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Abstract

Simulating complex many-body quantum phenomena is a major scientific impetus behind the

development of quantum computing, and a range of technologies are being explored to address such

systems. We present the results of the largest photonics-based simulation to date, applied in the

context of subatomic physics. Using an all-optical quantum frequency processor, the ground-state

energies of light nuclei including the triton (3H), 3He, and the alpha particle (4He) are computed.

Complementing these calculations and utilizing a 68-dimensional Hilbert space, our photonic sim-

ulator is used to perform sub-nucleon calculations of the two-body and three-body forces between

heavy mesons in the Schwinger model. This work is a first step in simulating subatomic many-body

physics on quantum frequency processors—augmenting classical computations that bridge scales

from quarks to nuclei.

∗ These authors contributed equally to this work.
† To whom correspondence should be addressed; E-mail: lougovskip@ornl.gov
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I. INTRODUCTION

Photonics is at the forefront of experimental quantum computing, as evidenced by pi-

oneering demonstrations of the variational quantum eigensolver (VQE) algorithm [1–3], of

molecular vibronic spectra and dynamics simulations [4, 5], and of experimental Hamiltonian

learning [6]. It offers a versatile platform to process quantum information with low noise in

a multitude of encodings, ranging from spatial or polarization degrees of freedom [7, 8], to

temporal modes [9, 10]. Rapid progress in integrating optical components on-chip [11–13] is

paving the way to large-scale spatial-encoding-based photonic quantum processors. Other

encodings, however, also provide a path to scalable quantum architectures. For example,

frequency encoding—routinely used in fiber optics to multiplex information transmission

and processing—has been adapted for scalable quantum computing [14]. A single fiber can

support thousands of frequency modes that can be manipulated in a massively-parallel fash-

ion at the single-photon level. This particular framework for photonic quantum computing

relies on qubits encoded in narrow frequency bins, where quantum gates are based on stan-

dard telecommunication equipment: electro-optic phase modulators (EOMs) and Fourier-

transform pulse shapers [14]. A variety of basic quantum functionalities have recently been

demonstrated experimentally in this approach, in the form of a quantum frequency processor

(QFP) [15–17].

Solving quantum many-body systems, whose resource requirements scale exponentially

with the number of particles, is an area in which quantum devices are anticipated to provide

a quantum advantage. Recently, quantum many-body problems in chemistry, condensed

matter, and subatomic physics have been addressed with quantum computing using two-to-

six superconducting qubits, for example Refs. [18–22], and up to tens of trapped ions, for

example Refs. [23–25].

A major goal in nuclear physics research is to tie the effective field theory (EFT) de-

scriptions of nuclear matter and heavy nuclei to their microscopic origin, quantum chro-

modynamics (QCD), through numerical calculations with lattice QCD. Important steps are

being taken toward this objective [26–37]. A hierarchy of EFT models [38–40] is used to

describe heavier nuclei [41–44], and lattice QCD calculations have been used to constrain

EFT parameters over a range of unphysical quark masses [28, 29, 34–36]. However, such

microscopic descriptions are computationally challenging for all but the lightest nuclei and
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hypernuclei [26, 27, 29–33] due to signal-to-noise problems [45–49]. Augmenting classi-

cal calculations with their quantum counterparts [50–53] offers an analogous roadmap for

quantum-enabled subatomic physics as depicted in Fig. 1. At the EFT level, a subatomic

system can be simulated as a collection of nucleons with EFT parameters input from ex-

perimental data or from ab initio, Minkowski-space quantum simulations of lattice QCD. In

this article, we take the first steps to meeting this Grand Challenge.

Here we report the first application of a QFP to many-body subatomic systems. With

Hilbert spaces of up to 68 dimensions, this work represents the largest simulation of nuclei

and lattice field theories on a photonic device to date. Using an EFT description, we

experimentally implement the VQE algorithm to calculate the binding energies of 3H, 3He,

and 4He. Further, for the first time, we employ VQE to determine the effective interaction

potential between composite particles directly from an underlying lattice quantum gauge

field theory, the Schwinger model. This serves as an important demonstration of how EFTs

themselves can be both implemented and determined from first principles by means of

quantum simulations.

II. QUANTUM FREQUENCY PROCESSOR (QFP)

For implementing quantum simulations, we utilize our previously-developed QFP: a pho-

tonic device that processes quantum information encoded in equispaced narrow-band fre-

quency bins, described by operators c†n (cn) for n ∈ Z that create (annihilate) a photon

in a mode centered at ωn = ω0 + n∆ω, where ∆ω is the frequency bin spacing and ω0

is an offset [14, 54]. An arbitrary, unitary mode transformation matrix V can be imple-

mented on QFP by interleaving pulse shapers and EOMs [14], and recent experiments have

demonstrated high-fidelity single-qubit [15, 16] and two-qubit [17] gates.

Figure 2 shows the experimental setup for our all-optical QFP. The input state prepara-

tion, frequency operations, and final energy measurements can all be realized with off-the-

shelf fiber-optic components, including EOMs (EOSpace), pulse shapers (Finisar), and an

optical spectrum analyzer (OSA; Yokogawa). The capability of transmitting optical informa-

tion within a single-mode fiber from generation to detection facilitates parallel computations

in a low-noise fashion.

As detailed in the Methods, for many-body Hamiltonians projected onto single-particle
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FIG. 1. Quantum simulation for subatomic physics. Ideally, quantum simulation applied to both

QCD (left-side) and EFT (right-side) will enable high-precision predictions of static and dynamic

properties of nuclei and nuclear matter. EFT parameters may be determined from experiment, or

by a complementary program of classical and quantum simulation.

sub-spaces a variational wavefunction can be mapped onto a mode-entangled state of a single

photon, so that the state preparation procedure in the VQE algorithm amounts to coher-

ent frequency comb generation. However, more complicated (e.g., multi-photon) entangled

photonic states could be employed as well, modifying only the “State Preparation” portion

of the apparatus in Fig. 2. By working with multiple photons in the QFP, qubit degrees of

freedom can be identified with photon occupations of frequency-bin pairs. For example, 10

frequency bins, discussed below, can be mapped onto 5 qubits with a 5-photon input state.

Such a mapping and the ability to implement a universal gate set endows the QFP with sim-

ilar quantum capabilities and scaling as other digital quantum devices. Note that the QFP

utilized in this work can in principle support the Hilbert space of up to 33 qubits [15] [55].

Scaling this hardware to larger numbers of qubits will require further engineering in order to
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build multiple multi-photon sources and reduce loss in the system, which should ultimately

enable a concrete quantum advantage over classical computing. This quantum advantage is

not present in the single-photon methods employed in this work.

FIG. 2. Experimental setup including our all-optical quantum frequency processor.

In this initial experiment, however, we focus on the simpler case of single-photon encoding

for demonstrating the basic approach. The source we utilize for the state preparation is a

wavelength-division multiplexing transmitter (Ortel) possessing four continuous-wave (CW)

laser modules emitting single-tone optical signals at 192.0, 192.4, 192.8, and 193.2 THz. We

combine all four signals with a fiber coupler and send them through an EOM driven at 25

GHz, which creates four parallel frequency combs at the output (each of which contains

∼10 frequency bins) with a total of 40 available comb lines. This allows us to implement

up to eight parallel Hadamard gates (50/50 beamsplitters): two comb lines per gate plus

four comb lines for guardbands (i.e., two gates per each 10-line subcomb) to prevent cross-

contamination during the subsequent frequency beamsplitting operations (photons from one

gate jumping over to an adjacent gate during the calculation) [15]. We then choose the

best five beamsplitters for the subsequent operation, excluding those with higher imbalance

in reflectivity and transmissivity. Note that despite these calibration measures, we still

observe the residual non-uniform performance across different gates stemming from the noise

background of the input light source, and the optical path length change in the QFP due to

temperature drifts in long-term measurements. Finally, filtering out extra input frequencies,

5



as well as manipulating amplitude and phase for all five remaining frequency-bin pairs, is

realized by a pulse shaper immediately following the comb generation.

