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Adiabatic evolution is a common strategy for manipulating quantum states and has been employed
in diverse fields such as quantum simulation, computation and annealing. However, adiabatic evo-
lution is inherently slow and therefore susceptible to decoherence. Existing methods for speeding up
adiabatic evolution require complex many-body operators or are difficult to construct for multi-level
systems. Using the tools of Floquet engineering, we design a scheme for high-fidelity quantum state
manipulation, utilizing only the interactions available in the original Hamiltonian. We apply this
approach to a qubit and experimentally demonstrate its performance with the electronic spin of a
Nitrogen-vacancy center in diamond. Our Floquet-engineered protocol achieves state preparation
fidelity of 0.994 ± 0.004, on the same level as the conventional fast-forward protocol, but is more
robust to external noise acting on the qubit. Floquet engineering provides a powerful platform for
high-fidelity quantum state manipulation in complex and noisy quantum systems.

I. INTRODUCTION

Accurate manipulation of quantum systems is a fun-
damental goal in many areas of quantum science, rang-
ing from quantum information science through quantum
simulation to quantum sensing. Control over the quan-
tum state of a system is crucial as a preparatory step
for a subsequent computation or simulation [1], or as a
goal in itself, as in adiabatic quantum computation [2, 3].
Some quantum states are “easy” to prepare, for example,
by cooling the system to the ground state of its Hamilto-
nian. However, a number of applications require access to
quantum states that are “difficult” to prepare with high
fidelity. For example, quantum annealing [4, 5] requires
finding the quantum ground state of a complex many-
body Hamiltonian, and entanglement-assisted quantum
sensing requires preparation of entangled states of large
numbers of qubits in order to achieve sensitivity beyond
the standard quantum limit [6]. One of the standard
approaches to state preparation is to use adiabatic evo-
lution: initialize the system in an eigenstate of a sim-
ple, easy to prepare Hamiltonian and then adiabatically
change the Hamiltonian to a new one with one of the
eigenstates (typically the ground state) being the desired
target state. This approach has been used for transport
of ultra-cold atoms [7], many-body state engineering [8],
and quantum thermodynamics [9, 10].

Adiabatic evolution is a generic strategy, but the evo-
lution rate must be much smaller than the energy gaps in
the system. Therefore, this approach is slow and suscep-
tible to decoherence due to inevitable interactions with
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the environment [11]. Shortcuts to adiabaticity are meth-
ods of achieving faster adiabatic evolution, in order to
maintain high fidelity in the presence of decoherence and
noise. One technique is counter-diabatic (also known as
transitionless) driving [12–19]. In this approach, transi-
tionless evolution at arbitrary velocities is achieved by
adding additional velocity-dependent counter terms to
the Hamiltonian. However, for complex quantum many-
body systems, these additional counter terms are, in gen-
eral, highly non-local operators and, as a result, typically
experimentally inaccessible. A related technique involves
fast-forward driving protocols, which use only operators
available in the original Hamiltonian but employ more
complex time dependence to achieve high fidelity [20].
Two main strategies have been proposed for finding fast-
forward protocols. The first uses methods from optimal
control theory to analytically or numerically find driv-
ing protocols that achieve near-unit fidelity [21–25]. Al-
though successful in many cases, such protocols are hard
to compute for generic quantum systems [26]. The sec-
ond strategy is based on a recently-proven statement that
any fast-forward drive can be obtained as a unitary trans-
formation of a counter-diabatic drive [27, 28]. In this
approach, the problem of finding a fast-forward proto-
col can be decomposed into finding a counter-diabatic
protocol first, and then finding the time-dependent uni-
tary transformation that converts the counter-diabatic
Hamiltonian into the original one, with modified time-
dependent couplings. However, once again, there is no
general method for finding this transformation for many-
body systems.

Motivated by the challenge of speeding up quan-
tum state manipulation in many-body systems, we use
Floquet engineering to construct an approximate fast-
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forward protocol from a counter-diabatic protocol. By
driving the system at high frequency we introduce a time-
scale separation between the periodic modulation and the
change of the protocol control fields. This separation
allows us to construct the aforementioned transforma-
tion and results in protocols that become asymptotically
exact in the limit of infinite frequency. This Floquet-
engineered driving protocol can achieve nearly unit fi-
delity with a target state for short protocol duration and
protects the quantum system against decoherence, as il-
lustrated in fig. 1. This methodology can be generalized
to more complex quantum systems by including higher
harmonics of the fundamental Floquet frequency [29], as
shown in Appendix A. To demonstrate the feasibility of
the suggested approach, we experimentally implemented
the Floquet-engineered protocol in a single qubit based
on a nitrogen-vacancy (NV) center in diamond and com-
pared its performance with the conventional fast-forward
protocol in presence of external noise.

