exists a single global maximum in this infinite dimensional landscape of functions V(x) is 

solely of mathematical interest and has not much practical relevance. 

 The result displayed in Figure 1 for the optimum V(x) leading nearly to the upper limit of 

Γlim(E) = 0.999/(2π) is interesting.  One could have expected that the maximum rate Γopt might be 

associated with a potential V(x) for which the related electric field [proportional to –V'(x)] is 

largest.  This would be given by the abrupt step function V(x) = V0  θ(–x), where θ(x) ≡ (1+x/|x|)/2.  

This expectation is also suggested by the traditional tunneling picture for the Schwinger process, 

according to which the negatons have to tunnel through the potential step from the left to the right.  

If this transition region is spatially too extended (i.e. significantly longer than the positron's 

Compton wavelength ~1/c), then the transmission (pair creation rate) is usually negligible.  This 

argument certainly would favor the abrupt potential step to be the best candidate for the largest pair 

creation. 

 For this abrupt step [Vstep(x) = V0  θ(–x)] one can derive analytically the largest rate (which in 

this case is always associated with the middle energy E=V0/2) to be Γ(E) =  (1 – 4c4/V0
2)/(2π).  For 

our parameter V0 = 2.5c2, this would amount to Γ(E) = 0.36/(2π), which consistently exceeds the 

value Γ(E) = 0.272/(2π) obtained for the smoother Sauter potential (with w = 0.3/c). However, the 

optimization code did not at all evolve the initial smooth Sauter potential into the expected much 

sharper function Vstep(x).  In fact, the optimum potential is very smooth and has developed a 

semi-oscillatory structure, which then leads to a nearly perfect rate close to Γlim, which is about 

three times larger than the upper limit 0.36/(2π) provided by the step potential for V0 = 2.5c2. 
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Figure 2   (a,top) The spatial profile of three potentials that optimize the pair creation rate for positrons 
for chosen final energies E1 =1.05 c2, E2 =1.25 c2 and E3 =1.45 c2.  They are denoted by V1,opt(x), 
V2,opt(x) and V3,opt(x). (b,bottom) The general dependence of the pair creation rate Γ as a function of 
the energy, calculated for the three optimal potentials Vn,opt(x) with n=1,2,3 as shown in (a). [for V0 = 
2.5 c2] 

 

 In order to examine also other positron energies, we have shown in Figure 2a three potentials, 

optimized for the chosen energy E = 1.05c2, 1.25c2 and 1.45c2 and in Figure 2b the corresponding 

energy dependence of the rate.  Quite remarkably, the potential optimized for 1.25c2 leads not only 

to a rate close to the theoretical upper limit Γlim for E = 1.25c2, but also a large rate for a wide range 

of other energies.  In fact, for all energies 1.04 c2 < E < 1.46 c2 (which is almost the entire Klein 
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range) we find that the rate Γ(E) stays above 0.95/(2π).  It might therefore be a perfect candidate to 

optimize also the total rate γ.  (We will further discuss this in Section 6 below). 

 The comparison of the data for E = 1.05c2 and E = 1.45c2 reveals an interesting but expected 

symmetry of Vopt(E) as well as of the corresponding rate Γ(E).  This is related to charge conjugation 

symmetry between the electronic and positronic formulation of the Hamiltonian.  Any potential 

V(x) for a given positron energy E leads to exactly the same pair creation rate Γ as its "partner" 

potential Vp(x) =  –V(–x)+V0 and energy Ep = V0–E.  As a result, also the rates have the symmetry 

Γp(E) = Γ(V0–E) as confirmed by the dotted and dashed graphs in Figure 2b.  From now on we can 

therefore restrict our analysis without any loss of generality to positron energies in the smaller range 

V0/2 < E < V0–c2.   