III. MAPPING SYSTEMS ONTO THE QFP

In all quantum simulations here, our starting point is a second-quantized Hamiltonian

HSQ which, depending on the problem, contains one-, two-, and three-particle terms written

as products of fermionic creation and annihilation operators. Our goal for these Hamiltoni-

ans is to compute the smallest eigenvalue using the QFP hardware. A scalable path to this

goal has been outlined in the literature in the form of the VQE algorithm [56]. There, each

fermionic operator in HSQ is mapped onto a set of qubits such that fermionic commutation

relationships are preserved. As a result HSQ is mapped onto H̃SQ which is a sum of strings

of Pauli operators. Then quantum hardware is used to prepare a variational trial quantum

state of qubits |Ψ = Ψ(θ1, · · · , θM)〉 in the form of a parameterized quantum circuit with

M parameters. Subsequently, the expectation value of the Hamiltonian in the state |Ψ〉,

〈Ψ|H̃SQ|Ψ〉, is computed by repeating the state preparation and energy measurement mul-

tiple times. A classical computer calculates the direction in the parameter space and new

parameter values {θ′1, · · · , θ′M} that yield a lower energy value. The energy calculation is

then repeated on quantum hardware with the updated trial state |Ψ(θ′1, · · · , θ′M)〉 until a

(local) minimum of the energy is obtained.

For all pre-error-corrected quantum hardware—of which the QFP is an example—the

depth of the circuit that prepares and measures the variational state |Ψ〉 is limited by

noise. This effectively limits the size of fermionic systems that can be simulated on existing

devices. To extend quantum simulations to subatomic systems beyond the deuteron [20]

and Schwinger models beyond two spatial lattice sites [21, 23], we have recently proposed a

preconditioning strategy [21] that transforms H̃SQ into block-diagonal form by projecting it

onto eigenstates of operators that represent good quantum numbers (e.g., parity, momentum,

total spin) for the system of interest. As a result H̃SQ =
⊕

iHi, where Hi can now be

interpreted as single-particle Hamiltonians acting on smaller subspaces than the original

Hilbert space corresponding to H̃SQ. A Hamiltonian Hi, specified by a d × d Hermitian

matrix with elements hkl in some basis, can be mapped onto a Hamiltonian Hi
QFP that
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describes a frequency bin multiport device implementable with the QFP:

Hi
QFP =

d−1∑
k=0

hkkc
†
kck +

d−1∑
k,l=0
k<l

[hklc
†
kcl + h∗klc

†
l ck], (1)

where hkl are the entries in Hi. In this encoding, we have mapped the original Hamiltonian

H̃SQ onto a set of single-particle systems defined by Eq. (1). To find ground-state energies of

each single-particle Hamiltonian Hi we implement a variant of the VQE algorithm adapted

for the QFP hardware. For the trial variational wavefunction |Ψ〉 we utilize an ansatz based

on unitary coupled-cluster (UCC) theory [56]. The UCC wavefunction can be written as

|Ψ〉 = exp

(
d−1∑
k=1

θk[c
†
0ck − c

†
kc0]

)
|10 · · · 0〉, (2)

where the state |0 · · · 1k · · · 0〉 denotes a single excitation (photon) in the frequency bin k,

and none in the remaining d− 1. The operator exponent can be evaluated explicitly in this

case, leading to the following (d−1)-parameter state,

|Ψ〉 = cosφ |10 · · · 0〉 − sinφ

φ

d−1∑
k=1

θk|0 · · · 1k · · · 0〉, (3)

with φ =

√
d−1∑
k=1

θ2
k. In the context of the QFP, the UCC wavefunction |Ψ〉 represents a

superposition of a single photon over d frequency bins.

With the Hamiltonian and UCC wavefunction defined, we use our QFP to estimate the

expectation value 〈Hi
QFP 〉 = Tr

[
|Ψ〉〈Ψ|Hi

QFP

]
for given parameter values {θk}, by first

preparing |Ψ〉 and experimentally reconstructing the elements of the single-particle density

matrix ρkl = (1/2)〈Ψ|c†kcl + c†l ck|Ψ〉. Measuring ρkl is equivalent to placing the state |Ψ〉

on a 50/50 beamsplitter implemented between frequency bins k and l, and recording the

difference in the flux of detected particles in those modes immediately after the beamsplit-

ter. Similarly, elements ρkk can be measured by preparing the state |Ψ〉 and measuring the

photon flux in each mode k by using a photodetector. After repeating this process for all

combinations of modes k and l, 〈Hi
QFP 〉 = Tr[ρHi

QFP ] =
∑

kl ρklhkl can be estimated. Re-

cent formulations of VQE, which use the current estimate of the energy 〈Hi
QFP 〉 to generate

parameter updates {δθk} via a gradient-based classical optimizer, generally require many

evaluations of 〈Hi
QFP 〉 to arrive at converged parameters. We instead use a new method
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which merges the UCC ansatz with a many-body formalism called the anti-Hermitian con-

tracted Schrödinger equation [57]. This allows us to approximate the gradient of parameters

using the measured ρkl of each iteration [58] and arrive at convergence with significantly

fewer evaluations of 〈Hi
QFP 〉. For example, in the problems we explore here our method

required ∼20 iterations to converge compared to ∼500 iterations when using the BFGS

algorithm [59].

In practice, the measurement of the elements ρkl using the single-photon state |Ψ〉 as an

input is equivalent to a measurement with a coherent frequency comb where the relative

amplitude of each comb line is set to θk sinφ/φ (for lines k = 1, . . . , d− 1) and cosφ (for the

line k = 0) with respect to a reference coherent-state amplitude α. Indeed, one can verify

by a direct calculation that 〈Ψcomb|Hi
QFP |Ψcomb〉 = |α|2〈Ψ|Hi

QFP |Ψ〉 where,

|Ψcomb〉 = |α cosφ〉 ⊗ |αeiπ θ1 sinφ

φ
〉 ⊗ · · · ⊗ |αeiπ θd−1 sinφ

φ
〉. (4)

Moreover, the measurements of ρkl for non-overlapping sets of indices k, l can be implemented

in parallel, thus reducing the simulation time, as the QFP has an intrinsic ability to perform

the same operation on different sets of modes in parallel. Previously, we implemented near-

unity fidelity frequency-bin beamsplitters in parallel, with a theoretical predicted fidelity

F = 0.9999. Such Hadamard gates can be achieved by driving two EOMs with π-phase-

shifted sinewaves at frequency ∆ω (with maximum temporal phase modulation Θ = 0.8169

rad), and applying a step function with π-phase jump between the two computational modes

on the central pulse shaper. The corresponding beamsplitter possesses 47.81% reflectivity

R (mode-hopping probability) and 49.79% transmissivity T (probability of preserving fre-

quency), with 2.4% of the photons scattered outside of the computational space.

Despite such high fidelity, the residual imbalance in R and T is undesirable, leading to

higher error in calculation of the ρkl elements. Accordingly, in this work we further reduce

the Hadamard gate’s bias, achievingR = 48.7% and T = 48.77% (corresponding to a fidelity

F = 0.999999) by increasing Θ to 0.8283 rad on both EOMs, while the QFP’s central pulse

shaper remains unchanged.

After setting up the Hadamard gates, we utilize the first pulse shaper to equalize the

amplitude across all ten input frequency bins. The relative spectral phase within every

frequency pair is also fine-tuned until we find the in-phase condition as the reference—

defined such that the lower (higher) frequency bin obtains the maximum (minimum) optical
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power after the Hadamard operation. To compute ρkl, we manipulate the relative amplitude

and phase of a frequency pair ck and cl, and record the optical power difference between two

modes after the beam-splitting operation. To reconstruct the full density matrix, a total

number of d(d − 1)/2 beam-splitting operations is required in every iteration. Hence, the

usage of five parallel beamsplitters (as well as the natural parallelization in pulse shapers and

the OSA) reduces the required number of computations by a factor of five, before updating

the trial state for the next iteration.

