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Continuous-time quantum walks (CTQWs) on static graphs provide efficient methods for search
and sampling as well as a model for universal quantum computation. We consider an extension of
CTQWs to the case of dynamic graphs, in which an ordered sequence of graphs governs free evolution
of the quantum walk. We then consider how perfect state transfer during the quantum walk can
be used to design dynamic graphs that implement a universal set of quantum logic gates. We give
explicit examples for a complete logical basis, and we validate implementations using numerical
simulations for quantum teleportation and addition circuits. Finally, we discuss the potential for
realizing CTQWs on dynamic graphs using actively controlled quantum optical waveguides.

I. INTRODUCTION

Quantum walks offer a unique paradigm for using quantum mechanics to perform computation [1], where a walk may
represent either the discrete or continuous-time propagation of a quantum state over a graph [2, 3]. In a continuous-
time quantum walk (CTQW), free evolution of an N -dimensional quantum state under a Hamiltonian is represented
by probability amplitudes assigned to each vertex in a graph on N vertices. The CTQW was originally envisioned
as a method for sampling decision trees [4] and later applied to a variety of search and sampling problems on d−
dimensional lattices, searches on balanced trees, as well as quantum navigation of networks [5–10]. Moreover, Childs
has shown that CTQWs on time-independent graphs offer a novel model for universal quantum computation [11, 12],
while Qiang et al. have described how efficient implementations of CTQWs may be useful for comparing the broader
computational power of quantum computing to conventional computing models [13].

In a typical CTQW, the Hamiltonian is interpreted as the connectivity of the underlying graph on which the
quantum state evolves. The graph connectivity determines the evolution of the quantum state and specific graphs
have been found to demonstrate well-defined quantum walk behaviors. For example, perfect state transfer occurs
in a quantum walk when the amplitude assigned to a subset of vertices transfers with unit probability to a distinct
vertex set within a well-defined period of evolution [14]. Kendon and Tamon have surveyed perfect state transfer for a
number of several specific graphs including the singleton graph, K1, the complete graph on two vertices, K2, the path
graph on three vertices, and the cycle on four vertices, C4 [15]. Perfect state transfer has also been shown to exist for
graphs on more vertices, including certain graph products, weighted join graphs, and quotient graphs [16–18].

The versatility of CTQWs across many known types of graphs motivates our consideration for how quantum walks
may behave on dynamic graphs. We define a dynamic graph as a well-defined sequence of static graphs in which the
CTQW evolution changes at specific transition times. In the dynamic graphs discussed below, we use perfect state
transfer under the component static graphs to demonstrate how more complex unitary processes can be realized.
We provide explicit realizations of quantum walks on dynamic graphs for realizing a complete set of computational
gates, and we then illustrate how compositions of multiple walks correspond to examples of quantum circuits. This
formalism establishes a connection between CTQWs on dynamic graphs and the gates found in the conventional
quantum circuit model. We also provide a connection between this model of computation and the development of
tunable optical waveguides for performing continuous-time quantum walks.
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Our approach to quantum walks on dynamic graphs shares similarities with Childs’ model for universal quantum
computation [11, 12]. Both approaches draw on the use of unweighted and relatively sparse graphs to formalize state
transfer as well as the composition of such graphs to describe more complex operations. However, the models differ
in the types of underlying graphs as Childs relies on strictly static graphs while we employ dynamic graphs. Another
closely related model is the hybrid quantum walk proposed by Underwood and Feder, which combines concepts from
both continuous and discrete walk models [19]. In that work, a series of weighted adjacency matrices corresponding
to distinct graphs are used to propagate a quantum state. They refer to this model as a discontinuous quantum
walk, where free evolution is again based on widgets that control propagation dynamics. Underwood and Feder
emphasize the use of a dual-railing encoding to represent individual qubits and the interleaving of continuous and
discrete quantum walks to perform computation. By comparison, we design quantum walks on dynamic graphs to
implement a sequence of continuous-time evolutions that perform quantum logic using perfect state transfer in the
native vertex space. Du et al. considered the task of designing a quantum walk to implement a single-qubit X gate
by walking on a single static, weighted graph [20], whereas our work develops implementations for a complete gate
set using dynamics graphs. Chakraborty et al. have explored spatial search using CTQW on time-ordered sequences
of random graphs, for which they demonstrated a threshold for the optimal run time using Grover’s algorithm [21],
while our work uses deterministic, time-ordered sequences to carry out discrete logic gates.

The paper is organized as follows. Following a review of CTQWs on static graphs in Sec. II, we describe quantum
walks on disconnected graphs in Sec. III and dynamic graphs in Sec. IV. Using this formalism, we design a series
of quantum walks that implement elementary logic gates in Sec. V, and we demonstrate how the sparsely connected
dynamic graphs on may be composed to correspond with gate-based circuits in Sec. VI. We offer a discussion on
these results in Sec. VII, where we establish a connection between dynamic quantum walks and current approaches
to designing quantum computing hardware based on optical waveguides and ion trap technologies.

II. CONTINUOUS-TIME QUANTUM WALKS

Consider an undirected graph G = (V,E) with a canonically labeled vertex set V = {0, 1, . . . , N − 1} of N vertices
and an edge set E = {(i, j) : i ∼ j}. We allow no multi-edges in the graph, i.e., there can be at most one edge incident
with any two vertices. However, we do allow for a self loop on a vertex v ∈ V if and only if there does not exist
u ∈ V such that u 6= v and u ∼ v. Additionally, the edges of G are undirected. Let BG = {|j〉 : ∀j ∈ V } be a linearly
independent basis for the complex vector space CN with the inner product 〈j|k〉 = δjk. Graphs G and G′ = (V ′, E′)
have the same basis if V = V ′. The Hamiltonian for the graph G is denoted as HG and is defined as the adjacency
matrix of the graph as given by the edge set E. The adjacency matrix A of G is a 0-1 valued N × N matrix such
that for u, v ∈ V (G), if u ∼ v, Au,v = Av,u = 1, and 0 otherwise. We will use the convention that if a vertex v is
not adjacent to any other vertices then Av,v = 1, a convention also used in studies of classical random walks. The
resulting real-valued adjacency matrix A is symmetric about the main diagonal.