  

4. Explanation and the modeling of the yield amplification mechanism 

 While the complicated optimization algorithm can provide us with numerical information about 

the possible spatial shapes for the optimal potentials Vopt(x), it would be worthwhile to accompany 

these purely computational findings also with a better understanding of the underlying physical 

amplification mechanisms.  The numerical analysis provided us with four main findings.  First, all 

data that we have examined for rather wide parameter ranges consistently revealed the development 

of at least one "bump" on the left side (x<0) of all optimum potentials.  Second, the amplitude of 

these bumps increased with a decrease of their spatial width.  Third, the optimum rate is very close 

to Γlim and can be achieved for a given energy with potentials that are of finite magnitude.  Fourth, 

there is a wide variety of potentials that can lead to the near perfect rate.  In this Section, we will 

show that all four of these findings can be explained qualitatively by using a simplified model 

potential. 

 In order to crudely model this functional form, we have approximated V(x) by a simple two-step 

potential, for which we can even obtain a fully analytical mapping from V(x) to the pair creation rate 

Γ(E).  This crude two-step potential is characterized by only two parameters V and d.  It is given by 

V(x) ≡ V0 for x < –d, V(x) ≡ V for –d < x < 0 and V(x) ≡ 0 for 0<x.  To better resemble the 

parameters studied in Sections 2 and 3, we fixed V0 at 2.5c2 and examine V0 < V.  For this potential 

(and 2c2 < V), one can construct analytically the corresponding stationary energy eigenstate for a 

positive energy E by matching the analytical solution at the boundaries at x = –d and x = 0 based on 
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the continuity equation.  The resulting analytical expression for the pair creation rate Γ(E,V,d) is 

given by  

 

  2π Γ(E,V,d) = 4 c4 p q0 q1
2/(N1 + N2) (4.1a) 

where 

                   N1 ≡ c2 q1
2 [(E–c2)1/2 (E0–c2)1/2 + (E+c2)1/2 (E0+c2)1/2 + c2]2 cos2(q1 d)  

              N2 ≡  {E1 [(E+c2)1/2 (E0–c2)1/2 + (E–c2)1/2 (E0+c2)1/2 + c2]  

                      + c2 [(E+c2)1/2 (E0–c2)1/2 – (E–c2)1/2 (E0+c2)1/2] }2 sin2(q1 d) (4.1b) 

 

and where the three momenta are p(E) ≡ (E2–c4)1/2/c, q1(E) ≡ [(V–E)2–c4]1/2/c and q0(E) ≡ 

[(V0–E)2–c4]1/2/c, and the relevant shifted energies are E0 ≡ V0–E and E1 ≡ V–E.   

 
Figure 3   The pair creation rate Γ(E) associated with the model two-step potential V(x,V,d) as a 
function of the "bump" strength V for E=1.25c2 and for d=1/c.  The six arrows indicate the predicted 
values of Vmax and Vmin according to the resonance condition.  The two dashed lines are the envelope 
solutions according to Eqs. (4.3a) and (4.3b). 

 

 In Figure 3 we display this solution Γ(E) for V0 = 2.5c2, d = 1/c and E=1.25 c2 as a function of 

the "bump" strength V.  This potential V(x,V,d) leads to a -at first- rather unexpected behavior of the 

rate.  For example, the rate for V = 3.23c2 amounts to Γ(E) = 0.73/(2π).  This value obviously 

exceeds the transmission for both the two single-step potentials with height V0 = 2.5c2 [leading to 

Γ(E) = 0.36/(2π)] and even V0 = 3.23 c2 [leading to Γ(E) = 0.62/(2π)].  This means that the extra 

0.4

0.6

0.8

1

4 6 8 12

 E = 1.25 c2 

V/c2

2π Γ

n=1
m=1

n=2 n=3

m=2 m=3

2.5



                                                  11            6/12/2019 

 

 

(finite!) bump with amplitude V = 3.23c2 for –d<x<0 and V0 for x < –d can amplify the pair creation 

rate significantly.  This is also fully consistent with the more general data shown in Figure 2b. 

 It is also quite remarkable, that the transmission does not increase steadily with V, in fact, for E 

= 1.25 c2 and d = 1/c there are other optima for the finite values close to V1 = 6.1 c2, 9.2 c2, 12.3 c2, 

…  . This suggests that a resonance mechanism might be responsible for the amplification.  The 

spatial region between two boundaries at x = –d and x = 0 could act as some kind of "cavity", in 

which naturally states with specific wavelengths that fulfill (n–1/2) λn = 2d (for n =1, 2, 3, ...) could 

in principle resonate.   