II. MODEL

Consider a two-level quantum system, or qubit, with
the following Hamiltonian

H(t) = ∆σz + λ(t)σx (1)

where the σx,y,z are Pauli matrices, and we work in units
with ~ = 1 throughout the paper, i.e. energies are mea-
sured in Hz. For a spin-1/2 system, ∆ is proportional
to the magnitude of the static magnetic field in the z-
direction, and λ(t) is proportional to the magnitude of
the time-dependent magnetic field in x-direction, serv-
ing as the external control parameter. The initial state
|ψ0〉 = | − x〉 and the target state |ψt〉 = |x〉 are eigen-
states of σx, see fig. 1(a). The fidelity of the protocol is
defined as the overlap of the final spin state |ψ(t)〉 with
the target state: F (t) = |〈ψ(t)|ψt〉|2. The initial and tar-
get states are adiabatically connected but separated by
an avoided crossing at λ = 0. For an adiabatic proto-
col the relative change of the instantaneous gap has to
be much smaller than the gap: λ̇/∆ � ∆. This puts
a strong constraint on the minimal required time to im-
plement an adiabatic linear sweep protocol: τ � λ/∆2.
If this time is comparable to, or longer than the deco-
herence time of the qubit, the adiabatic protocol never
achieves high fidelity, as in fig. 1 (b).

A counter-diabatic protocol introduces an additional
control field that keeps the system in the instantaneous
ground state [12, 30]:

HCD(t) = ∆σz + λ(t)σx + 1
2

∆λ̇
∆2 + λ2σy. (2)

For a qubit, the σy control, corresponding to a time-
dependent magnetic field in y-direction for a spin-1/2, is
as easy to implement as σx. However, for generic many-
body systems the counter-diabatic Hamiltonian would re-
quire access to a large number of multi-qubit operators,

FIG. 1. (a) Schematic for quantum state manipulation of
a qubit implemented with the electronic spin of a nitrogen-
vacancy center in diamond. Our protocol includes a high-
frequency Floquet drive that allows faster transitionless evo-
lution, and maintains robust performance in presence of ex-
ternal noise. (b) Numerical calculation of the fidelity for
preparing final state |ψf 〉 for varying protocol duration, in
presence of decoherence. A linear Landau-Zener ramp (dot-
dashed purple) has poor fidelity at short times due to tran-
sitions and at long times due to decoherence. A fast-forward
drive (dashed orange) removes Landau-Zener transitions, but
is still susceptible to decoherence at long protocol durations.
A Floquet-engineered drive (solid blue) gives low fidelity for
short protocol duration τ , i.e. τ . 1/ω, where ω is Floquet
driving frequency. However, when τ & 1/ω, it suppresses
Landau-Zener transitions and decouples the system from de-
coherence, resulting in high fidelity over a broad range of pro-
tocol durations. Ticks on the x-axis indicate the minimum
time to achieve adiabatic evolution according to the Landau-
Zener condition: τLZ = λ/∆2, and the spin coherence time
T2.

that, in general, are experimentally inaccessible. Fast-
forward protocols avoid this complication [20, 27] by per-
forming a virtual rotation around the x-axis, producing a
control Hamiltonian that involves only the control fields
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Bz, Bx corresponding to the original operators σz, σx:

HFF = Bz(t)σz +Bx(t)σx (3)

= ∆
√

1 +
(
λ̇Γ
)2
σz +

(
λ+ 1

2
d(arctan λ̇Γ)

dt

)
σx,

where Γ−1 = 2(λ2 + ∆2). While this transformation is
easy to construct for a qubit, it is a formidable task to
find it in many-body systems [27]. We thus seek a more
general method to find approximate fast-forward proto-
cols.

III. FLOQUET ENGINEERED PROTOCOL

A. Derivation of the protocol

Our approach to constructing the fast-forward Hamil-
tonian exploits the idea of Floquet engineering [31, 32] as
a way of implementing the unavailable counter-diabatic
term. We start with the same form as that of the Fast-
Forward Hamiltonian (equation (3)):

HFE = Bz(t)σz +Bx(t)σx (4)

where both Bz and Bx consist of smooth and rapidly
oscillating parts.

Informed by the standard prescription of Floquet en-
gineering, we take Bx(t) = λ(t) + ωΩ sin(ωt), where Ω
is a free parameter [31]. Next, we consider a rotat-
ing frame defined by the unitary V = exp(−iσxθ(t))
where θ(t) = −Ω cos(ωt), which effectively performs a
re-summation of the Magnus expansion of equation (4).
In the rotating frame, the Hamiltonian becomes:

H̃ = V †HV − iV †V̇ (5)
= Bz(t)(cos 2θσz + sin 2θσy) + λ(t)σx, (6)

This rotating frame Hamiltonian includes σy, allowing
us to implement the counter-diabatic (CD) Hamiltonian
of equation (2) by choosing the appropriate time depen-
dence for Bz(t).

To find an approximate form for Bz(t), we average
H̃ over a single time period T = 2π/ω to compute the
first term of its Magnus expansion. Since the σy term is
required for implementing CD driving, we choose Bz(t) =
α−β(t) cos(ωt), where α, and β are free parameters of the
Floquet engineered driving protocol, so that we get non-
zero contribution from the average over Bz(t) sin 2θσy .
This gives us:

H̃(0) = αJ0(2Ω)σz + β(t)J1(2Ω)σy + λ(t)σx

where J0 and J1 are zero and first-order Bessel functions,
and we have assumed that τ � T so that β(t), λ(t) are
approximately constant over a single period of the drive,

T . This Hamiltonian is exactly the CD Hamiltonian (2)
as long as the coefficients satisfy the constraint:

βJ1(2Ω) = 1
2

αJ0(2Ω)λ̇
(αJ0(2Ω))2 + λ2 , (7)

where the gap of the effective qubit in the rotating frame
is ∆′ = αJ0(2Ω). Note that the latter is completely ar-
bitrary and we get a CD Hamiltonian irrespective of the
value of this gap. Transforming back to the lab frame,
and choosing α = ∆ such that the gap in lab frame re-
mains unchanged, we arrive at our Floquet engineered
driving protocol:

HFE = ∆
(

1− J0(2Ω)
2J1(2Ω)

λ̇ cosωt
(∆J0(2Ω))2 + λ2

)
σz

+ (λ(t) + ωΩ sinωt)σx,
(8)

where ω � ∆ is the drive frequency, J0 and J1 are zero
and first-order Bessel functions
Additionally, to ensure that wavefunctions in both lab

and rotating frames at the initial time t = 0 and final
time t = τ are identical up to a constant phase, we re-
quire that Ω = mπ and τ = nT = n/2πω for integers
m and n. If the ground state of the Hamiltonian HFE is
in the x-direction at the initial and final times, then we
have more freedom in our choice of Ω because the unitary
V = exp(−iσxθ(t)) can only add an overall phase to the
wavefunction (see appendix C). We exploited this free-
dom in experiment to drive our fields at high frequency
ω by taking a smaller Ω, which reduced the amplitude
of the required fields below the saturation level of our
hardware.
For a given protocol duration, larger drive frequency

results in higher protocol fidelity, as shown in fig. 2.
This Floquet-engineering method to obtain approxi-

mate fast-forward protocols can be extended to more
complex quantum systems by including higher harmon-
ics, see appendix A and [29].

B. Experimental implementation

We experimentally implemented the Floquet-
engineered protocol in a qubit formed by the electronic
spin of a single nitrogen-vacancy (NV) center in dia-
mond. The spin state of the negatively-charged NV
center has a long coherence time, even at room temper-
ature, and its electronic level structure allows robust
spin polarization, manipulation, and readout [33, 34].
In order to avoid hyperfine effects due to the nitrogen
nuclear spin, the experiment was operated at the
magnetic field corresponding to the NV excited state
level anti-crossing, where optically pumping the NV
center polarizes both the NV electron and nuclear
spin [35, 36]. We manipulated the NV center spin by
radio-frequency fields with carrier frequency ω0 near its
|ms = 0〉 ↔ |ms = +1〉 transition, thus implementing
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FIG. 2. Simulation of Floquet-engineered protocol fi-
delity Numerically calculated scaling of the infidelity, 1−F ,
of the Floquet-engineered protocol of duration τ with the
drive frequency ω for a cubic sweep λ(t) = λ0(4(t/τ)3 −
6(t/τ)2 + 1). Points are stroboscopically sampled such that
ωτ = nπ. Protocol parameters: λ0/2π = 1.5 MHz,∆/2π =
0.1/J0(2Ω) MHz, Ω = π.

the effective Hamiltonian in eq. (1) in the frame rotating
at this frequency. The gap ∆ was controlled by detuning
ω0 from the spin transition frequency, and the parameter
λ corresponds to the amplitude of the driving field,
which is swept as a function of time.

We performed quantum state manipulation protocols
using the pulse sequence in fig. 3 (a). We initialized the
NV spin into the |−x〉 eigenstate with a laser pulse fol-
lowed by a π/2 pulse around the y-axis. The spin then
evolved under the corresponding protocol Hamiltonian,
and its final spin state |ψ〉 was detected by applying an-
other π/2 pulse around the y-axis, followed by a measure-
ment of spin-dependent fluorescence. To track the evolu-
tion of the system throughout the protocol, we switched
off the control fields after a variable time t, halting state
evolution.

To characterize the performance of our scheme, we car-
ried out the linear Landau-Zener sweep of λ(t)/2π in
the range ±1.5 MHz over time τ = 6µs at a fixed gap
∆/2π = 0.1 MHz. The data points, together with a sim-
ulation, are shown in fig. 3. As a second benchmark,
we measured the performance of the conventional fast-
forward protocol by implementing the Bz and Bx control
parameter sweeps given in eq. (3). The values of the gap
and the linear sweep of λ(t) were the same as for the
Landau-Zener protocol. The experimentally-measured
fidelity shown in fig. 3 shows a dramatic improvement
over the Landau-Zener protocol and approaches the value
0.990± 0.005 as the entire protocol is completed.
We then implemented the Floquet-engineered proto-

col with the time-dependence given in eq. (8), again us-
ing the same values of the parameters. Measurements of
the Floquet-engineered protocol fidelity, shown in fig. 3,
demonstrate that its performance closely approximates
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FIG. 3. Comparison of state preparation protocols a.
The experimental pulse sequence implementing the Floquet-
engineered protocol. The qubit was manipulated using control
fields Bx, By, Bz; initialization and readout was performed us-
ing laser pulses. The gate pulse was used to switch off the con-
trol fields, halting qubit state evolution after a variable proto-
col duration time t. b. Measurements of fidelity during each
protocol for the linear Landau-Zener sweep (purple circles),
the fast-forward protocol (yellow triangles), and the Floquet-
engineered protocol (blue squares). Solid lines are simulations
of corresponding protocol. Oscillations in the protocols, most
pronounced in Landau-Zener, are due to transitions caused
by the discontinuous first derivative at the start and end of
the sweep and slight misalignment of the initial state [36].
Protocol parameters: λ(t) = λ0(1 − 2t/τ), ∆/2π = 0.1 MHz,
λ0/2π = 1.5 MHz, ω/2π = 6 MHz, Ω = π/4 and τ = 6µs.

