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Wheeler’s delayed-choice experiment investigates the indeterminacy of wave-particle duality and the role
played by the measurement apparatus in quantum theory. Due to the inconsistency with classical physics, it
has been generally believed that it is not possible to reproduce the delayed-choice experiment using a hidden
variable theory. Recently, it was shown that Wheeler’s delayed-choice experiment can be explained by a causal
two dimensional hidden-variable theory [R. Chaves, G. B. Lemos, and J. Pienaar, Phys. Rev. Lett. 120, 190401
(2018)]. Here, we carry out a delayed-choice experiment by using photon states that are space-like separated,
and demonstrate that the experiment is consistent with quantum theory but inconsistent with any causal two-
dimensional hidden variable theory in a device-independent manner. This demonstrates that causality can be
used to test quantum theory in a complementary way to the Bell and Leggett-Garg tests.

After the two famous Bohr-Einstein debates of 1927 and
1930 on the validity of the quantum theory [1], Einstein had to
accept that quantum mechanics was correct. However, in his
paper with Podolsky and Rosen (EPR) [2], EPR claimed that
quantum theory, while not incorrect, was incomplete. That
paper showed that quantum-entangled states had elements of
nonlocality, un-reality, and uncertainty that no “sensible” the-
ory should have. The EPR paper opened the door for a re-
placement theory for quantum mechanics, now called a hid-
den variable (HV) theory, that would be more like a classical
statistical theory, where the statistics were governed by HVs
that were either unknown or unaccessable. Von Neumann then
provided a proof that no HV theory could reproduce all the
predictions of quantum theory [3]. Later, Bohm produced
a HV theory that reproduced all the predictions of nonrela-
tivistic quantum theory. To solve this apparent paradox, Bell
showed that von Neumann had made an explicit assumption
that the HV theory was local, but that the HV theory of Bohm
was nonlocal — that is actions at one place could affect out-
comes far away in apparent violation of Einstein causality [4].
Thus, it is important to make the locality requirement explicit
and show whether local HV theory could reproduce the pre-
dictions of quantum theory.

In an effort to challenge quantum mechanics, and make
quantum predictions consistent with common sense, it was
suggested that quantum particles can actually “know” in ad-
vance to which experiment they are going to be confronted
through a HV, and thus can determine which behavior to show.
For example, the photon could “decide” whether it was going
to behave as a particle or behave as a wave before it reach
the detection device in the double-slit experiment. However,

Wheeler published two theory papers, now called Wheeler’s
delayed-choice experiments (WDCE), that claimed to exclude
the causal link between the experimental setup and a HV that
predefines the photons behavior, and point out that comple-
mentarity and wave-particle duality alone contained an ele-
ment of Einstein nonlocality [5, 6]. Fig. 1(a) shows an exam-
ple of an implementation of WDCE, where a photon enters an
Mach-Zehnder interferometer (MZI). The observer randomly
chooses whether or not to insert the second beamsplitter (BS2)
after the photon has passed through BS1, thereby observing
interference (wave-like behavior) or no interference (particle-
like behavior) accordingly. By delaying the choice of the con-
figuration until well after the photon passes BS1, this ensures
that it could not “know” which behavior it should show in
advance. So far, WDCE has been implemented experimen-
tally in various quantum systems [7–12]. Interestingly, a re-
cent extension, quantum delayed-choice experiment (QDCE),
suggested using a quantum beam splitter at the interferome-
ter’s output [13, 14], enabling one to project the testing pho-
ton into an arbitrary coherent wave-particle superposition, and
motivated many QDCE experiments [15–18]. In short, until
recently experimental demonstrations of WDCE (or QDCE)
were thought to have perfectly ruled out the possible of quan-
tum behavior induced by HV.