We define the quantum state of a graph G, or graph state for short, as a normalized vector |ψG〉 ∈ BG such that

|ψG〉 =
∑
j∈V

cj |j〉 (1)

with cj ∈ C and

〈ψG|ψG〉 =
∑
j∈V
|cj |2 = 1 (2)

For a continuous-time quantum walk, the graph state transforms with respect to time τ under the Schrödinger equation

i~
∂|ψG(τ)〉

∂τ
= HG|ψG(τ)〉 (3)

where ~ is Planck’s constant divided by 2π. When the Hamiltonian is constant over the interval [t0, t], the formal
solution to Eq. (3) is given by the propagation operator

UG(t, t0) = e−iHG(t−t0)/~ (4)

such that

|ψG(t)〉 = UG(t, t0)|ψG(t0)〉 (5)
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|0〉 |1〉
K2

FIG. 1. The K2 graph supports perfect state transfer between the two vertices labeled by the single-qubit computational basis
states |0〉 and |1〉.

where the boundary condition |ψG(t0)〉 is the state at time t0. The propagation operator UG is unitary since HG is
Hermitian. We say that a graph G admits perfect state transfer between unique vertices u, v ∈ V (G) at time t if

UG(t, 0)|u〉 = a|v〉 (6)

where a ∈ C such that |a| = 1.
There are several well-known examples that illustrate perfect state transfer using CTQW on static graphs. The

singleton graph K1 has vertex set V = {0} and an empty edge set E = ∅. As the lone vertex |0〉 is adjacent to
no other vertices during the CTQW, we represent the unitary dynamics by a self-loop. The K1 Hamiltonian is then
represented in its eigenbasis as

HK1 = λ1|0〉〈0|, (7)

where λ1 is the real-valued energy eigenvalue, and the normalized state

|ψK1
(t0)〉 = c0(t0)|0〉 (8)

has |c0| = 1 for all time such that

|ψK1
(t)〉 = e−iν1t|0〉 (9)

where ν1 = λ1/~ is the frequency.
As a second example, the complete graph on two vertices K2 shown in Fig. 1 has vertex set V = {0, 1} and edge

set E = {(0, 1)}. We specify the Hamiltonian for K2 as the free evolution operator over degenerate basis states,
i.e., 〈0|HK2

|0〉 = 〈1|HK2
|1〉, which offers a natural representation of a qubit in a degenerate eigenbasis. Setting this

eigenenergy to zero, the Hamiltonian is represented as

HK2 = λ2 (|0〉〈1|+ |1〉〈0|) (10)

where the eigenvalue λ2 defines the energy scale and the characteristic frequency ν2 = λ2/~. The time propagator for
K2 may be decomposed by series expansion as

UK2
(t, t0) = cos[ν2(t− t0)]I2 − i sin[ν2(t− t0)]HK2

(11)

where IN is the N -dimensional identity matrix. The K2-graph state evolves as

|ψK2
(t)〉 = (c0 cos[ν2(t− t0)]− ic1 sin[ν2(t− t0)]) |0〉+ (c1 cos[ν2(t− t0)]− ic0 sin[ν2(t− t0)]) |1〉 (12)

which is capable of perfect state transfer up to a trivial phase factor for propagation time t = π
2ν2

[15].

As a final example, the cycle graph C4 shown in Fig. 2 has a vertex set V = {0, 1, 2, 3}, edge set E =
{(0, 1), (0, 2), (1, 3), (2, 3)} and Hamiltonian

HC4
= λ4 (|0〉〈1|+ |0〉〈2|+ H.C.) (13)

where H.C. denotes the Hermitian conjugate, λ4 is the energy scale, and ν4 = λ4/~ defines the characteristic frequency.
The propagation operator may be decomposed as

UC4
(t, t0) = I4 + 1

2 cos(2ν4(t− t0))H2
C4
− i

2 sin(2ν4(t− t0))HC4 (14)

to yield the state |ψC4
(t)〉 with coefficients in the nodal basis as

c0(t) = 1
2 [c0 (1 + cos (2t))− i sin (2t) (c1 + c2) + c3 (−1 + cos (2t))] (15)

c1(t) = 1
2 [−i sin (2t) (c0 + c3) + c1 (1 + cos (2t)) + c2 (−1 + cos (2t))] (16)
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c2(t) = 1
2 [−i sin (2t) (c0 + c3) + c1 (−1 + cos (2t)) + c2 (1 + cos (2t))] (17)

and

c3(t) = 1
2 [c0 (−1 + cos (2t))− i sin (2t) (c1 + c2) + c3 (1 + cos (2t))] (18)

Perfect state transfer in C4 is a special instance of the case of an N -dimensional hypercube [15], which has been shown
by Christandl et al. to be capable of perfect state transfer for all N at time t = π

2νN
[22, 23]. For the remainder of our

presentation, we will simplify the analysis to the case that νN = 1 for k = 1, 2, 4 and we will set ~ = 1 for convenience.

|00〉 |01〉

|10〉 |11〉

C4

FIG. 2. The C4 graph supports perfect state transfer between vertices labeled by the two-qubit computational states.