IV. NUCLEAR STRUCTURE CALCULATIONS

Organizing principles rooted in the global symmetries of QCD have been successfully

encoded in low-energy EFT frameworks describing nuclear forces, providing a systematically-

improvable approach to calculations of nuclei. At low resolution, i.e. at long wavelengths,

details about the strong but short-ranged nuclear forces, or about QCD, are not revealed,

and the lightest nuclei can be understood in terms of contact interactions of pairs and triplets

of nucleons [38, 60–63]. In our model, we employ a Hamiltonian at next-to-leading order

(NLO) in pionless EFT and adjust its parameters to the S-wave effective range expansions

and the deuteron binding energy; the strength of the three-body contact is adjusted to the

triton binding energy. The Coulomb force between protons is also included. We employ a

finite basis consisting of eigenstates of the spherical harmonic oscillator with energy spacing

~ω = 22 MeV in a discrete variable representation [36, 64], with the two-body and three-body

potentials acting only between states with excitation energies up to and including 2~ω. This

discretization maps nucleon fields onto annihilation operators with an interaction-momentum

cutoff of 337 MeV. Next, we project this second-quantized Hamiltonian HSQ onto Hilbert

spaces with spin and parity of Jπ = 0+ for 4He and Jπ = 1/2+ for 3H and 3He, and the

resulting Hamiltonian matrices Hi are evaluated for the smallest eigenvalue on the QFP, as

described in the Methods.

Figure 3 shows the ground-state energies of 3H, 3He, and 4He computed with the VQE

algorithm on the QFP, as a function of the effective spatial extent, L, of the model space.

For the weakly-bound three-nucleon states of 3H and 3He, the energy is found to decrease

noticeably with increasing L. For these systems as well as 4He, extrapolations to large

model spaces can be reliably performed (shown as shaded regions) using the leading-order
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expression given in Eq. (C2). For each nucleus, the model-space-extrapolated binding energy

(shown as the red point at right) is consistent within systematic-dominated uncertainties

with the corresponding tuned NLO EFT prediction. We note that the underlying Hamilto-

nian of NLO pionless EFT is known to reproduce experimental data to much better than

the naive ∼ 10% accuracy based upon power counting due to the relative size of coefficients

in the effective range expansion.

V. SCHWINGER MODEL SIMULATIONS

Quantum Electrodynamics in 1+1 dimension, the Schwinger model [65, 66], has been

long-studied as an example of confinement and chiral symmetry breaking in quantum field

theory [67], and is receiving new attention in the context of quantum simulation [21, 23, 68–

75]. To represent this continuous theory on computational devices, we employ staggered

fermions [76] mapped to spin degrees of freedom as shown in Eq. (D1). Fluctuations in

the truncated, quantized electric field are accompanied by pair (e+e−) creation/annihilation

satisfying Gauss’s law. Previous works have calculated static and dynamic observables

resulting from these fluctuations on quantum devices [21, 23]. In this article, we introduce

non-dynamical static charges, which are screened by deformations in the quantum vacuum

and interact with the fermions only through their contribution to Gauss’s law. Such systems
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FIG. 3. Results of the nuclear ground-state energies for 3H, 3He, and 4He nuclei computed

with the QFP (blue data points) for Hilbert spaces with effective spatial extent L with estimated

systematic uncertainties. Also shown are the leading-order extrapolations (see Eq. (C2)) to infinite

model spaces with propagated uncertainties (gray bands), the resulting extrapolated energies E∞

(red point at right), the tuned NLO EFT predictions (dark blue solid line), and the known high-

precision values of the binding energies (dashed gray line).
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FIG. 4. The e+e− densities (〈ρ〉) and energy-density in the electric field (〈E2〉) for Q = −1 static

charges separated by one spatial lattice site. The left panel shows the raw distributions, the center

panel has the vacuum removed, and the right panel also has the contributions from the individual

charges removed. The horizontal black dashed lines are the analytic values of the local densities,

while the error bands (not seen on this scale) represent fluctuations over the last ten iterations of

the VQE. The values shown in each panel are presented in Table VI in Appendix F.

are analogous to mesons found in nature containing a bottom or charm quark; thus we denote

them “heavy mesons”. The Hilbert space of each static charge distribution is reduced by

enforcing Gauss’s law and projecting onto ground-state quantum numbers of parity and

charge conjugation.

The energy and wavefunction of the vacuum, of single static charges, of two like-sign

and two-opposite sign static charges separated by a distance r, and of three static charges

of the distinct charge combinations separated by distances r12 and r13 were calculated on

the QFP by applying VQE to eight-fermion-site, Schwinger-model Hamiltonians. These

solutions may be combined to compute the heavy-meson mass, the full potential energy

between two and three static charges over a range of separations, and local modifications to

the vacuum structure due to static charges. As an example, Fig. 4 shows the local e+ and e−

probabilities and energy density of the electric field for the ground state of two static negative

charges with separation (r = 2), computed from the VQE results. Using this and the other

four configurations of two-body static charges (see Appendix A and E), Fig. 5 (left) shows

the potential energy as a function of separation. For distances large compared with the

radius of the heavy meson, the potential is expected to fall as the sum of exponentials with

arguments set by the light-hadron spectrum. Short-distance deviations from these forms

are expected to be a small effect in subsequent analyses. Fitting to the results of the QFP,
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FIG. 5. The left panel shows the potential between two like-sign static charged sources (upper

curves) and between opposite-sign charges (lower curves) as a function of separation (in lattice

units). The symmetric gray curves represent the extracted lattice potential including the presence of

image charges. The blue and green bands represent the infinite-volume potentials using correlated

extracted values of the couplings and masses (see Appendix E for details). The center panel shows

the three-body potential for three like-sign static charges. The right panel shows the three-body

potential for two like-sign and one opposite-sign static charges.

including the effect of image charges from the boundary conditions, and isolating the infinite-

volume limit, gives the phenomenological fit potentials in Fig. 5. These phenomenological

potentials are matched through the Schrödinger equation to a low-energy EFT description of

the Schwinger model in terms of local contact operators, the analogue of the pionless theory,

H = −CN(N †N)2 + ... at leading order for a given heavy meson mass. The three-body

potentials are extracted in similar ways, with the two-body potentials removed. Two slices

of the three-body potential are displayed in Fig. 5 (right two panels) showing expected rapid

suppression as the bodies separate. Phenomenological three-body potentials can further be

extracted and used to constrain the coefficients of three-body EFT parameters.

Note that the demonstrated calculation is for a single lattice spacing and spatial vol-

ume. Modifying these parameters towards the continuum would provide higher resolution

of extracted potentials and corresponding EFT parameters.
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VI. DISCUSSION

Establishing a direct connection between the fundamental building blocks of our universe,

the quarks and gluons, and the properties and dynamics of matter under a range of con-

ditions faces challenges beyond the capabilities of foreseeable classical computation. From

exponentially-growing Hilbert spaces required to describe nuclei, to sign problems in eval-

uating finite density systems, anticipated developments in quantum devices and quantum

information offer the hope of addressing Grand Challenge problems in subatomic physics.

For example, VQE algorithms implemented with error-corrected qubits are anticipated to

provide a scalable path to solving these problems on future quantum devices. However,

currently-available hardware is too noisy to demonstrate such quantum advantages. Here,

we explored a way to implement VQE optically using the QFP with classical pre-processing.

In particular, we use classical resources to project many-body fermionic Hamiltonians cor-

responding to nuclear and quantum field theory systems onto a hierarchy of single-particle

Hamiltonians that can be simulated efficiently on the QFP. This demonstration of controlled,

single-photon-equivalent, quantum-correlated manipulation is a first step towards scalable

QFP simulations where input states are modified to consist of multiple photons. Together,

the QFP and such state preparation of higher complexity is expected to require resources

that scale polynomially with the size of the quantum system and thus exhibit a quantum

advantage.