Chaves, Lemos, and Pienaar recently revisited WDCE, and
showed using methods in causal inference [19, 20] that the
original WDCE and QDCE can in fact be modeled by a causal
two dimensional HV theory [21]. The HV theory they suggest
follows the same causal structure of the experiment shown in
Fig. 1(a), such that statistics produced by the final detection
can be determined from a HV and the information of the type
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of measurement being performed. To overcome this short-
coming, the authors suggested a modified version of WDCE
(MWDCE, Fig. 1(b)) that cannot be explained by a causally
structured HV theory, assuming a HV dimension of two. In
the modified setup, the second beamsplitter is always put in
place, and the two types of detection is controlled by the
phase shifter βj . The additional component is that Alice has
the ability to prepare a set of states, controlled by her own
phase shifter αi. Here, an important aspect is that Alice and
Bob’s devices are independent. In Ref. [21] it is shown that
this new setup can no longer be modeled by a causally struc-
tured HV theory, as long as the HV has a dimension of two.
Such a causal HV theory can be distinguished from a gen-
uine quantum theory by comparing the statistics to a device-
independent prepare and measure (PAM) scenario [22, 23]
(Fig. 1(c)). Using the statistics of the measurements and the
setting values, a device-independent dimension witness [22]
can be constructed that is capable of distinguishing between a
causally structured HV theory. The dimensional witness can,
in principle, work with any transmittance strictly larger than
zero, thus making MWDCE can be demonstrated in the pres-
ence of arbitrarily low detection efficiency.

In this paper, we carry out a demonstration of the MWDCE
in a device-independent manner. By measuring a device-
independent witness we verify that two-dimensional causally
structured HV theory can indeed be ruled out. We further-
more rule out the prior correlations that may exist between
Alice and Bob by violation of a dimension witness inequality.
Finally, we quantify the degree of retrocausality that would
be required to reproduce our experiments, placing bounds on
such hypothetical scenarios. We note that in the MWDCE of
Fig. 1(b), and also in our experiment, the second beamsplit-
ter is always in place. Thus the focus of our experiment is
whether the WDCE in this setting can be explained by using
a causally structured classical HV theory, rather than testing
wave-particle duality. It is therefore complementary to tests
of nonlocality in quantum theory such as in a Bell test or a
Leggett-Garg test [24].

Figure 1(d) shows the schematic experimental implementa-
tion for realizing the MWDCE. The path-based interferometer
as shown in Fig. 1(b) is implemented in our experiment by a
polarization-based interferometer, which has the advantage of
superior stability. The horizontal (H) and vertical (V ) polar-
izations correspond to the upper and lower paths in the MZI in
Fig. 1(b). To prepare the various initial states we use an EPR
photon pair emitter located at Charlie’s location C. Charlie is
located closer to Alice than to Bob to allow Alice to make her
preparation step first by measuring her half of the entangled
pair after applying her polarization rotation αi first. This col-
lapses Bob’s half of the entangled pair into a single photon to
which Alice’s polarization rotation αi has been applied. Then
Bob applies his polarization rotation βj , before any influence
from Alice can reach him, and measures the photon through
a polarizing beam splitter (PBS) and detectors. We note that
the use of the Bell state is merely to prepare a random state for
Bob, and the entanglement plays no further role. In the experi-
ment, we synchronize the clock and control the delay of every
device carefully to ensure the time order of preparation and
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FIG. 1. Various configurations of the delayed-choice experiment.
(a) Wheeler’s delayed-choice experiment (WDCE). (b) The modified
WDCE (MWDCE). The gray areas correspond to Alice (preparer)
and Bob (measurer), respectively. In the modified setup, the second
beamsplitter is always put in place, Alice has the ability to prepare
a set of states, controlled by her own phase shifter αi ∈ {α0 =
0, α1 = π, α2 = −π/2, α3 = π/2}, and two types of detection is
controlled by the phase shifter βj ∈ {β0 = π/2, β1 = 0} of Bob.
The U is the upper path and D is the lower path. (c) The device-
independent prepare-and-measure (PAM) scenario for the MWDCE.
An initial black-box prepares different physical systems (upon press-
ing a button labeled by αi) that are then sent to a second black-box
where the systems are measured (upon pressing a button labeled by
βj) to produce an outcome labeled by dij . (d) Schematic experimen-
tal description performed in this paper. Alice prepares a photon by
measuring an Bell state in one of two basis, producing four possible
states |H〉 + eiαi |V 〉. Bob then applies a phase shift and interferes
the photon using a PBS to obtain the output.

measurement operation, such that it meets the requirements
of the PAM scenario and delayed-choice experiment. Time
ordering is now important in the current scheme.