III. QUANTUM WALKS ON DISCONNECTED GRAPHS

We now consider quantum walks on disjoint graphs G1 and G2 with Gj = (Vj , Ej), where the disjoint union
G = G1 + G2 has vertex set V = V1 ∪ V2 and edge set E = E1 ∪ E2. We require that G1 and G2 are disconnected
graphs, termed components of the graph G, and that V1∩V2 = ∅. The basis for the disjoint union G is BG = BG1

⊕BG2

and a composite quantum state for G takes the form

|ψG〉 = |ψG1
〉 ⊗ |ψG2

〉 (19)

with ⊕ the direct sum and ⊗ the Kronecker product. The corresponding Hamiltonian is defined as H(G) = HG1
⊕HG2

,
which yields decoupled equations of motion

i
∂
∣∣ψGj (t)〉
∂t

= HGj

∣∣ψGj (t)〉 j = 1, 2 (20)

and a composite time propagator

UG1+G2
(t, t0) = e−iHG1

(t−t0) ⊗ e−iHG2
(t−t0) (21)

The graph state of G is modeled by two disconnected states |ψG1
〉 ∈ BG1

and |ψG2
〉 ∈ BG2

and

|ψG(t)〉 = UG1
(t, t0)|ψG1

(t0)〉 ⊗ UG2
(t, t0)|ψG2

(t0)〉 (22)

As an example, consider the empty graph on N vertices K̄N , which is the complement of the complete graph KN

and expressed as the union

K̄n =

N−1⋃
j=0

K
(j)
1 (23)

where K
(j)
1 is the singleton graph with vertex label j. The composite Hamiltonian is the direct sum of N singleton

Hamiltonians,

HK̄n =

N−1⊕
j=0

H
K

(j)
1
, (24)
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and the quantum state is defined as the Kronecker product of the individual states.

∣∣ψK̄N 〉 =

N−1⊗
j=0

∣∣ψK1
(j)

〉
(25)

in the basis formed from the union of these graphs

BK̄N =

N−1⋃
j=0

B
K

(j)
1

(26)

The graph state for the j-th singleton graph is now given as

U
K

(j)
1

(t, t0)|j〉 = e−iν
(j)
1 t|j〉, (27)

with ν
(j)
1 the energy eigenvalue of the j-th vertex. We will assume that the vertices are indistinguishable and therefore

ν
(j)
1 = ν1 for all j. Thus, the Hamiltonian of these N disjoint identical vertices

HK̄N =
N−1⊕
j=0

λ1|j〉〈j| = λ1IN (28)

is proportional to the N -dimensional identity operator IN over the basis BK̄N . This yields an N -fold Kronecker sum
of K1 states with the form of Eq. (9).

As a second example, consider the disjoint union K2 +K1 with Hamiltonian

HK2+K1 = HK2 ⊕HK1 (29)

represented as

HK2+K1
=

 0 λ2 0
λ2 0 0
0 0 λ1

 (30)

The composite state of this disjoint graph propagates as

UK2+K1(t, t0)|ψK2+K1〉 = UK2(t, t0)|ψK2(t0)〉 ⊕ UK1(t, t0)|ψK1(t0)〉 (31)

and may be recast as

UK2+K1(t, t0)|ψK2+K1〉 = [c1 cos(ν2(t− t0))− ic1 sin(ν2(t− t0))] |0〉

+ [c1 cos(ν2(t− t0))− ic0 sin(ν2(t− t0))] |1〉

+c2e
−iν1t|2〉

(32)

IV. QUANTUM WALKS ON DYNAMIC GRAPHS

We next consider quantum walks on dynamic graphs, in which a dynamic graph G = {(G`, t`)} is a set of graphs
G` = (V`, E`) with associated propagation times t` < t`+1 for ` ∈ Z. In subsequent discussion, we will consider the
case that only the edge sets change while the vertex sets stay constant, i.e., V` = V , such that the bases for all G`
are the same. However, the case of changing vertex sets is equally valid as this represents the growth and reduction
of the underlying Hilbert space, for example, through the addition or removal of ancillary vertices.

The Hamiltonian of a dynamic graph G is expressed as the weighted sum

HG =

L−1∑
`=0

HG`Π`(t), (33)
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where transitions between graphs are modulated by the functions Π`(t). We consider the explicit case that the `-th
transition function takes the form of the `-th rectangle function:

Π`(t) =

{
1 t` < t < t`+1

0 otherwise
(34)

with [t0, tL] the interval over which the entire walk is defined. The dynamics is then expressed as a sequence of
propagations through the series of Schrödinger equations

i
∂|ψG`(τ)〉

∂τ
= HG` |ψG`(τ)〉, t` < τ < t`+1. (35)

As the set of discontinuities is countable, the function is still Riemann integrable, and this system of equations yields
the composite propagation operator

UG(tL, t0) =

L−1∏
`=0

e−iHG` (t`+1−t`) (36)

which is understood to be a product ordered from right to left with increasing index. The quantum state of the
dynamic graph G is then defined under this operator transform as

|ψG(t)〉 = UG`(tL, t0)|ψG(t0)〉 (37)

with initial condition |ψG(t0)〉 ∈ BG and 〈ψG(t0)|ψG(t0)〉 = 1.

As a simple example of a quantum walk on a dynamic graph, consider the case of two disjoint K1 graphs switched
to a bipartite K2. The dynamic graph is expressed as G = {(K1 + K1, t0), (K2, t1)}, where t0 and t1 denote the
transition times. Taking the initial quantum state as a superposition over the nodal basis, Fig. 3 plots the time-
dependent probability for each basis state with respect to the propagation time. Initially under the K1 + K1, the
probability remains constant until the transition time t1, after which the Hamiltonian switches to K2 and creates an
edge between vertices. This leads to the oscillations in probability as expected by Eq. (11). Figure 4 is an example
of two K2 graphs allowed to propagate on their own and then connected as a C4 and allowed to propagate again.

V. QUANTUM WALKS FOR ELEMENTARY GATES

The formalism of quantum walks on dynamic graphs may be used to realize one- and two-qubit gates within the
quantum circuit model by identifying the quantum walk on a graph of |V | = N = 2n vertices with a corresponding
n-qubit circuit. Let the vertex label v ∈ V map to the computational basis state |v1, v2, . . . , vn〉 with vi the i-th
coefficient in the binary expansion of the n-bit, non-negative integer v. We demonstrate several explicit examples of
how few-qubit quantum gates can be realized using perfect state transfer limited to K1, K2, and C4 graphs. We limit
our CTQWs to those on K1, K2, and C4 because the periods are all multiples of π and achieve perfect state transfer

at times kπ
2 for k ∈ N . In fact, we use the K

(i)
1 graph exclusively to add a phase factor to the ith qubit. We add

the phase factors for sake of completeness in some of the CTQWs, but for implementation purposes, the phase factor
may be omitted if desired by removing the appropriate CTQWs. We show that in some instances, such as the Z gate,
the realization of gate logic within the quantum walk model requires additional vertices whereas other gates, such as
CNOT and CCNOT, are straightforward to realize.

