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We show that a one-dimensional chain of trapped ions can be engineered to produce a quantum mechanical
system with discrete scale invariance and fractal-like time dependence. By discrete scale invariance we mean
a system that replicates itself under a rescaling of distance for some scale factor, and a time fractal is a signal
that is invariant under the rescaling of time. These features are reminiscent of the Efimov effect, which has been
predicted and observed in bound states of three-body systems. We demonstrate that discrete scale invariance
in the trapped ion system can be controlled with two independently tunable parameters. We also discuss the
extension to n-body states where the discrete scaling symmetry has an exotic heterogeneous structure. The
results we present can be realized using currently available technologies developed for trapped ion quantum
systems.

In this work we show how to construct a one-dimensional
system of trapped ions with discrete scale invariance and
fractal-like time dependence. In classical systems scale invari-
ance arises when the scale transformation acting on spatial co-
ordinates, r → λr, is a symmetry of the dynamics. This arises
naturally if the Hamiltonian transforms homogeneously under
rescaling. When the Hamiltonian is quantized, however, this
scale invariance cannot persist for bound state solutions with
discrete energy levels. Instead, the scale invariance is broken
through a quantum scale anomaly. An analogous effect occurs
in relativistic field theories and is responsible for the mass gap
in the spectrum of non-Abelian gauge theories such as quan-
tum chromodynamics.

While the quantum scale anomaly spoils invariance under
a general scale transformation, it may preserve the symme-
try associated with a discrete set of scale transformations.
This was first described by Efimov for the bound state spec-
trum of three bosons with short-range interactions tuned to
infinite scattering length [1–4]. See also Ref. [5] for a re-
view of anomalies in quantum mechanics and the attractive
1/r2 potential. Efimov trimers were first observed experi-
mentally through the loss rate of trapped ultracold cesium
atoms [6], and a more direct observation has been made us-
ing the Coulomb explosion of helium trimers [7]. As the
underlying physics is of universal character, the application
and generalization of the Efimov effect has been considered
in various settings, including nuclear physics [8, 9], bound
states with more than three particles [10–14], systems with re-
duced dimensions [15–17], quantum magnets [18], molecules
with spatially-varying interactions [19], and Dirac fermions in
graphene [20].

We demonstrate that quantum scale anomalies can be pro-
duced with trapped ion quantum systems. We start with a
one-dimensional chain of ions in a radio-frequency trap with
qubits represented by two hyperfine “clock” states. Such sys-
tems have been investigated by the trapped ion group at the
University of Maryland using 171Yb+ ions [21, 22]. Sim-
ilar efforts have been pioneered by trapped ion groups at
ETH Zürich, Freiburg, Innsbruck, Mainz, Stockholm, and the
Weizmann Institute. Off-resonant laser beams are used to
drive stimulated Raman transitions for all ions in the trap.
This induces effective interactions between all qubits with a

power-law dependence on separation distance. We define the
vacuum state as the state with σzi = 1 for all i. We use inter-
actions of the form σxi σ

x
j + σyi σ

y
j , to achieve the hopping of

spin excitations. We then use a σzi σ
z
j interaction to produce

a two-body potential felt by pairs of spin excitations, and we
also consider an external one-body potential coupled to σzi .

We can view each spin excitation with σzi = −1 as a
bosonic particle at site i with hardcore interactions prevent-
ing multiple occupancy. In this language, the Hamiltonian we
consider has the form

H =
1

2

∑
i

∑
j 6=i

Jij [b
†
i bj + b†jbi] +

1

2

∑
i

∑
j 6=i

Vijb
†
i bib

†
jbj

+
∑
i

Uib
†
i bi + C, (1)

where bi and b†i are annihilation and creation operators for
the hardcore bosons on site i. See the Supplemental Materi-
als for a derivation of this Hamiltonian. The parameter C is
just an overall energy constant. The hopping coefficients Jij
have the asymptotic form Jij = J0/|ri − rj |α, where ri is
the position of qubit i. For the purposes of this study, we as-
sume Jij to have exactly this form for i 6= j. Similarly, the
two-body potential coefficients Vij have the asymptotic form
Vij = V0/|ri − rj |β . In this work we assume Vij to have
exactly this form for i 6= j. We consider the case where the
lattice of ions is uniform and large, and we start with a con-
stant potential Ui chosen so that bosons with zero momentum
have zero energy. Both positive (anti-ferromagnetic) and neg-
ative (ferromagnetic) values can be realized for J0 and V0.
The exponents α and β can in principle vary in the range be-
tween 0 and 3. However, in practice the range between 0.5
and 1.8 is favored in order to enhance coherence times and
reduce experimental drifts [22].