In this work, we have presented results from the largest photonics-based quantum sim-

ulation, using an all-optical quantum frequency processor, to demonstrate the potential of

quantum technology for calculations in subatomic physics. We presented the two-body and

three-body interactions between composite objects informing the low-energy EFT of the

Schwinger model, which shares characteristics with QCD. Further, representing a key in-

gredient in the connection between quarks, gluons and nuclei, a low-energy EFT of QCD

was used to calculate the binding energies of 3H, 3He, and 4He. While the results of our

calculations are not of comparable complexity or precision to those that can be achieved

today with classical computation, they are an encouraging first step in exploring the utility

of optical quantum devices for addressing Grand Challenges in subatomic physics.
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Appendix A: Results

The following section provides details of the VQE implementation on the QFP for the

light nuclei and Schwinger model systems presented in the main text.

d Comp./Iter. VQE energy Time (min.)
3H (Nmax = 2) 5 10 −7.5075(1) 2.3
3H (Nmax = 4) 15 105 −8.031(6) 27.1
3H (Nmax = 6) 34 561 −8.12(2) 134.6

3He (Nmax = 2) 5 10 −6.7942(1) 2.3
3He (Nmax = 4) 15 105 −7.3380(3) 26.9
3He (Nmax = 6) 34 561 −7.470(9) 133.8
4He (Nmax = 2) 5 10 −27.9301(2) 2.2
4He (Nmax = 4) 20 190 −28.03(1) 48.6
4He (Nmax = 6) 64 2016 −27.78(2) 500

TABLE I. Simulation results for the ground-state energies of the light nuclei at NLO in the

pionless EFT obtained with the QFP. The first two columns designate the nucleus (model space)

and the dimensionality of the Hilbert space. The third column indicates the computations per

iteration. The energy and associated standard deviation are quoted from the last five iterations

of a converged VQE (statistical uncertainty only). The final column indicates the total time to

complete 25 iterations.

Appendix B: Optimization

In order to optimize the parameters of the trial wavefunctions employed in this work, we

have implemented for the first time an approximate gradient method based on the measured

reduced density matrix elements. For calculating the derivative of the energy employing the

UCC wavefunction of Eq. (2), a single gradient element becomes

χk =
δ〈HSQ〉
δΘk

= 〈Ψ|[c†0ck,HSQ]|Ψ〉+ h.c. = 2
∑
l

(
ρ0lhlk − ρklhl0

)
, (B1)

where it should be noted that this expression depends only on the already-measured reduced

density matrix elements used to evaluate the energy. Once scaled by an appropriate quantity

∆, which is analagous to a timestep, each parameter can be updated as follows

Θk → Θk + ∆χk . (B2)
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dsym Comp./Iter. VQE energy Time (min.)

Vac 9 15 −2.01503(1) 7.1

(0) 26 154 −0.73167(2) 75

(0,0) 9 21 0.91843(2) 11.4

(0,2) 16 42 0.68691(1) 20.1

(0,4)† 17 45 0.59856(6) 67.0

(0,1) 41 225 −0.92433(2) 99.3

(0,3)∗ 58 222 0.289190(9) 298

(0,0,0) 7 15 6.42752(8) 7.3

(0,0,2) 5 9 2.428332(1) 4.5

(0,0,4) 5 9 2.300160(2) 4.7

(0,2,4) 5 9 2.210773(3) 4.7

(0,0,1) 59 385 0.5418(4) 173

(0,0,3) 31 87 1.83890(1) 40.1

(0,2,1) 35 217 0.22861(4) 99.6

(0,2,3) 62 406 0.3731(1) 194.6

(0,2,5) 24 105 1.535129(9) 46.9

(0,4,1) 68 448 0.3466(3) 196.8

TABLE II. Simulation results for ground-state energies in the Schwinger model obtained using

the QFP. The first two columns designate the configuration of static charges and the symmetry-

projected dimensionality of the Hilbert spaces. The third column indicates the computations per

iteration [less than dsym(dsym − 1)/2 due to matrix sparsity]. The energy and associated standard

deviation are quoted from the last ten iterations of a converged VQE. The final column indicates

the total time to complete 50 iterations. (†) Obtained with three beamsplitters and 100 iterations.

(∗) Obtained with 150 iterations.

This procedure was iterated until a change in energy dropped below a given threshhold.

For the systems where the initial trial wavefunction for the ground state was non-

degenerate, an additional step was taken to improve convergence. The elements of Eq.

(B1) vary quite radically both in their absolute size, and the rate at which they vanish

as the minimum is approached. Drawing from the similarity of this method to [57, 77],

it is clear that one can do appreciably better by normalizing the elements to the diagonal

hamiltonian matrix elements, yielding a new update procedure

Θk → Θk + ∆
χk

hkk − h00

. (B3)

For the systems treated in this work, this modification decreased the number of steps required

to reach convergence by a factor of two to three.
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Appendix C: Nuclear Structure

A Hamiltonian from the NLO pionless EFT [38, 60–62], a systematically-improvable

approach to nuclear interactions at low energies, is employed for computations of the nuclei

3H, 3He, and 4He, with a momentum-space potential

V = V
(1S0)
NN (p′, p) + V

(3S1)
NN (p′, p) + VNNN ,

V
(1S0)
NN (p′, p) = C̃1S0

+ C1S0
(p′

2
+ p2) ,

V
(3S1)
NN (p′, p) = C̃3S1

+ C3S1
(p′

2
+ p2) ,

VNNN =
cE

F 4
πΛχ

∑
1≤i 6=j≤A

~τi · ~τj . (C1)

Here, p and p′ denote magnitudes of the incoming and outgoing relative three-momentum,

respectively. The nucleon-nucleon potentials VNN act in the singlet and triplet S-waves

with C̃1S0
= −0.7617 MeV−2, C1S0

= 2.9098 MeV−4, C̃3S1
= −1.2014 MeV−2, and C3S1

=

3.3984 MeV−4, respectively. These parameters were determined by fits to the effective range

expansion in the respective partial waves and to the deuteron binding energy. The three-

nucleon potential VNNN employs the isospin operators ~τi for the nucleon i, the parameters

Fπ = 92.4 MeV and Λχ = 700 MeV. The parameter cE = 0.01929 is adjusted to reproduce

the triton binding energy. This EFT is implemented as a discrete variable representation

(DVR) [78–80] in the harmonic oscillator basis, using translationally-invariant Jacobi coor-

dinates and the infrared corrections of Ref. [36, 81]. The potentials act only between states

with excitation energies up to and including 2~ω, while the kinetic energy is not truncated.

While our results are insensitive to the ultraviolet cutoff of the potential, we have chosen to

work with a cutoff of 337 MeV and ~ω = 22 MeV. Figure 6 shows phase shifts in the singlet

and triplet S-wave channels obtained from the pionless theory with matched EFT parame-

ters, and compares them to the corresponding phase shifts obtained from the high-precision

CD Bonn potential [82]. Our NLO EFT potentials reproduce the phase shifts within uncer-

tainty estimates. These systematic theory uncertainties, shown as shaded regions in Fig. 6,

result from estimates of the contributions from terms that are higher-order (NNLO) in the

pionless EFT but are not included in our calculations.

Using standard tools [83, 84], Hamiltonian matrices in Hilbert spaces with spin and

parity Jπ = 1/2+ and 0+ for the three-nucleon systems 3H, 3He, and 4He, respectively, are

computed. Limiting the total number of harmonic oscillator quanta to Nmax = 2, 4, 6 leads
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FIG. 6. Nucleon-nucleon phase shifts in the singlet (left) and triplet (right) S-wave channels (in

degrees) as a function of relative momentum. The solid (black) lines correspond to high-precision

results obtained with the CD Bonn potential. The dashed (red) lines correspond to results obtained

from the NLO pionless EFT, while the shaded (red) region includes estimates from higher orders

in the pionless EFT expansion that are not included in the interactions employed on the QFP.

to dense Hamiltonian matrices of dimension d = 5, 15, 34 and d = 5, 20, 64 for the nuclei

with mass numbers A = 3 and A = 4, respectively. These Hamiltonian matrices provide the

inputs for the VQE algorithm.