 We note that this resonance condition for the negaton states should not be confused with the 

non-relativistic transmission resonance of quantum mechanical scattering with an attractive well of 

length d.  There a phase shift of π occurs at one of the two boundaries.  In this one-dimensional analog of 

the well-known Ramsauer-Townsend effect the directly reflected and the (after one round trip of length 

2d) reflected waves interfere destructively, leading to the perfect transmission.  Correspondingly, in that 

case the resonance condition is n λn = 2d (for n =1, 2, 3, ...), which are precisely the wavelengths for 

which the negaton transmission is minimal.  This is quite interesting, as the negaton states between –d < 

x < 0 move faster (as |q1(E)| > |q0(E)|) than the incoming negatons for x < –d, which (for usual positive 

energy states) is characteristic of an attractive well (for –d < x < 0). 

 For a positron energy E, the associated wavelength is λ = 2π/q1(E) = 2π c [(V–E)2–c4]–1/2.  For a 

fixed E and d we can solve this expression for V we find that the resonant potentials take the values 

  Vmax = E + [(n–1/2) π c/d)2 + c4 ]1/2   (4.2a) 

  Vmin = E + [ m π c/d)2 + c4 ]1/2   (4.2b) 

 

For the second equation we have assumed for the wavelengths m λm = 2d (for m = 1,2, ..) such that 

the pair creation yield takes a minimum value.  We have marked the predicted locations according to 

Eqs. (4.2) for m and n = 1, 2, 3 by the six arrows in Figure 3.  Except for the n=1 peak, the agreement 

is excellent for all n and m values, which shows that this "resonance" mechanism for the wavelength 

of the negaton states captures indeed the basic characteristics of the amplification and attenuation 

processes. 

 On the other hand, we can also use Eq. (4.1) to examine the V-dependence of the envelope of the 

maximum (and also minimum) pair creation rates at those "resonances", assuming that d was chosen 
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to fulfill the two types of resonance conditions, such that either the cosine- or the sine- function in 

Eq. (4.1b) vanish.  We therefore obtain 

 

  (2π) Γmax(E,V) = 4 c4 p q0 q1
2/N2  (4.3a) 

 

where N2 ≡  {(E1 + c2)[(E+c2)1/2 (E0–c2)1/2 + (E–c2)1/2 (E0+c2)1/2]+ E1c2}2.  Similarly, for 

completeness, we mention the corresponding envelope curve for the minima  

 

  (2π) Γmin(E,V) = 4 c2 p q0 /N1 (4.3b) 
 

where N1 ≡ [(E–c2)1/2 (E0–c2)1/2 + (E+c2)1/2 (E0+c2)1/2 + c2]2.  As here the q1-dependence in the 

expression for Γmin(E) cancels out and it therefore no longer depends on V, the formula is identical 

to the Γ for a single step with height V0.  The dashed lines in Fig. 3 display the upper and lower 

envelopes. 

 
Figure 4   The envelope solution Γmax(E,V) according to Eqs. (4.3) for three positron energies E = 
1.3c2, 1.4c2 and 1.48c2.  The arrows point to the locations Vopt where the V leads to the perfect (largest 
theoretically obtainable) pair creation yield, Γ= Γlim. 
 

In Figure 4 we examine the upper envelope function Γmax(E,V) for the optimum rates for three 

positron energies E = 1.3c2, 1.4c2 and 1.48c2 according to Eq. (4.3).  It turns out that if the positron 

energy is in the range V0/2 < E < V0–c2 it is always possible to find a particular (finite!) height V 

(and its width d), such that the pair creation rate is equal to its theoretically largest possible value 
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Γlim.  For better graphical visibility we have marked these locations Vlim (12.4c2, 4.7c2 and 3.1c2) 

with the three arrows.  