Our experimental setup is shown in Fig. 2. At Char-
lie’s location, an ultraviolet laser pulse with a central wave-
length of 394 nm passes through a β-barium borate (BBO)
crystal to produce a polarization-entangled pairs |Ψ+〉AB =
|H〉A|V 〉B + |V 〉A|H〉B (normalization coefficients are omit-
ted for brevity) [25]. A half-wave plate (HWP) is placed
on one output of the EPR source to produce the Bell state
|Φ+〉AB = |H〉A|H〉B + |V 〉A|V 〉B . The two photons are
then coupled to a single mode fiber and sent to Alice (pre-
parer) and Bob (measurer), respectively. The distance be-
tween Alice and Bob is 46 m, and the length of the fiber from
the entanglement source (Charlie) to Alice is shorter than that
to Bob. The electro-optic modulator (EOM) then applies a
phase shift of 0 or π/2 chosen by a quantum random num-
ber generator (QRNG) such that Alice’s photon is measured
in one of two bases {|H〉A ± |V 〉A} or {|H〉A ± i|V 〉A}. For
a given basis choice, this causes Bob’s part of the Bell state
to randomly collapse to one of two states, giving a total of
four outcomes |H〉B ± |V 〉B and |H〉B ∓ i|V 〉B . Bob then
deploys his delayed-choice of applying one of two polariza-
tion rotations βj ∈ {β0 = π/2, β1 = 0}, chosen by another
QRNG. This is equivalent to measuring his photon in one of
the two bases {|H〉B ± eiβj |V 〉B} chosen by βj . Two syn-
chronized signals from a central clock are used to trigger the
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FIG. 2. Experimental setup. The polarization-entangled photon pairs produced by SPDC are coupled into the single-mode fiber and sent to
Alice (preparer) and to Bob (measurer), respectively. The distance between Alice and Bob is 46 meters and the length of the fiber from the
entanglement source (Charlie) to Alice is shorter than that to Bob (the fiber lengths of Charlie-Alice and Charlie-Bob are 28 meters and 33
meters, respectively). Alice’s photon passes through an EOM, then is measured by the APD which collapses Bob’s state to |H〉B + eiαj |V 〉B
with αj ∈ {0, π,±π/2}, thereby preparing the state. Bob’s photon then passes through another EOM where a random phase βj ∈ {π/2, 0}
is applied to the vertical polarization component, and is finally measured by the APD. The measurement basis of Alice and Bob are each
randomly determined by two independent and space-like separated QRNGs and EOMs. In order to meet the delayed-choice condition, the
measurement basis of Bob is chosen much later than that of Alice.

two QRNGs to meet the delayed-choice condition. We note
that the four preparation states are produced by a combination
of Alice’s QRNG and the random collapse of the Bell state.
Thus no postselection is performed to prepare the state.

In our experiment, the device-independent dimension wit-
ness in Ref. [22] is used to exclude the two-dimensional
nonretrocausal classical model in MWDCE. However, the
premise of using the dimension witness is that the preparer
and measurer in the PAM model must be independent. Fortu-
nately, the use of entanglement in our experiment makes this
assumption easy to achieve. Specifically, in our experiment,
space-like separation is built to ensure that the QRNGs and the
photon measurements are both outside their mutual lightcones
(Fig. 3(a)). In addition, the QRNGs must fire outside the light
cone of the EPR source to ensure that Charlie cannot influence
the outcome of the QRNGs, as shown in Fig. 3(b). Thus, the
use of entanglement and space-like separations in our experi-
ment rules out potential communication between the preparer
and measurer. The assumption of independent devices is re-
quired to use the dimension witness of Ref. [22]. By having
a space-like separation we can guarantee that no communi-
cation can occur between the devices. However, a space-like
separation may still possess predetermined classical correla-
tions which make the two devices dependent. In order to deal
with potential classical correlations, the dimension witness of
Refs. [23, 26] is applied.