The realization of elementary gates from the circuit model provides a constructive approach to demonstrate the
completeness of quantum walks on dynamics graphs. While the quantum walk formalism can naturally represent
any unitary of the form exp(iAt), we have imposed the restriction that the Hermitian matrix A must represent
the connectivity of the dynamic graph and that these graphs should be limited to a small number of vertices. By
demonstrating that a complete basis of elementary gates can be constructed under these restrictions, we can then
invoke the Solovay-Kitaev theorem to establish universality. The Solovay-Kitaev theorem establishes the feasibility of
approximating an arbitrary unitary transformation when only a limited subset of such transformation may be accessed
[24]. We demonstrate an explicit realization for a universal set of gates, including the Pauli, H, T and CNOT gates
described below, from which it follows that sequences of these gates of length O(logc(1/ε)) may approximate an
arbitrary unitary within precision ε for constant c ≈ 3.97 [24].
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FIG. 3. The time-dependent probability densities of two vertices, 0 and 1, as the state propagates under K1+K1 for t = π
2

units

of time before switching to K2 and propagating for an additional time t = 3π
2

. In this example, the initial state
√

1
3
|0〉+

√
2
3
|1〉.

A. Single-qubit Gates

The Pauli gates provide a set of single-qubit operations represented in the computational basis as

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (38)

We can implement these gates exactly using perfect state transfer within a dynamic graph. For example, the X gate
may be implemented on two graph vertices using a quantum walk on K2. For simplicity, we assuming the vertices

are labeled 0 and 1 and that the graph state is initially prepared as c0|0〉+ c1|1〉. The walk under K
(0,1)
2 for a period

of 3π
2 prepares the state i (c1|0〉+ c0|1〉). The resulting global phase factor of i may be removed by evolving under

K
(0)
1 + K

(1)
1 for a second period of π

2 , and we include these dynamics in our definition of the X gate. The dynamic
graph for the X gate is defined as

GX =

{(
G

(0,1)
K2

,
3π

2

)
,
(
G

(0)
K1

+G
(1)
K1
,
π

2

)}
, (39)

and Fig. 5 provides a graphical representation. When the target pair of vertices is embedded in a larger graph state,
it is understood that all other nodes evolve disjointly from the above dynamic graph.

|0〉 |1〉

0 ≤ t < 3π/2

|0〉 |1〉

3π/2 ≤ t ≤ 2π

FIG. 5. A dynamic graph representation of the X gate consists of two graphs and the associated propagation times. This
sequence of CTQW executes the logical bit flip operation on the graph state.
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FIG. 4. The time-dependent probability density of four vertices, 0, 1, 2, and 3, as the state propagates under K2 +K2 for time

t = π
2

followed by C4 for time t = 3π
2

. In this example, the initial state is
√

1
3
|00〉+

√
2
3
|10〉.

The Z gate may be implemented using a K1 and C4 defined on five vertices. Notice that |001〉 must propagate as a
singleton for π units of time to flip the sign of the coefficient, however, |000〉 needs to propagate as a C4 in the same
time frame in order to keep its original sign. We maintain a clear correspondence with the circuit model by using a
graph on eight vertices which represent the full Hilbert space for three qubits. Three of these vertices will propagate
as singletons for the entirety of the walk. For example, given the initial state c0|0〉 + c1|1〉 for a graph of |V | = 8
vertices, the dynamic graph representing the Z gate is defined as

GZ = {(G(0,2,4,6)
C4

+G
(1)
K1

+G
(3)
K1

+G
(5)
K1

+G
(7)
K1
, π)} (40)

A graphical representation of the walk for the Z gate is shown in Fig. 6. Note these dynamic flips the signs of
|011〉, |101〉, and |111〉 in addition to |001〉



Continuous-time quantum walks on dynamic graphs 9

|000〉 |001〉

|010〉 |011〉

|100〉 |101〉

0 ≤ t < π
2

|000〉 |001〉

|010〉 |011〉

|100〉 |101〉

0 ≤ t < π

FIG. 7. A graphical representation of the Y gate using CTQW on GY .

|000〉 |001〉

|010〉 |011〉

|100〉 |101〉

|110〉 |111〉

0 ≤ t < π

FIG. 6. A graphical representation of the Z gate using CTQW on GZ .

A Y gate may be derived from the commutation relations for the Pauli operators and implemented by performing
the X and Z gates in series. An additional phase shift of i is required and this may be recovered by evolving all vertices
under disjoint singletons for t = 3π/2. Of course, reversing the in which the X and Z gates are performed would
change the necessary phase shift, −iY . Alternatively, the Y transformation may be implemented by propagating
vertices |000〉 and |001〉 under K2 for π/2 units of time, then allowing vertex |001〉 to propagate as a singleton for
π units while simultaneously allowing |000〉 to propagate as a C4 to three new vertices. The dynamic graph for the
latter Y operation is given as

GY = {
(
G

(0,1)
K2

+G
(2)
K1

+G
(3)
K1

+G
(4)
K1
,
π

2

)
, {
(
G

(1)
K1

+G
(0,2,3,4)
C4

, π
)
}, (41)

Completing the Pauli group, we note that the identity gate may be implemented using a number of different dynamic
graphs. This includes assigning every vertex to propagate under the singleton graph for t = 2π, connecting pairs of
vertices as K2 graphs for t = 2π, or connecting four vertices as a C4 and propagating for t = π. The best choice for
implementation is likely to be determined by other scheduling concerns.
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The single-qubit Hadamard gate is defined in the computational basis as