We now add to Ui a deep attractive potential at some cho-
sen site i0 that traps and immobilizes one boson at that site.
Without loss of generality, we take the position of that site to
be the origin and add a constant to the Hamiltonian so that the
energy of the trapped boson is zero. We then consider the dy-
namics of a second boson that feels the interactions with this
fixed boson at the origin. In order to produce a Hamiltonian
with classical scale invariance, we choose β = α − 1. Then
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FIG. 1: Bound state wave functions. Plot of the normalized wave
functions for the first twelve even-parity bound states for the case
α = 2, β = 1, J0 = −1, and V0 = −30. We plot the region r > 0.
All quantities are in dimensionless lattice units.

at low energies, our low-energy Hamiltonian for the second
boson has the form

H(p, r) = 2J0 sin(απ/2)Γ(1− α)|p|α−1 +
V0
|r|α−1

, (2)

where we omit corrections of size O(p2). We are interested
in the case where both J0 and V0 are negative. In that case
we find an infinite tower of even parity and odd parity bound
states. We label the bound state energies as E(n)

+ and E(n)
− ,

respectively, for nonnegative integers n. As expected, our
quantized system has a quantum scale anomaly and we are
left with two discrete scale symmetries, r → λ+r for even
parity and r → λ−r for odd parity. Correspondingly, the
bound state energies follow a simple geometrical progression,
E

(n)
+ = E

(0)
+ λ−n+ and E(n)

− = E
(0)
− λ−n− . In the Supplemental

Materials we provide details of the discrete scale invariance
for general α. For the special case α = 2, the scale factors are
λ± = exp(π/δ±), where

δ+ =
V0
J0π

coth(δ+π/2), δ− =
V0
J0π

tanh(δ−π/2). (3)

In contrast with most other systems with a quantum scale
anomaly, we note that the properties of our ion trap system
can be tuned using two different adjustable parameters, V0/J0
and α. This is convenient for probing a wide range of differ-
ent phenomena exhibiting discrete scaling symmetry. In the
following we will work in lattice units where physical quan-
tities are multiplied by powers of the lattice spacing to make
the combination dimensionless and have set ~ = 1. As an ex-
ample, consider a system with α = 2, β = 1, J0 = −1, and
V0 = −30. The wave functions for the first twelve even-parity
bound states are shown in Fig. 1. We plot the normalized wave
function for r > 0. We see clear evidence of discrete scale in-
variance emerging as we approach zero energy. In Table I we

show the energies for the first fourteen even-parity and odd-
parity bound states and the ratios between consecutive ener-
gies. For comparison, at the bottom we show the predictions
for these ratios as we approach zero energy at infinite volume.
We see that the agreement is quite good.

One intriguing question is how discrete scale invariance
could persist in quantum many-body systems. It has been
demonstrated numerically that the Efimov effect extends be-
yond bosonic trimers and describes the properties of n-boson
systems with the same discrete scaling factor [10–14] . As
we will see, something quite different happens in the trapped
ion system. Let us start from a particular bound state of the
two-body system and ask what happens when we introduce a
third boson that is weakly bound and very far from the ori-
gin. The effective Hamiltonian for the third boson contains
a potential energy that is doubled due to interactions of the
weakly-bound third boson with the two other bosons. As a re-
sult of the stronger attractive interaction, the geometric scal-
ing factors λ± for the third boson will be smaller than for
the two-body system. This argument can be generalized to
describe weakly-bound states for the general n-body system.
The effective potential for the nth boson will be a factor of
n−1 times larger, and thus the scaling of the n-body energies
relative to each (n − 1)-body threshold is different from the
scaling of the k-body bound states for each k between 1 and
n. The properties of these exotic systems with heterogeneous
discrete invariance will be investigated further in future work.

Let us now consider an initial state |S〉 =
∑N−1
n=0 |ψ

(n)
+ 〉,

where we sum over the first N even-parity two-boson bound
states |ψ(n)

+ 〉 with equal weight. We choose the even-parity
states, but we could just as easily choose odd-parity states.
The phase convention for each |ψ(n)

+ 〉 is chosen so that
the tail of the wave function is real and positive at large
r. We note that the time dependent amplitude A(t) =
Re[〈S| exp(−iHt)|S〉] is invariant under the rescaling t →
λα−1+ t, thus endowing it with the properties of a time fractal.
The time fractal is particularly interesting for the case when
λα−1+ is an integer so that each of the higher frequencies in
A(t) are integer multiples of the lower frequencies.