To test the two dimensional witness [22], we measure the
conditional probability that detector d fires for given settings
(αi, βj) chosen by Alice and Bob respectively. The matrix
elements of the 2×2 dimensional witness matrixW is defined
as [22]

W =

(
p(d0,0)− p(d1,0) p(d2,0)− p(d3,0)
p(d0,1)− p(d1,1) p(d2,1)− p(d3,1)

)
(1)

where p(di,j) is the probability of the outcome di,j , defined

as the detector d firing for the given settings αi, βj . For a
causally structured two dimensional HV theory one should
find that det(W ) = 0, whereas according to quantum me-
chanics for an ideal system |det(W )| = 1. Figure 4(a) shows
a comparison of the theoretical predictions and the experi-
mental measurements, where the experimental data were ob-
tained with and without the fair-sampling assumption (FSA).
Under the FSA, we discard inconclusive results and postse-
lect only coincidence events. The two-dimensional witness
is calculated as |det(W )| = 0.778 ± 0.005 with the FSA,
where the error is estimated from statistical error. Experi-
mental errors mainly come from higher-order events in the
SPDC and the control accuracy of EOM. Without the FSA,
the two-dimensional witness is measured to be |det(W )| =
0.0268 ± 0.0006. The smaller magnitude of the dimensional
witness is mainly due to the low collection efficiency (∼
20%). However, even without the FSA, the witness of the two
dimensional HV, |det(W )| = 0, is still violated by 44 standard
deviations. This means that we have — with a great degree of
confidence — shown that our experiment is inconsistent with
a causally structured HV theory with two dimensions. Thus,
this scheme is highly resilient to detection inefficiencies.

We also test compatibility with HV models that are depen-
dent upon prior correlations that could influence the output of
the interferometer. While our experiment rules out the causal
influence of the operations that Alice and Bob perform on
each other, it is possible that such correlations could be pre-
pared long before the start of the experiment, and would not be
forbidden by causality. We use the dimension witness [23, 26]

IDW = 〈D00〉+ 〈D01〉+ 〈D10〉 − 〈D11〉 − 〈D20〉, (2)

where 〈Dij〉 = p(ei,j) − p(di,j), p(ei,j) is the probability
of the outcome eij , defined as the detector e firing for the
given settings αi, βj (see Fig. 1(d)). The measurement set-
tings are αi ∈ {π/4, 3π/4,−π/2} and βj ∈ {π/2, 0} as be-
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FIG. 3. Minkowski diagrams for the spacetime events related to Al-
ice, Bob, and the source Charlie. All light cones are shaded gray.
(a) Alice and Bob are space-like separated as the measurement is fin-
ished by Alice and Bob before information about the other party’s
measurement setting could have arrived. (b) The QRNGs at Alice
and Bob finish picking a setting outside the light cone of the gener-
ation of an entangled photon pair by Charlie. All the events in our
experiment are space-like separated.
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FIG. 4. (a) Conditional probability p(di,j) that detector d fires
for given settings (αi,βj) chosen by Alice and Bob. Under the
fair-sampling assumption (FSA) only coincidence events are post-
selected. All the data were obtained in 1 minute continuous mea-
surement. (b) Experimental results of the dimensional witness IDW .
The 〈Dij〉 for the theoretical predictions and experimental measure-
ment are shown as grey and hatched bars, respectively. All the data
was obtained in a 1 minute continuous measurement. Error bars rep-
resent one standard deviation, deduced from propagated Poissonian
counting statistics of the raw detection events.

fore. Any two-dimensional HV theory gives a strict bound of
IHV

DW ≤ 3 even if Alice and Bob share pre-established correla-
tions, while the quantum bound is IQ

DW = 1 + 2
√

2 ≈ 3.828
[21, 27]. The data for this witness is shown in Fig. 4(b), and
yields IQ

DW = 3.445± 0.043, with the FSA. The bound in this
case is violated by 10 standard deviations.