H =
1√
2

(
1 1
1 −1

)
(42)

and may be implemented using a series of C4 and K2 graphs. The Hadamard gate may be performed with only five
vertices, but we again use eight vertices to establish a clear correspondence with three qubits in the circuit model.
Consider the initial state c0|0〉+ c1|1〉 embedded in a Hilbert space represented by |V | = 8 nodes. Figure 8 illustrates
the dynamic graph for the H gate, defined as

GH ={(G(0,2,4,6)
C4

+G
(1)
K1

+G
(3)
K1

+G
(5)
K1

+G
(7)
K1
, 3π/2),

(G
(0,7)
K2

+G
(1,6)
K2

+G
(2,5)
K2

+G
(3,4)
K2

, π/4),

(G
(0,2,4,6)
C4

+G
(1)
K1

+G
(3)
K1

+G
(5)
K1

+G
(7)
K1
, 3π/2),

(G
(0,1)
K2

+G
(2,3)
K2

+G
(4,5)
K2

+G
(6,7)
K2

, π/2),

(G
(0)
K1

+G
(1)
K1

+G
(2)
K1

+G
(3)
K1

+G
(4)
K1

+G
(5)
K1

+G
(6)
K1

+G
(7)
K1
, 3π/2)}

(43)

We show in the Appendix that the CTQW defined by Eq. (43) implements the logical transformation for the Hadamard
gate.

The T gate is defined as

T =

(
1 0

0 e
iπ
4

)
(44)

and may be implemented using K1, K2, and C4 graphs, along with the star graph on five vertices. A star graph is a
connected graph G on n vertices such that exactly one vertex has degree n− 1 and all other vertices have degree one.
Figure 9 illustrates the dynamic graph used for the T gate, which is written as

GT ={(G(0,2)
K2

+G
(1)
K1

+G
(3)
K1

+G
(4)
K1

+G
(5)
K1

+G
(6)
K1

+G
(7)
K1
,
π

4
),

(G
(0,3,4,5)
C4

+G
(1)
K1

+G
(2)
K1

+G
(6)
K1

+G
(7)
K1
,
π

2
),

(G
(2,4)
K2

+G
(3,5)
K2

+G
(0)
K1

+G
(0)
K1

+G
(1)
K1

+G
(6)
K1

+G
(7)
K1
,
π

4
),

(G
(2,5,6,7)
C4

+G
(0)
K1

+G
(1)
K1

+G
(3)
K1

+G
(4)
K1
,
π

2
),

(G
(0,2,3,4,5)
S5

+G
(1)
K1

+G
(6)
K1

+G
(7)
K1
,

7π

4
),

(G
(0)
K1

+G
(1)
K1

+G
(2)
K1

+G
(3)
K1

+G
(4)
K1

+G
(5)
K1

+G
(6)
K1

+G
(7)
K1
,
π

4
)}.

(45)

We show in the Appendix that the CTQW defined by Eq. (45) implements the logical transformation for the T gate.

B. Multi-qubit gates

Quantum walks on dynamics graphs may also be used to construct multi-qubits gates. For example, the two-qubit
CNOT gate,

CNOT =

 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (46)

can be realized using a quantum walk on 4 vertices that span the space of the control and target qubits. Let vertices 0
and 1 propagate as singletons for time 2π while allowing vertices 2 and 3 to propagate under K2 as shown in Fig. 10.

GCNOT = {(G(0)
K1

+G
(1)
K1

+G
(2)
K1

+G
(3)
K1
,

3π

2
), (G

(0)
K1

+G
(1)
K1

+G
(2,3)
K2

,
π

2
)} (47)



Continuous-time quantum walks on dynamic graphs 11

|000〉

|010〉

|100〉

|110〉

|001〉

|011〉

|101〉

|111〉

|000〉

|010〉

|100〉

|110〉

|001〉

|011〉

|101〉

|111〉

|000〉

|010〉

|100〉

|110〉

|001〉

|011〉

|101〉

|111〉

|000〉

|010〉

|100〉

|110〉

|001〉

|011〉

|101〉

|111〉

|000〉

|010〉

|100〉

|110〉

|001〉

|011〉

|101〉

|111〉

0 ≤ t ≤ 3π/2 3π/2 ≤ t ≤ 7π/4

7π/4 ≤ t ≤ 13π/4 13π/4 ≤ t ≤ 15π/4 15π/4 ≤ t ≤ 21π/4

1

FIG. 8. A graphical representation of the H gate using CTQW on GH .
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FIG. 9. A graphical representation of the T gate using GT .
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|00〉 |01〉

|10〉 |11〉

0 ≤ t < 3π/2

|00〉 |01〉

|10〉 |11〉

3π/2 ≤ t < 2π

FIG. 10. A graphical representation of the CNOT gate using CTQW on Gcnot.

The three-qubit CCNOT, or Toffoli, gate is constructed similarly but now using |V | = 8 vertices that represent
the two control qubits and one target qubit. The implementation of the Toffoli gate is identical to the CNOT gate
but with four additional vertices allowed to propagate as singletons for 2π units of time. It is used in both the carry
and sum subcircuits in the quantum adder circuit. It is also reversible, meaning the its effects may be reversed using
other operations. Figure 11 illustrates the dynamic graph for the Toffoli gate.

|000〉 |001〉

|010〉 |011〉

|100〉 |101〉

|110〉 |111〉

0 ≤ t < 3π/2

|000〉 |001〉

|010〉 |011〉

|100〉 |101〉

|110〉 |111〉

3π/2 ≤ t < 2π

FIG. 11. A graphical representation of the CCNOT (Toffoli) gate using CTQW on GCCNOT.