At low energies, states projected onto a finite harmonic oscillator basis closely re-

semble those projected onto modes of a spherical cavity with a hard-wall radius L ∼

[Nmax/(mω)]1/2 [85]. It can be shown [85], using a development that parallels that of

Lüscher and others to establish finite-volume corrections to localized states in lattice QCD

calculations [86, 87], that the leading finite-model-space shifts in the energy of an isolated

bound state have the form,

E(L) = E∞ + ae−2k∞L. (C2)

From bound state energies E(L) determined in three finite model spaces, and the separation

momentum

k∞ =
1

~
√
−2m[E∞(A)− E∞(A− 1)] (C3)

of the A-body system [88, 89], we determine the amplitude a and the infinite-model-space

energy E∞ by a fit. Using the values of L tabulated in the Supplementary Material of

Ref. [90], the binding energies E(L) computed in finite model spaces using our QFP, that

are shown in Table III, are extrapolated to infinite model spaces.

Table III also shows the results of exact diagonalizations of the Hamiltonian matrices
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Quantum frequency processor Exact diagonalization

Nmax
3H 3He 4He 3H 3He 4He

2 −7.508(8) −6.794(7) −27.93(3) −7.513 −6.800 −27.947

4 −8.031(40) −7.338(37) −28.03(14) −8.060 −7.366 −28.106

6 −8.120(81) −7.470(75) −27.78(28) −8.275 −7.600 −28.148

NA — — — −8.482 −7.830 −28.165

∞ −8.51(9) −7.89(8) −28.04(14) −8.47 −7.84 −28.17

Exp. −8.482 −7.718 −28.296 −8.482 −7.718 −28.296

TABLE III. Ground-state energies of light nuclei obtained from Hamiltonian diagonalization of

the NLO pionless EFT using the QFP compared to the exact results for model-spaces of size

Nmax = 2, 4, 6, and their extrapolation to infinite model space, Nmax = ∞. For comparison,

the experimentally known values are given (Exp.), along with the results obtained from exact

diagonalizations in a large model space, NA. For the quantum frequency processor, systematic

simulation uncertainties of (0.1%, 0.5%, 1%) in the VQE for Nmax of (2, 4, 6) are extrapolated to

the infinite model space as shown in Fig. 3 of the main text. This extrapolation uses the form of

Eq. (C2) defining k∞ through the separation energy and enforcing the constraint a < 1 GeV.

describing the light nuclei in Hilbert spaces with a range of Nmax, as indicated. Diagonaliza-

tions in large model spaces of size NA (N3 = 40 and N4 = 20 for nuclei with mass number

A = 3 and A = 4, respectively) are essentially converged with respect to the size of the

model space. The infinite-model-space extrapolation results obtained by fitting Eq. (C2) to

the data obtained with Nmax = 2, 4, 6 are also shown; these results are close to the (essen-

tially) exact numerical results, and higher-order corrections to the leading-order result (C2)

are suppressed by powers and exponentials of k∞L [91]. Our extrapolated results for 3He

and 4He are close to their experiment values, consistent with expectations from a leading-

order Hamiltonian within statistical and systematic uncertainties. (We remind the reader

that the three-body EFT parameter was adjusted to reproduce the ground-state energy of

3H.) The results obtained from the QFP, that are shown in Fig. 3 of the main text, are

also given in Table III. Through repeated measurements using the QFP, we have identified

a systematic uncertainty of ±1% that accompanies each measurement, which is significantly

larger than the associated statistical uncertainties. In extrapolating to infinite model space,

this systematic uncertainty of each point is uniformly sampled over in performing a Monte
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Carlo to determine the uncertainty of each binding energy as a function of L, including the

L → ∞ limit. For each nucleus, a value of the binding for each of the three measured L

values is uniformly sampled from the interval arising from the systematic uncertainty. These

samples are then used in a two-parameter fit of the form in Eq. (C2), where the difference

in binding energies are used to relate k∞ to E∞ via Eq. (C3). These fit parameters define a

curve as a function of L. This process is repeated a large number of times to establish the

shaded fit region and infinite-model-space value.

Appendix D: Lattice Hamiltonians for Schwinger Model simulations

In 1+1 dimensional quantum electrodynamics, latticized with staggered fermions [76],

and transformed to spin degrees of freedom using the Jordan-Wigner transformation, the

Hamiltonian of the Schwinger model [65, 66] can be written as

H̃SQ = x

Nfs−1∑
n=0

(
σ+
nL
−
nσ
−
n+1 + σ+

n+1L
+
nσ
−
n

)
+

Nfs−1∑
n=0

(
`2
n +

µ

2
(−)n σzn

)
. (D1)

The kinetic (hopping) term contains raising and lowering operators, L±, modifying the value

of the electric field that is naturally quantized (between truncations ±Λ) in one dimension.

Choosing periodic boundary conditions for this one-dimensional spatial lattice produces a

Hamiltonian with discrete, rotational symmetry. While this representation is perfectly suited

for qubit implementation—creating a latticized, tensor-product structure with single qubits

at the sites to represent fermion occupation and registers of dlog2(2Λ+1)e qubits on each link

for the electric field—the additional constraint of Gauss’s law makes this representation both

excessive for physical states and sensitive to noise within the quantum computation. Instead,

the lattice configurations in the physical sector (that satisfy Gauss’s law) are classically

enumerated and mapped onto quantum states of the Hamiltonian. Because of the locality of

interactions, the Hamiltonian remains sparse in this representation. By working only with

configurations in the physical subspace, the Hilbert space dimension in terms of Ns, the

number of spatial sites, is reduced from elog(64)Ns to 1.02(1)e1.1772(2)Ns and the four-spatial-

site lattice becomes accessible to our QFP.

In order to calculate the mass of heavy meson, MH , comprised of a static charge (denoted

by Q or Q̄) and light degrees of freedom, as well as the two-body and three-body potentials,

17 different configurations of up to three static charges are needed on a four-spatial-site
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Λ d Symmetries dsym EGS precision

Vac 3 53 P, ~p 9 0.2%

(0) 4 50 P 26 0.4%

(0,0) 5 16 P 9 0.2%

(0,2) 5 31 P 16 0.09%

(0,4) 5 35 P 17 0.05%

(0,1) 5 67 CP 41 0.8%

(0,3) 8 95 CP 58 0.15%

(0,0,0) 12 13 P 7 5× 10−7%

(0,0,2) 5 5 5 0.04%

(0,0,4) 4 5 5 0.6%

(0,2,4) 4 9 P 5 0.1%

(0,0,1) 7 59 59 0.13%

(0,0,3) 7 31 31 0.7%

(0,2,1) 6 67 P 35 0.6%

(0,2,3) 7 62 62 0.1%

(0,2,5) 7 46 P 24 0.74%

(0,4,1) 7 68 68 0.1%

TABLE IV. Properties of the systems studied with our quantum device. The first column indicates

the locations of static charges [with charge −Q (+Q) for odd (even) sites, respectively]. The electric

field truncation, Λ, determines the dimension of the underlying Hilbert space, d, and symmetries

of the static charge configuration allow reductions to dsym. The values of Λ are chosen to achieve

sub-% precision in the ground-state energy and representative wavefunctions.

lattice: the empty configuration of the vacuum, a single static charge, five separations of two

static charges, and ten three-static-charge configurations. These configurations are detailed

in Table IV. In the second column of this table, the symmetric gauge field truncation, Λ, is

chosen to reduce truncation systematic errors on the ground-state energy to below the 1%

precision expected to be attainable with optical quantum hardware.