The above shows that a causally structured two-
dimensional HV model would be inconsistent with our exper-
imental results. In addition to higher dimensional HV models,
if one allows for the possibility of retrocausality (i.e. signal-
ing backwards in time), it becomes possible to construct a HV
theory that can account for statistics consistent with quantum
experiment. Recall if full retrocausality is allowed, then a lo-
cal HV model cannot be distinguished from quantum theory
[28]. Interestingly, in Ref. [21] it is shown that quantum me-
chanics can be give bounds on types of retrocausal HV models
that are allowed, by quantifying the degree of retrocausality
contained in them. A measure of retrocausality RB→Λ from

Bob’s measurement setting to the hypothetical hidden variable
is bounded by

RB→Λ ≥ Rmin
B→Λ ≡ max

[
IDW − 3

4
, 0

]
, (3)

where IDW is the same dimensional witness used above.
Here, RB→Λ ∈ [0, 1] is a value to quantify the strength of
the causal influence of Bob’s choice to the Alice’s prepared
state. The greater the value of RB→Λ is, the stronger the
retrocausal influence is, where RB→Λ = 0 is non-retrocausal,
and RB→Λ = 1 is the strongest retrocausal classical mod-
els that Bob’s choice can deterministically determine the
prepared state. Using our experimental estimate we obtain
Rmin
B→Λ = 0.114±0003, in comparison to the ideal case where

Rmin
B→Λ = (

√
2 − 1)/2 ≈ 0.207. The meaning of this is that,

any retrocausal model withRB→Λ < 0.114 would not be able
to reproduce our experimental results.

In summary, we have demonstrated a delayed-choice exper-
iment by measuring a device-independent witness, and found
that our experiment is inconsistent with the causally struc-
tured two-dimensional HV model. A key component in our
experiment is to achieve space-like separation, which ensures
that there is no communication occur between the devices and
guarantees the devices of preparer and measurer are indepen-
dent. Thus, our experiment preserves the same causal struc-
ture as the model provided in Ref. [21], and genuinely re-
alizes the condition of independent devices required for the
dimension witness in Ref. [22]. We have also excluded HV
theories which assume correlation between Alice and Bob has
been constructed in advance of the experiment, and we put a
bound on the amount of retrocausality needed to explain our
data without quantum mechanics. Our experiment shows that
causal models can be used as a basis for testing of quantum
mechanics, in a similar way to Bell and Leggett-Garg tests
displaying effects that cannot be explained using a classical
hidden variable theory.
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Appendix A: Quantum random number generator module

The quantum random number generator (QRNG) module
used in our experiment is based on random phase fluctuations
of a spontaneous emission laser, which can be described math-
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ematically as

E(t) = E0e
i(ω0t+θ(t)), (A1)

where θ(t) is a gaussian distributed variable with quantum
randomness [30]. By detecting the phase, together with digital
post-processing, true random bits can be generated.

The scheme of the QRNG module is shown in Fig. 5(a).
A laser, together with a thermoelectric cooler, constitutes the
laser module. A 1550 nm laser is driven by a constant current
slightly over threshold, making it work in spontaneous emis-
sion mode. The temperature of the laser is stabilized by a ther-
moelectric cooler. The beam emitted from the laser module is
directed to the interferometer module via a three port optical
circulator. Detail of the interferometer module is depicted in
Fig. 5(b). It is an unbalanced Michelson interferometer with
optical path difference ω0∆T , which is set to 2mπ + π/2.
Two Faraday rotator mirrors (FRMs) can effectively remove
the influence of polarization. In this way, the intensity at the
output port 1 is I(t) = 2E2

0

(
1 + sin ∆θ(t)