C. Measurement and Initialization

We model measurement of the quantum state on a graph G as a projection onto a subspace of the basis BG. In
establishing a correspondence with the qubit-encoded circuit model, we decompose the labels of the basis according
to a binary expansion

|j〉 =

m∑
i=1

ji2
m−i (48)

with ji ∈ {0, 1} and m = log2 |V |. In this binary representation, a quantum state |ψG〉 ∈ BG can be expressed as

|ψG〉 =
∑
j∈V

cj |j1, . . . , jm〉, (49)
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and measuring the i-th qubit to have a fixed value j̄i corresponds to projecting the state onto a subset of nodes in
the graph, i.e.,

|j̄i〉 〈j̄i|ψG〉 =
∑
j∈V

cj |j1, . . . , j̄i, . . . , jm〉 (50)

The probability to observe node j is given as

Prob(j) = | 〈j̄i|ψG〉 |2 =
∑

j∈V,ji=j̄

|cj |2 ≤ 1 (51)

We may use measurement as part of a deterministic initialization method, in which the projective outcome is
transformed into the desired initial state. This requires conditional operations based on the decoded output from the
measurement, from which the necessary series of single-qubit gates are applied to graph. For projections into the
label basis, these feed-forward operations consist of products of the Pauli operators flip the label state to a fiducial
starting label, e.g., the vertex 0.

VI. QUANTUM WALKS FOR QUANTUM CIRCUITS

We complete our analysis by providing explicit examples of how quantum walks on dynamic graphs realize circuits
within gate-model computing. These examples highlight the differences in the representation of the logic as well as
the resources required to achieve the desired unitary transformations. In our examples, CTQWs are performed in
series and the number of vertices needed to implement each circuit is equal to the largest of the number of vertices
needed to perform the CTQW equivalent for each logic gate. For the sake of completeness, we also explicitly indicate
singleton vertices that add global phase evolution to select vertices in order to clearly demonstrate where each gate
is used in the implementation. Future optimizations may remove such singleton CTQWs that sum to 2π from actual
implementations.

A. Quantum Teleportation Circuit

In quantum teleportation, a qubit of information is transferred from one logical element to another as shown in
Fig. 12. In the circuit model description, three qubits are initially prepared in the state |000〉. The first element
is prepared in the state |ψ1〉 by applying the necessary single-qubit transformation. The remaining elements are
prepared in a two-qubit entangled state by applying the Hadamard gate to the second element followed by the CNOT
gate acting on the second and third elements. A second CNOT gate entangles the first and second qubits. A final
Hadamard gate is applied to the first, after which measurements performed on elements 1 and 2 generate binary
values b1 and b2, respectively. The effect of these measurements is to project element 3 into the state Xb1

3 Z
b2
3 |ψ3〉,

which may be transformed to the original state of element 1 with knowledge of (b1, b2).

|ψ1〉 • H •

|02〉 H • •

|03〉 X Z |ψ3〉

FIG. 12. The circuit model representation of quantum teleportation uses three qubits and a series of elementary gates.

The implementation of quantum teleportation using CTQW on a dynamic graph is shown in Fig. 13, and it begins
with a graph on eight vertices. Initialization of these vertices is realized through a projective measurement and,
depending on the measurement outcome, a sequence of X operations to populate the 0 vertex. We then approximate
an arbitrary unitary operation to prepare the input superposition state |ψ〉 =

√
1− a|0〉 +

√
a|1〉 for a ∈ C where

|a| = 1. The number of vertices needed to represent an arbitrary |ψ〉 depends on the desired state, but this single-
qubit unitary can be constructed using the universal basis described above. A Hadamard transform is then applied
to vertices 0 and 7 using Eq. (43) followed by a pair of CNOT transforms using Eq. (47) acting on vertices {2, 3, 6, 7}
and {0, 1, 2, 3}, respectively. The output from this series of CTQWs prepares the graph state

|ψ〉 =
1

2

(
−
√

1− a|0〉+
√

1− a|1〉+
√

1− a|2〉 −
√

1− a|3〉 − √a|4〉 − √a|5〉+
√
a|6〉+

√
a|7〉

)
(52)



Continuous-time quantum walks on dynamic graphs 14

and a partial projective measurements on the first two bits of the label representation generates the four possible
teleported states.
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(G1, f(a)) (G2, π/2) (G3, π/2) (G4, π/2) (G5, 3π/2) (G6, π/4) (G7, 3π/2)

(G8, π/2) (G9, 3π/2) (G10, 3π/2) (G11, π/2) (G12, 3π/2) (G13, π/2) (G14, 3π/2)

(G15, π/4) (G16, 3π/2) (G17, π/2) (G18, 3π/2) (G19, 3π/2) (G20, π/2) (G21, π)

FIG. 13. In this graphical representation of quantum teleportation, each graph is labeled as (G`, τ`) with τ` the propagation
time in the `-th graph. The time f(a) = arcsin(

√
a) is the state specific time required to rotate |000〉 to

√
1− a|000〉+

√
a|001〉.

From left to right, the first four graphs rotate the state while the next five graphs correspond to the H gate on the second
qubit. The following four graphs represent a pair of CNOT gates. The next five graphs correspond with an H gate on the
first qubit. Assuming a measurement outcome (b1 = 1, b2 = 1), the remaining graphs implement the X and Z gates needed to
complete teleportation.

FIG. 14. The population dynamics for state preparation and quantum teleportation using CTQW on the dynamic graph shown
in Fig. 13.This examples corresponds to the case of measurement outcomes b1 = 1 and b2 = 1 for qubits 1 and 2, respectively,
and completes the protocol by applying the necessary recovery operations, X and Z.