While the systems studied can be numerically solved with high precision using classical

techniques, their dimensionalities are nontrivial with respect to the capabilities of present-

day quantum computing devices. With this in mind, it is convenient to further reduce

the latticized, electric-field-truncated Hamiltonians by projecting into the symmetry sectors

of momentum ~p, parity (P), and charge-parity (CP), as done in Ref. [21]. For all but

the vacuum state, the presence of static charges at specified lattice points removes the

possibility of momentum projecting—the discrete, rotational symmetry of the lattice has

been broken. Beginning with a Hilbert space dimension of 53, projecting the vacuum to the
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zero-momentum subspace by creating a basis of rotationally-invariant linear combinations

results in a vastly reduced Hilbert space of dimension 15—a size amenable with only four

qubits. Further projecting the vacuum into a sector of positive parity about any one of the

four rotationally-equivalent symmetry axes results in a nine-dimensional Hilbert space to be

explored with optical hardware. Such parity projections are possible for eight of the static

charge configurations about unique parity axes (e.g., parity axis through sites 2 and 6 for

static charges located at 0, 2, 4).

Configurations containing one Q and one Q̄ do not contain states of definite parity but,

rather, of parity and charge conjugation. As illustrated in Ref. [21], charge conjugation on a

staggered lattice of fermions may be consistently defined by altering the sign of all charges

and introducing a shift of a half-spatial-site in order to maintain the staggered distribution of

the two-component Dirac spinor with negative/positive charges on even/odd fermion sites.

For example, in the case of Q and Q̄ at locations 0 and 3, respectively, a parity axis between

fermion sites 1 and 5 and a subsequent charge conjugation with clockwise half-spatial-site

shift defines a valid CP symmetry

C+P |Q · ·Q̄ · · · ·〉 = C+| · ·Q · · · ·Q̄〉 = |Q · ·Q̄ · · · ·〉. (D2)

Projecting into a sector of positive CP, the sector containing the ground state of the Q and

Q̄ system, results in a Hilbert space dimensionality reduction from 95 to 58 states. This

brings the system within reach of advances in quantum optical devices presented in the main

text.

Appendix E: Potentials and Effective Interactions from Simulations of the Schwinger

Model

Hybrid classical-quantum VQE calculations were performed to determine ground-state

energies of systems containing two or three static charges from a set of Hamiltonian matrices,

providing both eigenvalues and eigenvectors through a customized VQE algorithm using

the UCC ansatz. Differences between these ground-state energies and their wavefunctions

reveal the interaction potentials between the static charges and the induced modifications

to the vacuum charge distributions. To compute the potential energy between static charges

located at r = 0 and r = 3, for example, the ground-state energy of the Hamiltonian matrix
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defining the truncated Hilbert space with one charge located at r = 0 and an anti-charge

located at r = 3, E(QQ)(0, 3), is determined, along with the wavefunction. From these

the energy of the vacuum is removed to give ∆E(QQ)(3) = E(QQ)(0, 3) − Evac. This energy

difference is independent of where it is evaluated by the discrete rotational symmetry and CP

symmetry of the lattice discretization. A similar calculation is performed of the energy of a

single static charge, E(Q)(0), that leads to the mass of the heavy meson, MH = E(Q)(0)−Evac.

The two-body potential between the static charges is defined by the difference V (QQ)(3) =

∆E(QQ)(3)−2MH . The other two-body potentials, V (QQ)(r) and V (QQ)(r) for r even and odd

respectively, are found similarly. Extraction of the three-body potentials requires a further

subtraction, and as an example consider the potential between static charges at r = 0 and

r = 2 and a static anti-charge at r = 3. The energy of the vacuum is subtracted from

the ground-state energy, ∆E(QQQ)(0, 2, 3) = E(QQQ)(0, 2, 3)−Evac. From this, the masses of

three heavy mesons are removed, ∆2E(QQQ)(0, 2, 3) = ∆E(QQQ)(0, 2, 3)−3MH . To define the

residual three-body potential, the contributions from the two-body interactions are removed,

V (QQQ)(0, 2, 3) = ∆2E(QQQ)(0, 2, 3)− V (QQ)(2)− V (QQ)(1)− V (QQ)(3). The values obtained

in the simulation for the vacuum energy, the mass of the heavy meson, the two-body and

three-body potentials, obtained with a mass µ = 0.1 and hopping term coefficient x = 0.6

defining the Schwinger model Hamiltonian, are given in Table V. The two-body and three-

body potentials are displayed in Fig. 5 of the main text and Fig. 8 appearing later in this

section.

The ground-state energies determined with VQE have both statistical uncertainties, de-

termined by variations in the last several iterations, and systematic uncertainties. The

dominant systematic uncertainty is reproducibility of the simulation results, which was esti-

mated by variations in results collected during multiple long runs on a representative set of

Hamiltonian matrices, repeated throughout the course of the data collection. This variation

was found to be less than one percent, and we assign a systematic uncertainty of 1% to each

energy measurement as a conservative estimate.

Beyond numerical determination of the two-body potentials between static charges, it is

worth making the connection to nuclear physics phenomenology through parameterization

of the potentials based upon the spectrum of the Schwinger model, and through matching

to the appropriate low-energy EFT. In the 1+1 dimensional Schwinger model, the potential

between charges falls with distance as the sum of exponentials, as the spectrum does not
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O (R1, R2) 〈O〉±σO exact

Evac −2.014±0.020 −2.0158

MH 1.283±0.021 1.2825

V QQ(0) 0.368±0.048 0.3683

V QQ(2) 0.136±0.048 0.1372

V QQ(4) 0.047±0.048 0.0482

V QQ̄(1) −1.475±0.048 −1.4756

V QQ̄(3) −0.262±0.047 −0.2606

V QQQ(0, 0, 0) (0, 0) 3.49±0.17 3.4901

V QQQ(0, 0, 2) (0, 2) −0.05±0.13 −0.0464

V QQQ(0, 0, 4) (0, 4) 0.00±0.13 0.0033

V QQQ(0, 2, 4) (2, 3) 0.06±0.13 0.0561

V QQQ̄(0, 0, 1) (0, 1) 1.29±0.13 1.2872

V QQQ̄(0, 0, 3) (0, 3) 0.16±0.13 0.1591

V QQQ̄(0, 2, 1) (2, 0) 1.21±0.13 1.2097

V QQQ̄(0, 2, 3) (2, 2) 0.14±0.11 0.1383

V QQQ̄(0, 2, 5) (2, 4) 0.09±0.13 0.0867

V QQQ̄(0, 4, 1) (4, 1) 0.20±0.11 0.2008

TABLE V. The vacuum energy, the mass of the heavy meson, and the two-body and three-body

potentials extracted from the VQE implementation. The uncertainties result from propagating 1%

systematic uncertainties in the simulated ground-state energies. The second column indicates the

Jacobi coordinates for the three-body systems. The final column shows the calculated values of

the potentials at the simulation-implemented values of Λ, electric field truncation.

contain a massless particle. With the parameters that were used in the simulation, the

number of measurements of the potentials are few, three for the QQ systems and two for

the QQ system. Consequently, we fit a single exponential in both channels, with the under-

standing that they are expected to reproduce the correct behaviors at long distances, but

are merely parameterizations at intermediate and short distances. Results obtained for, and

from, these parameterizations have associated unquantified model uncertainties. We write

the parametrizations of the infinite-volume two-body potentials as

V (QQ)(r) =
(
g(QQ)

)2
e−M

(QQ)r , V (QQ)(r) = −
(
g(QQ)

)2

e−M
(QQ)r , (E1)

where the couplings, g(QQ) and g(QQ), and the masses M (QQ) and M (QQ), are treated as fit

parameters. We expect the masses to be close to the mass of the lightest vector meson, but

modified by the close proximity of other states.
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As our calculations are performed in a finite volume subject to periodic boundary con-

ditions, the potentials experienced by static charges are modified by the presence of image

charges, separated by a distance nL, where n is an integer and L is the spatial extent of

the lattice. As a result, the potentials extracted from our lattice calculations will be of the

form [86, 87],

V (j),L(r) =
+∞∑

n=−∞

V (j)(|r + nL|) , (E2)

where j = QQ,QQ correspond to the potentials in Eq. (E1). Fitting these forms for the

two-body potentials to the results obtained with the QFP leads to

(
g(QQ)

)2
= 0.365(52) , M (QQ) = 0.61(14)(

g(QQ)
)2

= 3.75(31) , M (QQ) = 0.937(71) , (E3)

where the quoted uncertainties are determined by projection of the elliptical contours of

Fig. 7 onto each axis—resulting uncertainties being slightly enlarged with respect to those

quoted for single-variable, marginalized probability distributions. These quantities have

support in the ultraviolet structure of the theory, and are modified in the finite volume

by terms that are exponentially small, and determined by the ratio of ΛL, where Λ is the

ultraviolet scale [86, 87]. Assuming that there is a scale separation between the masses in

the finite-volume effects and the ultraviolet scale, the fit parameters in the potentials can

be used to extrapolate to infinite volume simply by inserting them into the potentials in

Eq. (E1). Both the periodic and infinite volume potentials are shown in the left panel of

Fig. 5 of the main text.