 This value for Vlim can be found from the solution Eq. (4.3) if we equate Γmax to 1/(2π) and solve 

it numerically for Vlim.  In Figure 5 we show the behavior of Vlim as a function of the positron 

energy.  For E =1.5 c2 it approaches Vlim = V0, whereas for E→1.25 c2 we have Vlim →  ∞.  We also 

show the corresponding smallest possible value dlim at resonance.  As d enters the expression for 

Γ as an argument of a trigonometric function,  Γ is always a periodic function of d.  But here we 

focus on the most interesting case with n=1, meaning we examine the smallest value for d. 

 

                         
 
Figure 5   The perfect amplitude Vlim of the potential bump for –d < x < 0 as a function of the positron 
energy E, which leads to a perfect (largest theoreticall obtainable) pair creation yield given by Γlim.   

 

 While the case Vlim → ∞ and d → 0 for E = 1.25 c2 is expected, the other limit is quite 

remarkable.  For Vlim → 2.5 c2   and d → ∞ we can actually maintain the perfect rate Γlim.  This does 

not seem to make sense at first as in this limit Vlim is identical to the fixed value of V0 (= 2.5c2) for x 

< –d, such that in this case the resulting V(x) becomes simply a single step potential, i.e., V(x) = V0 

(1–x/|x|)/2.  For this easy potential, an analytical solution for Γ(E) is available, which clearly 

predicts only Γ = 0 for largest possible energy E = 1.5c2.  This means that the two limits of the 

independent parameters V → 2.5 c2 and d → ∞ do not commute and the order in which they are 

performed is crucial.  It determines, which of the two extremum values [0 or 1/(2π)] the pair creation 

rate actually takes.  This ambiguity is formally reflected in the solution of Eq. (4.1), where the 

undetermined product q1d occurs in the argument of the two trigonometric functions.  The limit V→ 
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2.5 c2 corresponds to q1 → 0 while d → ∞.  Only if this product is assumed to approach zero, do we 

obtain Γ = 0. 

 We have omitted an analysis for the positron energies in the lower energy range c2 < E < V0/2.  

Due to the charge conjugation symmetry discussed in Section 3, the same general conclusions hold 

also for the lower energy half of the Klein tunneling regime. 

 

5. Optimization of the total yield for the model potential 

 Despite its simple form and being characterized by only two parameters (V and d), the two-step 

potential discussed in Section 4 seems to capture the basic features of those more general potentials 

obtained via an infinite-dimensional optimization algorithm.  In fact, for any given positron energy, 

it is always possible to find finite values for V and d to bring the pair-creation value close to the 

theoretical upper limit Γlim(E).  It therefore seems justified to continue to examine this potential also 

with regard to the optimization of the total rate for all positron energies, defined as γ = ∫dE Γ(E).  

This rate is naturally also bound from above by γlim ≡ (V0–2c2)/(2π) as shown in Section 2.  It is 

interesting to examine, how close γopt associated with the optimum parameters V and d can come to 

γlim.  While for a given energy E the limit Γlim(E) could be achieved with a finite bump height V, it 

is not clear at all if γopt can be accomplished similarly with finite parameters. 

 To have two reference values for γ, we note that a single-step potential with V0=2.5c2 leads to γ 

= 2743/(2π) which is 71% off from the maximal theoretically possible value γlim = 9389/(2π).  A 

single-step potential would theoretically require a gigantic height V0>74c2 such that the associated γ 

is more than 99% of the corresponding limiting value γlim for this V0. 
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Figure 6   (a) The total pair creation rate γ = ∫dE Γ(E) obtained for the two-step potential characterized 
by a "bump" amplitude V and a bump size d.  (b) The corresponding contour plot together with the 
black dashed lines, given by d = (n–1/2) π c [(V–E)2–c4]–1/2 for n=1,2…9. 

 

 In Figure 6 we have graphed the total pair creation rate γ(V,d) as a function of the two-step 

potential with parameters V and d.  In the numerical range examined, the largest value is about γopt = 

8197/(2π), which for V0 = 2.5c2 is only 13% less than the maximal theoretically possible value (γlim 

= 9389/(2π)).  This is quite encouraging and as it suggests that simple potential shapes can be 

chosen to bring the total pair production rate close to its upper limit.  One could have expected that 

the oscillatory dependence of Γ(E) on V and d to be washed out when we integrate Γ over all 

energies (frequencies), however, the interesting oscillatory structure in γ(V,d) shows that this is not 

true.  As the heights along the ring-shaped ridges seem to remain close to γopt, there is an infinite 

manifold of two step-potentials that can optimize the total rate γ.   