B. Quantum Adder

As a second example, we consider a quantum addition circuit for summing two positive integers such that the input
|a, b〉 → |a, a⊕ b〉 [25]. This variant of in-place addition takes two inputs encoded in registers a and b with the binary
representations a = an−1an−2...a1a0 and b = bn−1bn−2...b1b0. An additional bit bn+1 = 0 is added to register b to
give a size n + 1. A third workspace register c of size n − 1 is used in this implementation to store carry values
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c0

C
Sa0 •

b0

b1

FIG. 15. A quantum circuit for addition of two 1-bit numbers, where the carry circuit C and the sum circuit S are defined in
Figs. 16 and 17. Note that since we only have one carry operation, it is our last carry, and thus is not reversed.

with initialization ci = 0 ∀ i, while the final carry value is stored in the bit bn+1. The circuit is composed from two
subcircuits for carry and sum operations denoted as C and S, respectively, and the subcircuits for C and S are specified
in Figs. 16 and 17, respectively. The carry operation uses a Toffoli gate with the second and third qubit as controls
and the fourth qubit as the target. This is followed by a CNOT gate on the second and third qubits before another
Toffoli gate on the first, second, and fourth qubits. The reverse carry RC circuit undoes the carry computation by
applying the gates in the reverse order. The last carry bit in the computation is not reversed but stored as bn+1. The
sum subcircuit denoted as S in Fig. 17 takes three qubits as input, in which a CNOT is applied to the second and
third qubits followed by a Toffoli gate performed with the first two qubits being the controls and the third qubit as
the target. In Fig. 15, we show the demonstrated instance of one-bit inputs, i.e., n = 1, for which the reverse carry
subcircuit is unnecessary. For this example, carry bits are also unnecessary but we include the single carry bit c0 to
confirm generality.

•
• •
• •

FIG. 16. The carry subcircuit C used in Fig. 15

•
•

FIG. 17. The sum subcircuit S used in Fig. 15

We reduce the gate sequences in the quantum addition circuit into the dynamic graph shown in Fig. 18. Our
reduction uses the CTQWs for CNOT and CCNOT gates described in Sec. V and sequentially orders them according
to the gate specification in Figs. 15, 16, and 17. In order to verify the correctness of the reduction, we have used
numerical simulation to determine the quantum state generated by the CTQW on the dynamic graph shown in Fig. 18.
Numerical simulation of the CTQW requires a memory space that is exponential in the number of qubits, i.e, 23n+1.
Implementing the quantum adder circuit for n = 1 requires a dynamic graph on sixteen vertices.

We show results from a specific simulation with |a0〉 = |1〉 and |b0〉 = 1√
2

(|0〉+ |1〉) in Fig. 19. We plot the time-

dependent population of the vertices that represent the joint state of the computational registers. The carry register
is initialized to |c0〉 = |0〉 and the resulting computational output is |b1, b0, a0, c0〉 = 1√

2
(|0, 0, 1, 0〉+ |1, 1, 1, 0〉), where

the a0 and c0 registers remain in their initial states, and the sum a0 + b0 is stored in the b0 and b1. As shown in
Fig. 19, our CTQW simulations verify that the dynamic graph yields the expected output states, which corresponds
to a uniform superposition of the vertex labels 6 and 10.
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FIG. 18. In this graphical representation of a one-bit quantum adder circuit, each graph is labeled as (G`, τ`) with τ` the
propagation time in the `-th graph.

FIG. 19. The population dynamics of the CTQW for quantum addition of inputs |a〉 = |1〉 and |b〉 = 1√
2
|0, 0〉 + 1√

2
|0, 1〉.

Numerical simulations of the CTQW on the dynamic graph shown in Fig. 18 calculates exactly the amplitudes of each vertex
and the final state is |b1, b0, a0, c0〉 = 1√

2
(|0, 1, 1, 0〉 + |1, 0, 1, 0〉), which corresponds to a uniform superposition of the vertices

6 and 10.

VII. DISCUSSION

Continuous-time quantum walks offer a versatile paradigm for quantum computing, in which the edges between
vertices in a graph serve to model the connectivity between basis states. We have defined a dynamic graph as a
time-ordered sequence of changing connectivity through which a the state of a continuous quantum walk can be
tailored to perform computation and, in particular, we have provided constructions of continuous-time quantum
walks on dynamic graphs that implement a diverse set of gates taken from the quantum circuit computational model.
Our realizations of the single-qubit Pauli, Hadamard, and T gates, and the CNOT and Toffoli gates, as well as
measurement and initialization, form a complete set of primitive operations that can be composed to approximate an
arbitrary unitary operator. We were able to implement these gates with a complete basis set of at most eight sparsely
connected nodes, allowing the small graph motif to extend across any algorithm. We have presented implementations
of the the bit-wise addition operation and quantum teleportation to demonstrate composition of quantum walks and
shown how some reduction in the composite dynamic graph can be realized by eliminating redundancies.
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An important distinction in our formulation of continuous-time quantum walks is the condition that the Hamiltonian
represent the connectivity of the underlying basis states. Although we permit variations in this Hamiltonian, the
restriction has several side-effects on the computational model. For example, our design for some single-qubit gates
taken from the circuit model require graphs with more than two vertices. These additional vertices are effectively
ancilla used to store temporarily intermediate states of the walk. This unique representation may afford opportunities
for optimizing quantum logic by better understanding the transformation of an input state to its output form.
Similarly, multi-qubit gates such as CNOT and Toffoli are trivial to implement by using the starkly different periods
for perfect state transfer. Algorithmic methods that take advantage of these otherwise idle vertices may provide more
compact representations of logical transformations.

We have restricted designs of the current quantum walks to small and relatively simple graphs, e.g, K2 and C4.
These designs are appealing because they require less complex interactions between the physical elements, but the
ability to realize these designs will depend on technological constraints as well as algorithmic requirements. In
particular, perfect state transfer has been implemented recently in a photonic processor [26]. Chapman et al. used a
linear array of evanescently coupled waveguides to realize nearest-neighbor coupling and transfer the polarized state
of one photon to another. The underlying tight-binding Hamiltonian provides an approximation to the connectivity
graph underlying a continuous-time quantum walk defined within the space of the single-photon Fock states. The
approximation is controlled by the spectra of the coupled waveguides, which must be non-uniform in their geometry
for (almost) perfect state transfer using a linear coupled chain [22, 23]. The geometrical constraints imposed by
linear chains have been overcome by a recent demonstration of continuous-time quantum walks in two-dimensional
waveguide arrays [27]. Tang et al. demonstrated control of the coupling between waveguide in a two-dimensional
array by fabricating specific distance between the channels. We anticipate that these capabilities may be applied to
vary the coupling along the waveguide length and, consequently, develop a physical realization of a dynamic graph.
These adaptations may require relaxations of our model, including modifying the sharp transitions induced by the
rectangle function with more gradual transitions. As a second possible implementation, we note that the Mølmer-
Sørensen gate commonly used in ion trap technology enables highly tunable connectivity between multiple qubits for
a specific Hamiltonian [28, 29], and it would be interesting to apply our principles of continuous-time quantum walks
on dynamics graphs to these systems as well.
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APPENDIX