These potentials can be used directly for phenomenological applications (in 1+1 dimen-

sions) for processes involving heavy mesons of finite mass and momentum up to the ultravio-

let scale of the theory. Results from these potentials are expected to exhibit deviations from

actual predictions of the Schwinger model due to the limited form fit to the data. For low-

energy processes, calculations can be reorganized and generally made simpler by matching to

a low-energy EFT with consistent power counting that is explicitly constructed to faithfully

reproduce the low-energy behavior of S-matrix elements. In nuclear physics, the low-energy

behavior (below the t-channel cut in one-pion exchange) of few nucleon systems is repro-

duced by the pionless EFT [60–62], consisting of contact operators of delta-functions and
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FIG. 7. Monte Carlo samples and 68% confidence ellipses of the couplings and masses of the QQ

and QQ two-body interactions. The ellipse associated with the QQ system (left panel) is described

by eigenvectors (0.176, 0.984) and (−0.984, 0.176) with associated semi-axis radii 0.177 and 0.984.

The ellipse associated with the QQ system (right panel) is described by eigenvectors (−0.977, 0.211)

and (−0.211,−0.977) with associated semi-axis radii 0.332 and 0.0236.

(covariant-)derivatives, and gauge-invariant operators describing interactions with external

probes [92].

As an example, we outline the matching between the Schwinger model and its low-energy

EFT, in which there are only dynamical heavy mesons. Using the fit values of the EFT

parameters and their associated uncertainties in the infinite-volume QQ potential, we solve

the Schrödinger equation to produce zero-energy wavefunctions. Far from the potential,
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the wavefunctions are straight lines, and define the scattering lengths. These wavefunctions

can be reproduced by a delta-function potential with strength C0 arising from an effective

potential of the form Veff(r) = C0δ(r). For a heavy meson of mass M
(EFT )
H = 4.5 that is

chosen for the sake of demonstration only, C0 = −0.117(30) which should be compared to

the naive estimate from the Born term of C0 = −8.0(0.2). The potential also admits two

bound states, a “shallow” one with E ∼ −0.59 and a deep one with E ∼ −2.4, which

corresponds to a positronium-like state.

It is convenient to work with Jacobi coordinates in presenting the three-body potentials.

These relative coordinates are defined by R1 = |r1− r2| and R2 = r3−R1/2, where we have

worked with the convention that the first two particles are identified as those with the same

charge. The results of our experiments are presented in Table V. and displayed in Fig. 8.

The three-body potentials are found to fall rapidly with either of the Jacobi coordinates, as

FIG. 8. The potential between three static charges represented by Jacobi coordinates in 1-

dimension, R1 = |r2 − r1| and R2 =
∣∣r3 − R1

2

∣∣ with r1,2,3 the QQQ or QQQ distances from

the origin. The physical configurations of static charges on the lattice associated with the blue

and green paths through the grid of three-body potential values are depicted by the schematic

diagrams at the corners.

expected. While these potentials could be matched to the low-energy EFT, with operator
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structures of the form O ∼
(
N †N

)3
, to be used in other more complex calculations, we leave

that for future investigations. The deformations to the vacuum structure resulting from these

three-body forces, arrived at by taking differences in the energy density in the electric field

and in the probabilities of the electron and positron states, have been calculated. In Fig 9,

we show the modifications to the vacuum structure for V (QQQ)(0, 2, 1), corresponding to the

three-body system with Jacobi coordinates R1 = 2 and R2 = 1.
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FIG. 9. Local properties of the vacuum with three static charges, Q and Q̄ located at lattice

sites (0, 2) and 1, respectively. The uncertainties, which are too small to be visible, represent the

stability of these local properties over wavefunctions extracted over the last ten VQE iterations.

The horizontal dashed lines are the values calculated through exact diagonalization. The values

shown in each panel are presented in Table VII.

A single-hadron quantity that we derive from our results is the charge radius of the heavy

meson. Unlike classical lattice QCD calculations, where contributions from both connected-

quark and disconnected-quark must be calculated, unless a symmetry forbids one or both

of the contributions, the quantum computation allows for a direct determination of relevant
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quantities from the wavefunction of the system. In the case of the heavy meson formed

around a static quark at r = 0, the charge radius can be determined by a direct evaluation

of the discrete sum

〈r2〉Q =

NQ/2∑
n=0

(−1)n n2 Prob(n) , (E4)

where Prob(n) is the probability of finding an electron or positron at the nth site. The sum is

cut off at half of the lattice to minimize the contribution from the image charges, introducing

an uncertainty naively estimated to be the average size of the last two contributions. We
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FIG. 10. Local properties of the vacuum and a single static charge located at r = 0 that creates a

heavy meson. The uncertainties, which are too small to be visible, represent the stability of these

local properties over wavefunctions extracted over the last ten VQE iterations. The horizontal

dashed lines are the values calculated through exact diagonalization. The values shown in each

panel are presented in Table VIII and Table IX.

find that the square-charge radius of the heavy meson containing a positively charged static

charge, determined from the charge distribution shown in Fig. 10, to be

〈r2〉Q = −1.76(32) , (E5)

in lattice units. Similarly, the radius of the energy density in the electric field can be

computed,

〈r2〉E2 = 0.33(15) . (E6)

While there appears to be a large difference between these two radii, one must keep in mind

that they are derived by weighting with distances that are constrained by the lattice spacing,

or half lattice spacing, and presently unquantified discretization effects are expected to be
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significant in these quantities. Further calculations at a smaller lattice spacing are required

to perform an extrapolation to the continuum limit and to provide a complete quantification

of uncertainties.

It is interesting to note that there are static-charge configurations, such as the three-

body QQQ̄ system at locations (0, 4, 1), that do not allow reduction of the Hilbert space

through symmetry projections. It is this system in particular that has required the largest

Hilbert space (68 dimensions) to achieve 1% precision on the ground-state energy used in

the calculation of the corresponding three-body potential. While these symmetry projec-

tions have been critical for constructing systems with a dimension manageable with current

quantum hardware and for removing dynamically-irrelevant sectors from the perspective of

the ground-state properties, it is interesting to note that knowledge of the symmetry proper-

ties without explicit projection could be used to probe systematic errors or noise within the

quantum computation. For example, the local expectation values of the charge density and

energy in the electric field shown in Fig. 9 for the (0, 2, 1) QQQ system are currently forced

theoretically to satisfy the parity projection through fermion site 1. If the 67-dimensional

system (that before parity projection) was instead implemented by the QFP, deviations

from this exact spatial symmetry would be indicative of the systematic uncertainty in the

structure of the ground-state wavefunction.