that of the conventional fast-forward protocol and its fi-
delity approaches 0.994 ± 0.004 as the protocol is com-
pleted. This fidelity should be compared to that of the
adiabatic protocol. It is not a record for a single-qubit
gate fidelity [37–39], but it demonstrates the performance
of the Floquet-engineered protocol with our model sys-
tem.

IV. ROBUSTNESS TO NOISE

Fidelity is an important benchmark that quantifies the
performance of a protocol, but to assess its potential in
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real-world applications it is important to study its per-
formance in presence of the inevitable coupling to a noisy
environment. We introduced such an interaction in our
experiments by coupling the NV spin to a source of mag-
netic noise with controlled amplitude γrms and spectral
bandwidth δf [36] (see appendix D). This noise adds a
stochastic term γ(t)σz to the Hamiltonians in (1), (3),
and (8), which induces transitions between the initial and
final qubit states.

FIG. 4. State preparation in presence of noise a. Mea-
surements of final fidelity as a function of noise magnitude
for Floquet-engineered protocol (blue squares) and conven-
tional fast-forward protocol (yellow triangles). Noise magni-
tude was expressed as root-mean-square amplitude γrms at a
fixed noise bandwidth of 2.5MHz. b. Measurements of final fi-
delity as a function of noise bandwidth for Floquet-engineered
protocol (blue squares) and conventional fast-forward proto-
col (yellow triangles). Noise spectral density was fixed at
0.079 MHz/

√
MHz. c. Final fidelity as a function of proto-

col duration with noise bandwidth 640 kHz and noise root-
mean-square amplitude 64 kHz. In all figures, solid lines are
numerical simulations. Protocol parameters are the same as
in fig. 3. Error bars may be obscured by data markers.

Measurements of the fidelity of the fast-forward and
the Floquet-engineered protocols in the presence of this
noise are shown in fig. 4. The Floquet-engineered proto-
col is more robust to the environmental decoherence: it

maintains its high-fidelity performance up to factor of 3
larger noise amplitude and factor of 5 greater noise band-
width than the conventional fast-forward protocol with
the same parameters. This can be understood by noting
that the Floquet-engineered protocol performs counter-
diabatic driving in the frame rotating at the Floquet
frequency ω. Since in this frame the noise spectrum is
shifted away from zero frequency, it can efficiently induce
qubit transitions within a protocol of duration τ only if
it has spectral overlap with the qubit. That is, the spec-
tral bandwidth of the noise is δf & ω − λ0/(τ∆), where
the qubit spectral bandwidth is approximately λ0/(τ∆).
This sets the noise bandwidth of approximately 5 MHz
at which the fidelity starts to drop, as seen in fig. 4
(b). This mechanism of protecting a qubit against en-
vironmental noise is similar to the methods of dynamical
decoupling [36, 40, 41]. This argument breaks down if
the noise amplitude is comparable to, or larger than, the
magnitude of the σz term in the corresponding Hamilto-
nian since the noise can no longer be treated perturba-
tively.
To understand the above argument better, we consider

the spectral bandwidth of the Floquet-engineered driv-
ing protocol, which is given by its Fourier transform. In
Fourier space, the noise spectrum is centered around zero
with a bandwidth ωc, while the Bz term of HFE (eqn. 8)
is centered around the Floquet frequency. Its spectrum
is given by the Fourier transform of:

(Θ(t)−Θ(t− τ)) cosωt λ̇

∆2 + λ(t)2 (9)

where Θ(t) is Heaviside step function and ω is the Floquet
frequency. The box function Θ(t)−Θ(t−τ) arises because
our protocol is applied for the time t ∈ [0, τ ]. For linear
ramps, we have λ(t) = λ0(1− 2t/τ).
The total spectral function is a convolution of the

Fourier transforms of the box function, cosine, and

the factor λ̇

∆2 + λ(t)2 , which for a linear ramp is a

Lorentzian. Their Fourier transforms are a sinc function,
Dirac delta function peaked at the Floquet frequency
ω, and an exponential, respectively. The characteristic
width of the sinc scales inversely proportional to the pro-
tocol duration as 1/τ , while the Fourier transform of the
Lorentzian decays in Fourier space over a typical scale
λ0
τ∆ . Our protocols are in the regime where λ0 � ∆, so
the convolution with the sinc is irrelevant and the pro-
tocol spectrum is approximately an exponential centered
around ω with a characteristic decay rate λ0

τ∆ . Floquet-
engineered protocols are thus protected from noise as
long as ωc � ω − λ0

τ∆ .
To demonstrate this dynamical decoupling effect, we

performed simulations of the Floquet-engineered proto-
col where we apply a noise function and repeat the sim-
ulation for many realizations of the noise, averaging the
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fidelities together. We model the noise, γ(t), as:

γ(t) =
√

2ωcΓ
N

N∑
j=1

cos (ωjt+ φj) (10)

where Γ is the noise spectral density and ωj represents
different allowed frequencies within a certain bandwidth
ωc. φj and ωj are chosen from random uniform distribu-
tion with φj ∈ [0, 2π) and ωj ∈ [0, ωc). We note that the
RMS amplitude is γRMS =

√
ωcΓ.