We demonstrate that the dynamic graph representing Eq. (43) implements the Hadamard transform by showing
explicitly the graph state prepared under the sequence of CTQWs. We first note that the CTQW on each element
G` in a dynamic graph can be evaluated numerically for the designated propagation time t`. For GH , we have

UG0 =



0 0 0 0 0 0 −1 0
0 i 0 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 i 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 i 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 i
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UG1 =



1√
2

0 0 0 0 0 0 −i√
2

0 1√
2

0 0 0 0 −i√
2

0

0 0 1√
2

0 0 −i√
2

0 0

0 0 0 1√
2
−i√

2
0 0 0

0 0 0 −i√
2

1√
2

0 0 0

0 0 −i√
2

0 0 1√
2

0 0

0 −i√
2

0 0 0 0 1√
2

0
−i√

2
0 0 0 0 0 0 1√

2



UG2
=



0 0 0 0 0 0 −1 0
0 −i 0 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 −i 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 −i 0 0
0 0 0 0 0 0 0 −1
−i 0 0 0 0 0 0 0



UG3
=



0 −i 0 0 0 0 0 0
−i 0 0 0 0 0 0 0
0 0 0 −i 0 0 0 0
0 0 −i 0 0 0 0 0
0 0 0 0 0 −i 0 0
0 0 0 0 −i 0 0 0
0 0 0 0 0 0 0 −i
0 0 0 0 0 0 −i 0



UG4
=



i 0 0 0 0 0 0 0
0 i 0 0 0 0 0 0
0 0 i 0 0 0 0 0
0 0 0 i 0 0 0 0
0 0 0 0 i 0 0 0
0 0 0 0 0 i 0 0
0 0 0 0 0 0 i 0
0 0 0 0 0 0 0 i


By multiplying the resulting matrices in order, we construct an explicit numerical representation for the CTQW under
the dynamic graph GH as

UGH =



1√
2

1√
2

0 0 0 0 0 0
1√
2
−1√

2
0 0 0 0 0 0

0 0 1√
2

1√
2

0 0 0 0

0 0 1√
2
−1√

2
0 0 0 0

0 0 0 0 1√
2

1√
2

0 0

0 0 0 0 1√
2
−1√

2
0 0

0 0 0 0 0 0 1√
2

1√
2

0 0 0 0 0 0 1√
2
−1√

2


It is then apparent from this numerical representation that the CTQW for GH is equivalent to applying the circuit-
model operator H1 ⊗H2 ⊗H3 on the three-qubit Hilbert space.
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We provide a similar proof that the dynamic graph representing Eq. (45) implements the T gate by showing
explicitly the graph state prepared under the sequence of CTQWs. We first note that

UG0
=



1√
2

0 −i√
2

0 0 0 0 0

0 e
−iπ
4 0 0 0 0 0 0

−i√
2

0 1√
2

0 0 0 0 0

0 0 0 e
−iπ
4 0 0 0 0

0 0 0 0 e
−iπ
4 0 0 0

0 0 0 0 0 e
−iπ
4 0 0

0 0 0 0 0 0 e
−iπ
4 0

0 0 0 0 0 0 0 e
−iπ
4



UG1
=



0 0 0 0 0 −1 0 0
0 −i 0 0 0 0 0 0
0 0 −i 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 −1 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 0 0 −i 0
0 0 0 0 0 0 0 −i



UG2 =



e
−iπ
4 0 0 0 0 0 0 0

0 e
−iπ
4 0 0 0 0 0 0

0 0 1√
2

0 −i√
2

0 0 0

0 0 0 1√
2

0 −i√
2

0 0

0 0 −i√
2

0 1√
2

0 0 0

0 0 0 −i√
2

0 1√
2

0 0

0 0 0 0 0 0 e
−iπ
4 0

0 0 0 0 0 0 0 e
−iπ
4



UG3
=



−i 0 0 0 0 0 0 0
0 −i 0 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 −i 0 0 0 0
0 0 0 0 −i 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 −1 0



UG4
=



0 0 i
2

i
2

i
2

i
2 0 0

0 e
iπ
4 0 0 0 0 0 0

i
2 0 3

4
−1
4
−1
4
−1
4 0 0

i
2 0 −1

4
3
4
−1
4
−1
4 0 0

i
2 0 −1

4
−1
4

3
4
−1
4 0 0

i
2 0 −1

4
−1
4
−1
4

3
4 0 0

0 0 0 0 0 0 e
iπ
4 0

0 0 0 0 0 0 0 e
iπ
4
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UG5
=



−i 0 0 0 0 0 0 0
0 −i 0 0 0 0 0 0
0 0 −i 0 0 0 0 0
0 0 0 −i 0 0 0 0
0 0 0 0 −i 0 0 0
0 0 0 0 0 −i 0 0
0 0 0 0 0 0 −i 0
0 0 0 0 0 0 0 −i


Thus, as GT is the product of the above matrices, we have that

UGT =



1 0 0 0 0 0 0 0

0 e
iπ
4 0 0 0 0 0 0

0 0 −1
2 0 −e

−iπ
4√
2

1
2 0 0

0 0 −1
2 0 e

−iπ
4√
2

1
2 0 0

0 0 1
2

e
−iπ
4√
2

0 1
2 0 0

0 0 1
2
−e

−iπ
4√
2

0 1
2 0 0

0 0 0 0 0 0 0 e−
iπ
4

0 0 0 0 0 0 e−
iπ
4 0
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