For the case α = 2 and J0 = −1, we can produce the time
scaling factor λα−1+ = λ+ = 2 by setting V0 = −14.2388293.
In Fig. 2 we show the amplitude A(t) ranging from t = 0 to
80 in the upper left, t = 0 to 160 in the upper right, t = 0
to 320 in the lower left, and t = 0 to 640 in the lower right.
Aside from small deviations, we see that the time dependence
shows fractal-like self-similarity when we zoom in or out by
a scale factor very close to 2. The best fit for the scale fac-
tor is approximately 1.9. In the Supplemental Materials we
show how a time fractal can be realized experimentally using
quantum interference on a trapped ion quantum system.

The time fractals that we have discussed are closely related
to the Weierstrass function w(x) =

∑∞
n=0 a

n cos(bnπx).
Weierstrass showed that this function is continuous every-
where but differentiable nowhere when 0 < a < 1, b is an
odd integer, and ab > 1 + 3π/2 [23]. Hardy extended the
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n E
(n)
+ E

(n−1)
+ /E

(n)
+ E

(n)
− E

(n−1)
− /E

(n)
+

0 −27.05304149 − −26.5188669 −
1 −11.93067205 2.267520336 −11.79861873 2.247624701

2 −6.977774689 1.709810446 −6.919891389 1.705029468

3 −4.553270276 1.5324754 −4.521425357 1.530466798

4 −3.139972298 1.450098869 −3.120231851 1.449067112

5 −2.233327278 1.405961557 −2.220194049 1.405386998

6 −1.617052389 1.381110033 −1.607920414 1.380786033

7 −1.182654461 1.367307563 −1.176124883 1.367134084

8 −0.869406941 1.360300229 −0.864656962 1.360221377

9 −0.640405903 1.357587332 −0.636916042 1.357568195

10 −0.471738446 1.357544438 −0.469161911 1.357561276

11 −0.347112043 1.359037968 −0.345207121 1.359073675

12 −0.254996818 1.361240684 −0.253589633 1.361282464

13 −0.187011843 1.363532996 −0.18597462 1.363571189

theory – λ+ = 1.3895595319 – λ− = 1.3895595319

TABLE I: Bound state energies. Energies for the first fourteen even-parity and odd-parity bound states and ratios between consecutive
energies for the case α = 2, β = 1, J0 = −1, and V0 = −30. For comparison we show the theoretical predictions for the ratios λ+ and λ−
as we approach zero energy at infinite volume.

proof to any 0 < a < 1 < b and ab ≥ 1 [24]. We note
that aw(bx) equals w(x) plus the smooth function cos(πx),
and this suggests that the fractal dimension of the Weierstrass
function should given by [25]

D = 2 +
log a

log b
. (4)

This result for the fractal dimension is confirmed by the box-
counting method for determining fractal dimensions [26].

Our initial state |S〉 =
∑N−1
n=0 |ψ

(n)
+ 〉 produces the fractal-

like amplitude

A(t) =

N−1∑
n=0

cos(E
(n)
+ t) =

N−1∑
n=0

cos(ε+λ
−n
+ t). (5)

In the limit of large N , our choice of parameters corre-
sponds to the limiting case a → 1 and b = λ+, with
x = ε+λ

−N+1
+ t/π. Therefore, the fractal dimension for our

time fractal will be D = 2. If we instead choose the initial
state to have the form |S(a)〉 =

∑N−1
n=0 a

n/2|ψ(n)
+ 〉 for a < 1,

then in the limit N →∞, the fractal dimension will be

D = 2 +
log a

log λ+
. (6)

There are many interesting related phenomena that one can
explore in connection with time fractals and the dynamics of
systems with discrete scale invariance. One fascinating topic
is the adiabatic evolution of a system with discrete invariance
as the interactions are varied slowly. Another is the response
of a system with discrete scale invariance when driven in res-
onance with one of its bound state energies. In this letter we
have shown that the intrinsic power-law interactions of the
trapped ion system make it an ideal system for exploring the

physics of quantum scale anomalies, discrete scale invariance,
and time fractals. There are clearly many directions that one
can explore in this new area, and we look forward to working
with others to develop further applications and experimental
realizations of many of these concepts.
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FIG. 2: Time fractals. The amplitude A(t) is displayed over the range from t = 0 to 80 in the upper left, t = 0 to 160 in the upper right,
t = 0 to 320 in the lower left, and t = 0 to 640 in the lower right. All quantities are in dimensionless lattice units.
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