The results in fig. 5 show that for large enough Flo-
quet frequency, the Floquet-engineered protocol (data
markers and solid lines) gives lower infidelity than the
conventional fast-forward protocol (horizontal dashed
lines). The infidelity decreases with increasing Flo-
quet frequency until the Floquet frequency reaches ω ≈
ωc+λ0/(τ∆), and the Floquet driving can no longer fur-
ther decouple the system from the noise and the infidelity
saturates.

FIG. 5. Simulations of dynamical decoupling effect
a. Numerically computed infidelity for Floquet-engineered
driving with a cubic protocol as a function of stroboscopi-
cally sampled Floquet frequency, ω = 2πn/τ , where n is a
positive integer. Each curve corresponds to a noise spectra
with different bandwidths but equal spectral density. The
black, horizontal dashed line is the fidelity for the conven-
tional fast-forwardprotocol, which was approximately inde-
pendent of the noise bandwidth in the regime studied. The
red line is the infidelity for a Floquet-engineered protocol with
no noise. b. The same simulations as part a., but with con-
stant RMS amplitude. Horizontal lines are the fidelity of
the conventional fast-forward protocol for the noise spectrum
with the corresponding color. Protocol parameters: λ(t) =
λ0(4(t/τ)3 − 6(t/τ)2 + 1),∆/2π = 0.1/J0(2Ω) MHz,Ω = π,
λ0/2π = 1.5 MHz and τ = 4µs

In fig. 5 a), as we increase the noise bandwidth ωc
while keeping the spectral density Γ constant, we find
that with a large enough Floquet frequency, the Floquet-
engineered protocol can give the same infidelity when
the noise bandwidth is increased. This shows that, like
dynamical decoupling, the Floquet-engineered protocol
protects the qubit from noise as long the Floquet fre-
quency is larger than ωc. In fig. 5 b), as we increase

the noise bandwidth ωc while keeping γRMS constant,
we see that the infidelity of the fast-forward protocol de-
creases because it is more sensitive to lower frequencies
and the spectral density must decrease to give constant
γRMS . However, by increasing the Floquet frequency, the
Floquet-engineered protocol can achieve smaller infideli-
ties and saturates approximately when ω ≈ ωc+λ0/(τ∆),
consistent with the data for constant noise spectral den-
sity. Thus, the Floquet-engineered protocol can protect
the system from noise by driving at high frequency.

V. CONCLUSION

Our approach demonstrates a new tool for high-fidelity
quantum state manipulation in presence of environmen-
tal decoherence. The method based on Floquet engineer-
ing has the potential to be directly generalizable to high-
fidelity state preparation in complex many-body quan-
tum systems, where the counter-diabatic and the fast-
forward protocols are much harder to realize. Additional
promise is demonstrated by the robustness of our scheme
to external noise. Our Floquet-engineering approach may
find applications in a broad range of fields that rely on
high-fidelity preparation of quantum states of noisy or
open quantum systems, such as adiabatic quantum com-
puting, quantum simulation, and quantum sensing be-
yond the standard quantum limit with entangled and
squeezed states [3, 42].
In the late stages of our work we became aware of

Ref. [28] where a similar theoretical strategy of designing
fast-forward protocols is proposed.
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Appendix A: Generalization of Floquet-engineered
protocol

Before we present how we can generalize our Floquet
protocols to more complex systems, we note that an op-
timal variational single-spin counter-diabatic protocol,
which can be easily computed [43], can already be very
efficient even in complex interacting systems [44] . Such
variational protocols can be implemented through the
Floquet driving proposed here. In a more general sit-
uation, one can extend our strategy in several different
ways. Here we present a sketch of the most direct one.
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Consider a generic system subject to a time-dependent
Hamiltonian:

H(t) = H0 + λ(t)H1, (A1)

then a Floquet engineered fast-forward Hamiltonian has
the general form

HFE = Ωω sinωtH + g(t)H1. (A2)

In the rotating frame defined by the unitary V =
exp (−iΩH cosωt), the Hamiltonian becomes

H̃ = V †HFEV − iV †V̇ = g(t)V †H1V. (A3)

Consequently, the first term in the Magnus expansion
reads:

H̃(0) =
∑
l

ilgl
∑
n,m

Jl(Ω(εn − εm)) 〈n|H1 |m〉 |n〉 〈m| ,

(A4)
where εn is the eigenvalue of H associated with eigenvec-
tor |n〉, gl is the lth component of the Fourier series of
g(t) and Jl is the lth order Bessel function of the first
kind. The system remains adiabatic in the rotating frame
as long asH(0) implements the adiabatic gauge potential,
given by [30]:

Aλ =
∑
n,m

i
〈n|H1 |m〉
εm − εn

|n〉 〈m| . (A5)

Since equations A4 and A5 have the some form, the
protocol is constructed by choosing gl to match the coef-
ficients. In practice the number of Fourier components in
g(t) will be limited and the best approximation of (A4)
to the adiabatic gauge potential (A5) can be found by
considering gl and Ω as variational parameters and using
the idea developed in [43]. Further details on the imple-
mentation and performance of such protocols for more
complex quantum systems are given in ref. [29].