 The location of the sequence of the ridges γridge(d,V) in the (d,V) plane can be easily derived, if 

we assume that the most relevant energy E is the center one of the Klein interval, i.e. Ec ≡ V0/2 and 

use this central value for the resonance-like condition q1(Ec) d = (n –1/2)π.  It follows immediately 

that the ridges (indexed by the integer n) are located on hyperbolas, i.e.  

 

                                  d = (n–1/2) π c [(V–E)2–c4]–1/2 (5.1) 
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The predicted hyperbolas were superimposed with the dashed lines on the contour plots shown in 

Fig. 6b.  The agreement with the actual ridges is superb confirming the relevance of the central 

energy Ec for γridge. 

 
Figure 7   The magnitude of the pair creation rate γ = ∫dE Γ(E) along the first six ridges as a function of 
the potentials "bump" height V for the first six ridges. 

 

 In order to find the absolute maximum value along these ridges, we have replaced this particular 

energy dependence of E in d in γ = ∫dE Γ(E) and graphed the ridge height as a function of V in Figure 

7 for the first six ridges.  While all of these three graphs seem to converge to the same final value for 

V→∞, this limiting value, however, is approached rather rapidly.  This means that while in principle 

an infinite value of V is required to reach the precise optimum pair creation rate γ, a very close value 

can already be accomplished with finite values V.   

 

6. The most efficient potential Vopt(x) based on infinite-dimensional optimization 

 In this section we show that the major findings based on the simple two-step potential are of 

relevance even for the most general space of arbitrary potentials V(x), that are only constrained by 

the required boundary condition, V(x→–∞) = V0 and V(x→∞) = 0.   

 From a computational perspective, the same computational methodology that was used to 

construct the optimal potential for a given positron energy E can be exploited to calculate V(x) that 

maximizes the total yield.  In the required functional mapping of the potential V(x) to the 

corresponding rate γ = ∫dE Γ(E) we have discretized the energy space between the two limits E=c2 

and E=V0–c2 into 200 discrete energies and replaced the integration by a discrete sum (trapezoidal 

rule) over all energies.  As the integrand Γ(E) turned out to be not very oscillatory, simulations with 
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100 and 200 energies led to the same result.  As the functional gradient needed to be computed 

numerically for each of the 2000 spatial grid points, due to this energy summation, the required CPU 

to maximize γ was 200 times longer than required for Γ(E). 

 In Figure 8 we present the optimal potential Vopt(x) for V0 = 2.5c2.  It shows a striking similarity 

to the corresponding potential that maximized the rate for the single energy E=1.25c2, which is 

exactly halfway in the Klein range.  This finding is not so completely unexpected as we have noted 

in Figure 2a already a certain commonality among the amplitudes and spatial shapes of the 

potentials Vopt(x) that optimized the rates Γ for three rather different energies within the Klein 

range.   

 

 
Figure 8   The optimal potential Vopt that maximizes the total electron-positron pair creation rate γ = 
∫dE Γ(E) for all energies in the range c2 < E < V0–c2, with V0 = 2.5c2.  For comparison, we repeat by 
the dashed line the corresponding potential that optimizes the rate Γ(E) for the specific energy E=1.25 
c2. 

 

 This finding is also fully consistent with the recently reported superposition principle for the 

simultaneous optimization (SPSO) for collective responses [41].  In this case, the dynamics of sets 

of independent systems were examined, which were simultaneously coupled to the same 

time-dependent external force.  Using optimal control theory, it was shown that the most efficient 

temporal pulse shape for this force that can maximize simultaneously the collective response of 

these systems can be related to the individual forces that would optimize each system separately.   
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In this sense, the present system confirms qualitatively that the SPSO, which was originally derived 

only for temporal systems, can likely be generalized to spatial optimizations as well.  But, of course, 

more detailed studies are required. 