Appendix F: Calculated values

In this section, we present the values of local probabilities in the ground state (GS) of

the vacuum, a single static charge, and two- and three-static charge systems, that are shown

in Figs. 9, 10 and Fig. 4 in the main text. Table VI contains the measured and exact

expectation values of the local charge density and energy in the electric field with two static

charges located at r = 0, 2, as shown in Fig. 4 of the main text. Table VII contains the

same quantities for three static charges located at r = 0, 1, 2 as shown in Fig. 9 . Table VIII

contains the measured and exact expectation values for the vacuum local charge density and

energy in the electric field as shown in Fig. 10. Table IX contains the same quantities for

one static charge located at r = 0, as shown in Fig. 10.
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GS probabilities associated with two static charges, at r = 0, 2

r 〈ρ〉 〈ρ〉exact 〈E2〉 〈E2〉exact

0 0.115596(19) 0.115881 0.29668(15) 0.297446

1 0.59336(29) 0.594892 0.29668(15) 0.297446

2 0.115596(19) 0.115881 0.81892(16) 0.818435

3 0.82624(16) 0.826473 0.018040(24) 0.01883

4 0.121542(27) 0.125071 0.114283(24) 0.117114

5 0.228433(50) 0.234066 0.114283(35) 0.117114

6 0.121542(27) 0.125071 0.018040(25) 0.01883

7 0.82624(16) 0.826473 0.81892(16) 0.818435

Vacuum Subtracted

0 −0.053082(14) −0.0571012 0.21208(15) 0.210749

1 0.42468(30) 0.42191 0.21208(15) 0.210749

2 −0.053082(14) −0.0571012 0.73432(16) 0.731738

3 0.65757(15) 0.653491 −0.066560(31) −0.0678671

4 −0.047135(27) −0.0479109 0.029682(21) 0.0304174

5 0.059756(43) 0.0610843 0.029682(21) 0.0304174

6 −0.047135(27) −0.0479109 −0.066560(31) −0.0678671

7 0.65757(15) 0.653491 0.73432(16) 0.731738

1-body Subtracted

0 −0.031897(61) −0.0278071 −0.24139(13) −0.238353

1 −0.46919(27) −0.46415 −0.24139(13) −0.238353

2 −0.031897(61) −0.0278071 0.20279(19) 0.204377

3 0.18521(19) 0.187407 −0.0140797(97) −0.012637

4 −0.013040(63) −0.00937306 0.004098(51) 0.00738809

5 0.00891(10) 0.0149761 0.004098(51) 0.00738809

6 −0.013040(63) −0.00937306 −0.0140797(97) −0.012637

7 0.18521(19) 0.187407 0.20279(19) 0.204377

TABLE VI. Measured and exact expectation values for the local charge density and energy in

the electric field as shown in Fig. 4 of the main text with two static charges located at sites zero

and two. The uncertainties on measured values represent statistical fluctuations over the last

ten wavefunctions of the VQE iterations and do not include estimates of associated systematic

uncertainties. Note, from Table IV, that parity has been enforced for this system, leading to

spatially symmetric locations having the same values.
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GS probabilities associated with three static charges, at r = 0, 1, 2

r 〈ρ〉 〈ρ〉exact 〈E2〉 〈E2〉exact

0 0.16927(16) 0.168397 0.82064(80) 0.826857

1 0.6272(17) 0.640306 0.82064(80) 0.826857

2 0.16927(16) 0.168397 0.35567(99) 0.348244

3 0.40786(86) 0.402136 0.05647(12) 0.057447

4 0.150959(62) 0.152525 0.099227(72) 0.0989282

5 0.19755(14) 0.197266 0.099227(72) 0.0989282

6 0.150959(62) 0.152525 0.05647(12) 0.057447

7 0.40786(86) 0.402136 0.35567(99) 0.348244

Vacuum Subtracted

0 0.00060(15) −0.00458463 0.73604(81) 0.74016

1 0.4585(17) 0.467324 0.73604(81) 0.74016

2 0.00060(15) −0.00458463 0.27107(99) 0.261547

3 0.23918(85) 0.229154 −0.02813(12) −0.0292501

4 −0.017718(72) −0.0204571 0.014626(67) 0.0122311

5 0.02887(14) 0.0242844 0.014626(67) 0.0122311

6 −0.017718(72) −0.0204571 −0.02813(12) −0.0292501

7 0.23918(85) 0.229154 0.27107(99) 0.261547

1-body Subtracted

0 −0.42515(22) −0.418321 −0.22082(77) −0.209597

1 −0.4427(16) −0.420459 −0.22082(77) −0.209597

2 −0.42515(22) −0.418321 −0.2105(10) −0.21426

3 −0.20467(92) −0.205913 −0.003783(77) −0.000725653

4 −0.009048(21) −0.00497328 −0.00841(12) −0.00712178

5 −0.01640(23) −0.014303 −0.00841(12) −0.00712178

6 −0.009048(21) −0.00497328 −0.003783(77) −0.000725653

7 −0.20467(92) −0.205913 −0.2105(10) −0.21426

2-body Subtracted

0 0.50834(19) 0.501635 0.49244(61) 0.492946

1 1.0275(13) 1.03178 0.49244(61) 0.492946

2 0.50834(19) 0.501635 0.00088(82) −0.00837237

3 0.00966(69) 0.00184607 0.01489(11) 0.0147168

4 0.01936(10) 0.0168098 0.004382(45) 0.00071903

5 0.008576(91) 0.00141658 0.004382(45) 0.00071903

6 0.01936(10) 0.0168098 0.01489(11) 0.0147168

7 0.00966(69) 0.00184607 0.00088(82) −0.00837237

TABLE VII. Measured and exact expectation values for the local charge density and energy in

the electric field as shown in Fig. 9 with three static charges located at sites r = 0, 1, 2. The

uncertainties on measured values represent statistical fluctuations over the last ten wavefunctions

of the VQE iterations and do not include estimates of associated systematic uncertainties. Note,

from Table IV, that parity has been enforced for this system, leading to spatially symmetric

locations having the same values.
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GS probabilities associated with Vacuum

r 〈ρ〉 〈ρ〉exact 〈E2〉 〈E2〉exact

0-7 0.168677(14) 0.172982 0.0846006(74) 0.0866971

TABLE VIII. Measured and exact expectation values for the vacuum local charge density and

energy in the electric field as shown in Fig. 10 (with zero external static charges). The uncertainties

on measured values represent statistical fluctuations over the last ten wavefunctions of the VQE

iterations and do not include estimates of associated systematic uncertainties. Note, from Table IV,

that parity and translation invariance have been enforced.

GS probabilities associated with one static charge, at r = 0

r 〈ρ〉 〈ρ〉exact 〈E2〉 〈E2〉exact

0 0.176000(24) 0.174705 0.588000(12) 0.587352

1 0.615612(14) 0.616012 0.0346655(84) 0.0351434

2 0.140169(14) 0.141965 0.112730(12) 0.113403

3 0.194102(24) 0.196036 0.082055(12) 0.0830207

4 0.163090(23) 0.165461 0.082055(12) 0.0830207

5 0.194102(24) 0.196036 0.112730(12) 0.113403

6 0.140169(14) 0.141965 0.0346655(84) 0.0351434

7 0.615612(14) 0.616012 0.588000(12) 0.587352

Vacuum Subtracted

0 0.007323(37) 0.00172308 0.503399(19) 0.500655

1 0.446935(26) 0.44303 −0.049935(15) −0.0515537

2 −0.028508(25) −0.0310171 0.028130(18) 0.0267057

3 0.025425(33) 0.0230541 −0.002545(17) −0.0036764

4 −0.005587(30) −0.00752077 −0.002545(17) −0.0036764

5 0.025425(33) 0.0230541 0.028130(18) 0.0267057

6 −0.028508(25) −0.0310171 −0.049935(15) −0.0515537

7 0.446935(26) 0.44303 0.503399(19) 0.500655

TABLE IX. Measured and exact expectation values for the local charge density and energy in the

electric field as shown in Fig. 10 with one static charge located at site zero. The uncertainties

on measured values represent statistical fluctuations over the last ten wavefunctions of the VQE

iterations and do not include estimates of associated systematic uncertainties. Note, from Table IV,

that parity has been enforced for this system, leading to spatially symmetric locations having the

same values.
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