Appendix B: Experimental design

The diamond used in our experiments was grown by
C12 enriched carbon vapor deposition and bombarded
with N15 ions to produce spin-1 NV centers coupled to
spin-1/2 N15 nuclei by the hyperfine interaction A~S · ~I.
Figure 6.a shows a schematic diagram of the hardware
setup used to probe and manipulate individual NV cen-
ters. The setup is controlled by a computer which com-
municates with the hardware and has a pulse generator
card (PG) for creating TTL trigger pulses and a data ac-
quisition card (DAQ card) for receiving photon detection
events from the avalanche photodiode (APD). We probe
individual NV centers using a 532nm laser in a scanning
confocal microscope setup using the APD to detect flu-
orescence and with an acoustic-optic modulator (AOM)
to create laser pulses of 100ns and longer. A bar magnet

FIG. 6. Hardware and NV energy levels a. Schematic
diagram of hardware setup. PG: Pulse Generator; DAQ Card:
Data Acquisition card; AWG: Arbitrary Waveform Generator;
SG: Signal Generator; A: Amplifier; Osc: Oscilloscope; APD:
Avalanche Photodiode. Laser module includes a double pass
acoustic-optic modulator (AOM). b. Energy levels of the NV
center under a static magnetic field along the NV symmetry
axis, taken to be the z-axis.

( ~Bs) mounted on a 5 axis translation/rotation stage is
aligned with the NV center axis and the distance from
the NV center is tuned to produce the desired static field
along the NV center z-axis.
To create an effective qubit, we tuned the static field

~Bs to the NV center excited state level anti-crossing
(LAC) at approximately 500G, as shown in the energy
level diagram in Figure 6.b. At the LAC, optically pump-
ing the NV center will polarize both the NV spin and
the nuclear spin [35]. Since the nuclear spin has a much
longer relaxation time than the electronic spin and we
do not drive at the nuclear spin transition frequency,
the nuclear spin remains in the ground state throughout
the protocol and the hyperfine term becomes −A/2Sz,
merely shifting the NV electronic spin transition fre-
quency. Additionally, at the LAC, the NV spin states
|+1〉 and |−1〉 are split by ∼3 GHz, allowing us to drive
on resonance with the |0〉 ↔ |+1〉 transition at ω0 ≈ 1.46
GHz without driving any transitions to the |−1〉 state.
Thus, we have an effective qubit consisting of the NV
spin states |0〉 and |+1〉.
We manipulate the qubit using time-dependent ex-

ternal magnetic fields Bx,y,z generated by current in a
waveguide near the NV center. To generate Bx(t) and
By(t), we generate voltage signals using an arbitrary
waveform generator (AWG) and use them to perform I/Q
modulation of a carrier signal at frequency ω0 created
by the signal generator (SG). Bz(t) is also generated by
an AWG, but is not modulated, and the signals are then
amplified, combined, and sent to a waveguide where they
generate a magnetic field at the NV center. The magnetic
field generated by each of these signals has components
along both the x- and z-axes of the NV center, but Bz(t)
has frequency components up to only ∼ 100MHz � ω0,
so it cannot drive transitions and has negligible effect on
the x- and y-axes. Conversely, since Bx(t) and By(t) are
modulated at ω0, much faster than any other scale in the
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system, in the rotating frame the z-axis field they con-
tribute rapidly averages to zero. So, the experimentally
accessible Hamiltonian for the effective qubit is:

Hlab = (ω0/2 +Bz)σz + 2(Bx cosω0t+By sinω0t)σx
(B1)

Since the drive amplitude and detuning are much smaller
than the carrier frequency, we transform to the rotating
frame defined by ω0/2σz and invoke the rotating wave
approximation to give the following Hamiltonian:

Hrot = Bz(t)σz +Bx(t)σx +By(t)σy (B2)

This allows us to implement each protocol by choosing
Bx,y,z appropriately.

FIG. 7. ESR spectrum Measured ESR spectrum of the
NV center at the LAC with an applied Bz = −1MHz (light
green circles) and without Bz (dark purple diamonds). Solid
and dashed lines are fits to a Lorentzian line shape, A(ω) =
1− c

(ω−ω0)2+(b/2)2

To calibrate the amplitudes of Bx,y, we set them to be
constants to drive Rabi oscillations and tune the power
to give the desired Rabi frequency. To calibrate Bz, we
set it to be constant and perform electron spin resonance
(ESR) to observe the shift in the transition frequency. In
Figure 7 we show electron spin resonance (ESR) spectra
of the NV center with the static magnet ~Bs tuned near
the LAC (purple data). In another set of data (green),
we additionally apply a constant field Bz = −1MHz us-
ing the electronics described above for the duration of
the ESR RF pulse (4µs). The ESR spectra confirm that
the N15 nuclear spin is polarized because each spectra
has a single peak while the spectrum for an unpolarized
spin would have two peaks separated by the hyperfine
interaction A ≈ 3MHz. Additionally, we see that apply-
ing Bz results in an effective σz term, shifting the ESR
frequency.