)
, which is then de-

tected by a high speed InGaAs photodetector. After filtering
the DC signal, the quantum signal acquired by photodetector,
satisfying I(t) ∝ P sin(∆θ(t)) ≈ P∆θ(t), is digitized to an
8-bit digital signal per sample by ADC (AT84AD001B) with a
clock rate of 1 GSa/s. Then, the raw data is fed into a FPGA.
Real-time post-processing based on Toeplitz hashing matrix
[30] is implemented, which has an overhead of less than 25
ns and improves the quality of the random bits. To synchro-
nize all the devices used in the experiment, a synchronization
clock (500 kHz) is used. For the QRNG module, one random
bit is output once a synchronization clock pulse is detected.
The random bit is then transmitted to the modulator drivers,
driving an electro-optic modulator (EOM).

As is stated above, the stability of ω0∆T is crucial. To
stabilize ω0∆T , as is shown in Fig. 5(b), port 2 is monitored
by a power meter (PM), a PID controller based on a FPGA is
used to send feedback data to a DAC, which controls a high
voltage module (HVM). A HVM drives the phase shifter (PS),

maintaining optical path difference between two arms of the
interferometer at a high level. In such a process, the influence
of phase fluctuations θ is wiped out by time averaging, due to
the fact that ∆〈θ(t)〉 = 0.

For more details about the QRNG, we refer the reader to
Refs. [31–33].

Appendix B: The performance of the photon source

In our experiment, the repetition rate of the whole
system is 500kHz. The polarization entangled quantum
state |H〉A|H〉B + |V 〉A|V 〉B is generated via spontaneous
parametric down-conversion (SPDC) using a sandwich-like
β−BaB2O4 (BBO) bulk crystal and a half-wave plate (HWP).
The probability p of generating a single photon pair per pump
pulse is p ≈ 0.018, which means that the pair production rate
is ∼9kHz, and probability of the undesired noise contribution
from double-pair emission is p2 ≈ (0.018)2. The overall ef-
ficiency of our entangled photon source is ∼20% (with 3nm
and 8nm filtering for the e and o photon, respectively) due to
fiber loss, fiber flange loss, coupling efficiency, the transmit-
tance of the EOM, and detector efficiency (∼60%). Thus, the
brightness (or detection rate) of entangled photon-pair source
is ∼0.36kHz.

We further quantified the single-photon purity of the her-
alded single-photon source with the second-order correlation
function at zero time delay g2(0). The smaller g2(0) is, the
higher the purity of the heralded single-photon source is. We
performed the experiments with various levels of pair produc-
tion rate to demonstrate the trade-off between the heralded
single-photon purity and the pair production rate of the SPDC
sources (see Fig. 6). The g2(0) of the heralded single-photon
source in our experiment is g2(0) = 0.0367 ± 0.0005 for a
pair production rate of ∼9kHz.

In addition, we measured one photon of the entangled
state in the basis {|H〉A ± |V 〉A}, postselected it in the state
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FIG. 6. Experimentally measured relationship between the second-
order correlation function at zero delay g2(0) and pair production
rate. The g2(0) data shown seems to have a linear relationship with
the pair production rate, and is therefore linearly fitted. The higher
the pair production rate is, the larger the value of g2(0) becomes.

|H〉A + |V 〉A, and then measured the other photon in the ba-
sis {|H〉B ± eiβj |V 〉B}, where the phase βj is changed as
0 → π → 2π. Figure 7 shows the measurement results, the
data are fitted to sinusoidal fringes and consistent with the the-

oretical prediction (1 + cosβj)/2. The fidelity of the entan-
gled state is ∼96%.
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FIG. 7. Experimental measurement of the entangled state
|H〉A|H〉B + |V 〉A|V 〉B . We fixed one photon of the EPR state
at |H〉A + |V 〉A, and then measured another photon in the basis
|H〉B + eiβj |V 〉B . The phase βj is changed as 0 → π → 2π by
changing the angle of HWP from 22.5◦ to 112.5◦.
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