 We should finish with a note about the magnitude of the total pair creation rate γ associated with 

the optimal potential.  We calculated the numerical value γopt = 9083/(2π), which is only 3.26% less 

than the upper limit of maximal theoretically possible value (γlim = 9389/(2π)).  We should point out 

that the derivation of γlim assumed that T(E) = 1/(2π) for the entire Klein range of all energies.  

However, the numerically found (best possible realizable choice of the) potential shows that for any 

finite V0 (such as V0=2.5c2 as in our case), the assumption of an energy independent Γ(E) is not 

realizable by any potential.  In fact, one can show that at the smallest and largest positron energies 

we usually have vanishing rates, i.e, Γ(E=c2) = Γ(E=V0–c2) = 0.  This means that the present 

numerical data obtained for Vopt(x) suggest, that the true (and actually achievable) largest rate is not 

γlim but actually γopt, which still exceeds the rate from a simple step potential [γ = 2743/(2π)] by 

71%. 

 

7. Summary and open questions 

 Complementary to recent studies in which the temporal profiles of spatially homogeneous 

electric field pulses were optimized [7-10], in this work we have examined fields that are temporally 

constant but vary in space.  For a single-step potential, given for example by Sauter's tanh-potential, 

the maximum theoretically pair creation rate Γlim can be reached only in the technically 

unachievable limit of V0→∞.  However, with an alternative spatial profile one can obtain this 

desirable upper limit for a finite potential height.  We view this exciting observation as the most 

important finding of this infinite-dimensional optimization.  There is also a clear message for the 

distribution in the corresponding electric field configuration.  The steady-state pair creation rate can 

apparently be amplified significantly if the field energy is not necessarily concentrated onto a small 

domain in space.  It is more advisable to distribute this energy along several spatial domains in order 

to achieve the advantageous resonance conditions.  This conclusion even holds if the total pair 

creation rate (for all positron energies) needs to be maximized. 

 In view of the extremely short time scales of the order of 10-21 sec that are characteristic of the 

pair creation process, this steady field assumption might not be so unphysical as the experimental 
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fields might vary temporally on significantly longer time scales, such that the steady state situation 

assumed in this work could be reasonable.  However, as the pair creation process can be triggered 

simultaneously by the supercritical strength as well as the rapid temporal variation of the external 

electromagnetic environment, future theoretical optimization study that could maximize the particle 

yield for a field with arbitrary space-time dependence would be ideal.  While optimal control theory 

has led to significant algorithmic improvements in a wide variety of research areas, to the best of our 

knowledge a theoretical approach that could optimize simultaneously the spatial and temporal 

dependence of a control force field has not been studied yet. 

 In contrast to the prior studies of spatially homogeneous fields, where limitations on the 

amplitude or energy of the fields had to be imposed as external constraints to avoid undesirable 

fields with infinite parameters, the present study revealed for the first time, that the maximum 

theoretically achievable pair creation rate for a given final positron energy (associated with a 

transmission coefficient equal to unity) can be accomplished in fact with finite fields and therefore 

possibly technically achievable parameters.  This rather encouraging finding certainly raises the 

hope that similarly finite space-time parameters can lead to an optimum pair creation. 

 The necessity to examine the full space-time dependence will also permit us to include the 

potentially relevant effects associated with the magnetic field component of the radiation pulse, that 

were shown to trigger an amplifying as well as attenuation impact on the pair creation yield [42] 

depending on the spatial orientation and other geometrical configurations. 

 The possibility to exploit resonances to amplify the pair creation rate is, of course, not a new 

concept in itself.  For example, in the case of temporally homogeneous fields, Fillion-Gourdeau et 

al. [43] have shown that laser-induced bound states can effectively increase the transfer rate 

between the lower and upper energy continuum states in diatomic molecules.  Also, recently, a 

possible enhancement as well as a suppression of certain positron energies due to the presence of an 

additional localized field was proposed in [44,45]. 

 While we are still in the cradle stages of our theoretical understanding, it is our hope that present 

study can motivate further investigations with the ultimate goal to become really useful to guide 

potential experiments. 
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