The experiment is then carried out by the pulse se-
quence in figure 3.a, as described in the main text. When

reporting the final fidelity for each protocol, F (τ), we
average the fidelity over the final 40ns of the protocol in
order to account for jitter in signal generation.

Appendix C: Protocol imperfections

In this section we discuss potential errors in the
Floquet-engineered protocol that might arise from sim-
plifying approximations and limitations in the hardware.
We show that these errors do not significantly affect the
experimentally achievable protocol fidelities.

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1

0.996

5.95 6

FIG. 8. Simulation comparing fidelity for dif-
ferent initial states Numerically calculate fidelity within
theFloquet-engineered protocol with the state starting along
the x-axis (solid purple line) and along the true ground state
of the original LZ Hamiltonian (dashed blue line). Note
that on this scale the curves nearly lie on top of each other.
Protocol parameters: ∆/2π = 0.1 MHz, λ0/2π = 1.5 MHz,
ω/2π = 6 MHz, Ω = π/4 and τ = 6µs

As illustrated in the main text, the aim of each proto-
col is to bring the system from the initial state, |−x〉
to the target state, |+x〉. The Landau-Zener proto-
col achieves this by sweeping Bx with a constant Bz
so that the ground state rotates with the net magnetic
field around the y-axis from -x to +x. Since Bz is finite,
this would require Bx →∞, which is experimentally in-
accessible. To approximate this, we consider protocols
where Bz/Bx � 1 so that the spin pointing along -x
is nearly in the initial ground state. Our experiments
use Bz/Bx = 0.1/1.5, which gives an initial overlap of
| 〈ψ(0)|ψGS(0)〉 | = 0.9978. In figure 8, we show simu-
lations of theFloquet-engineered protocol with the same
parameters as in Figure 3.b of the main text with the
system starting in the exact ground state and along the
-x-axis. The curves nearly overlap for the entire protocol
and the final fidelities agree at the level of precision avail-
able in experiments (±0.004). The oscillations in both
protocols are caused by the finite Floquet driving fre-
quency and deviations from starting in the initial ground
state; these small fluctuations will be slightly different
for the different initial states.

Another point mentioned in the main text is the
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FIG. 9. Infidelity as a function of Ω Numerically cal-
culated infidelity (1 − F ) of the initial ground state of the
Floquet-engineered Hamiltonian with the initial state, |+x〉,
as a function of the parameter Ω.

choice of the parameter Ω in the Floquet-engineered
Hamiltonian. This parameter appears in the rotating
frame transformation operator V = exp (iσxΩ cosωt),
and hence in the lab frame Floquet-engineered Hamil-
tonian. As mentioned in the appendix A, for the initial
states in the lab and rotating frames to agree at time
t = 0, we require that Ω = nπ, for an integer n. How-
ever, if the initial ground state is along the x-axis, this
operator does not rotate the state and merely adds an
overall phase, meaning there is no restriction on Ω. Free-
dom in choosing Ω is useful from an experimental point
of view because the Floquet driving term, ωΩ sinωt, is
easier to implement if the amplitude can be made smaller
by taking a smaller value of Ω. As explained above, the
initial ground state is not exactly along the x-axis, but
instead slightly above it in the x-z plane. Thus, taking
Ω 6= nπ could result in errors in the initial state being
different from the initial ground state.

To show that we can still choose Ω freely without in-
troducing significant infidelities, we computed the infi-
delity of the initial state, |−x〉, with the initial ground
state of the Floquet-engineered Hamiltonian as a func-
tion of Ω, shown in Figure 9. We see that for al-
most all values of Ω, the states have infidelities of I =
1−| 〈−x|ψGS(t = 0,Ω)〉 |2 ≤ 0.002, consistent with the in-
fidelities we expect based only on the fact that ∆/λ0 6= 0,
as discussed above. The isolated points where the infi-
delity changes rapidly occurs when Ω approaches points
such that J1(2Ω) = 0. Near these points, we can approx-
imate Bz ∼ ∆ − c/J1(2Ω), for a constant c � ∆. As
Ω increases from below, it approaches ∆ ≈ c/J1(2Ω), so
that Bz = 0 and the ground state points along the x-axis,
matching the initial state. Increasing Ω slightly more re-
sults in a large Bz and the ground state points nearly
along the -z-axis, giving large infidelities. As long we
avoid these points when choosing Ω, the initial infidelity
will be small and we can expect the final infidelity to be
comparably small, as in Figure 8 where we examined the

effect of small infidelities from the initial state.
A final imperfection we consider is detuning from the

transition frequency ω0. As shown above, we perform
electron spin resonance (ESR) to determine ω0 and then
set the signal generator to this frequency. If the applied
fields Bx,y are detuned from resonance by a small amount
δ, then in the rotating frame there is an additional term
δσz. In our experiment, detunings result from two main
sources. First, changes in the temperature or humidity of
the laboratory cause drift in the distance of the NV center
from the static magnet Bs, shifting the ESR frequency.
We observe drift in ω0 of no more than 50-100kHz on
the timescale of a day. To avoid detuning resulting from
this drift, we perform ESR measurements at regular in-
tervals of 20-60 minutes during experiments and retune
the frequency.
The second source of detuning is the uncertainty in the

measured frequency ω0. After performing ESR, we fit
the normalized data to Lorentzian lineshapes, which re-
sults in some numerical uncertainty in the fit parameters.
Defining the uncertainty as half the width of the 66%
confidence interval of the fit parameters, we find typical
uncertainties in ω0 of ±6-10kHz. We investigate how this
might affect each proctol by running a simulation with
an additional term δσz where δ is drawn from a Gaussian
distribution of mean zero and standard deviation 8kHz,
and then averaging together the fidelities as a function
of time for many iterations with independent values of δ.
The results in Figure 10 show that the Landau-Zener pro-
tocol is most sensitive as the uncertainty band is largest
and that detuning may explain some of the deviation of
the data from the simulation without detuning. We also
see that the Floquet-engineered protocol is more robust
against tuning errors than the fast-forward protocol and
is unaffected by detunings at this scale.

Appendix D: Experimental details of noise

To generate classical magnetic field noise, we applied
several amplification stages to the Johnson noise of a re-
sistor at room temperature to produce white noise band-
limited by the amplifiers. Because the bandwidth of the
amplifiers was 300MHz, much less than the transition fre-
quency ω0, the noise cannot drive |0〉 ↔ |+1〉 transitions
and is well described by pure dephasing: Hnoise = γ(t)σz.
The noise signal was combined with Bz(t) to deliver it to
the waveguide where it creates a magnetic field.
We characterized the noise by its amplitude spectral

density, which we varied by adding attenuators, and its
bandwidth, which we varied by adding low pass filters.
We used commercially available 5th order elliptic filters
which have fast rolloff of >20dB/octave, allowing us to
approximate them as ideal low pass filters with constant
spectral density and a hard cutoff which we define as the
-3dB point. We measure the RMS of the noise generator
using a digital oscilloscope and then apply the calibration
to determine the magnitude of Bz as explained above.
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FIG. 10. Protocol performance with detuning a. Simulation of Landau-Zener protocol with detunings δσz drawn from
a Gaussian distribution δ ∼ N(µ = 0, σ = 8kHz). The simulation is repeated many times and the results averaged together
with the green band capturing the mean fidelity ± 1 standard deviation at each point in time. Black curve is the simulation
with no detuning. Data is plotted as well to show it falls within the green band. Plots b) and c) are the same as a). for
the fast-forward and Floquet-engineered protocols, respectively. Note that the uncertainty band for the Floquet-engineered
protocol is not visible at this scale. Data points are omitted since the spread in the data is larger than the bands. Parameters
are the same as for Figure 8.

To check this calibration and characterize the noise, we
performed a detuned Ramsey experiment with the exter-
nal noise and fit the envelope of the Ramsey fringes to an
exponential decay to measure T ∗2 . The data, reported as
the dephasing rate Γ = 1/T ∗2 is reported in fig. 11, for the
RMS and bandwidths used in fig. 4. of the main text.
Fig. 11 (a) shows that as the RMS increases, the coher-
ence time decreases. The coherence time approaches a
constant value as the added noise becomes weak and is
dominated by electronic noise independent of the added
noise and the dephasing resulting from the spin environ-
ment of the NV center. We find that with no added noise,
Γ = 0.125±0.003 MHz, consistent with the value the data
is approaching. In fig. 11 (b), plotted on the same scale
as fig. 11 (a), we see that T ∗2 is nearly independent of
frequency. This is expected since T ∗2 is most sensitive
to low frequency noise, so increasingly higher frequencies
get averaged out and do not affect the dynamics.

We then simulated the Ramsey experiment using the
same bandwidth and adjusted the noise amplitude spec-
tral density (ASD) until the simulated T ∗2 agreed with
the experimental value. For a particular filter with band-
width 2.5MHz, used in fig. 4 (a) of the main text, we find
that the value of the simulated ASD required to match
the T ∗2 is approximately 28% larger than that estimated
using the oscilloscope measurement, represented as a fac-
tor α = 1.28. This factor can be understood as a correc-
tion to the measured RMS to account for the fact that
the actual filters used do not have ideal filter shapes,
meaning the model ignores noise above the -3dB point
and slightly underestimates the power in the bandpass
region at frequencies below the -3dB point. As a result,
this correction factor will differ for different filters.

FIG. 11. Decoherence rate with external noise a. De-
coherence rate as a function of the amplitude of added noise
at a fixed bandwidth of 2.5MHz. At small amplitudes, the
dominant contribution to decoherence is from sources intrin-
sic to this NV center, and hence independent from the exter-
nal noise. b. Decoherence rate as a function of the added
noise bandwidth at fixed spectral density. T ∗

2 is most sensi-
tive to low frequency noise and is hence almost independent
from the large bandwidths we consider.

We applied this correction factor to the simulations in
fig. 4 (a, c) of the main text because they use a single
filter and hence are described by a single value of alpha.
In fig. 4 (b), however, we use only the ASD measured by
the oscilloscope since each point is taken using a different
filter. As shown in fig. 11 (b), T ∗2 has a weak dependence
on the bandwidth at the frequencies used, so we can not
reliably extract α for each point since T ∗2 gives minimal
information.
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