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Variational quantum eigensolvers offer a small-scale testbed to demonstrate the performance of
error mitigation techniques with low experimental overhead. We present successful error mitigation
by applying the recently proposed symmetry verification technique to the experimental estimation of
the ground-state energy and ground state of the hydrogen molecule. A finely adjustable exchange in-
teraction between two qubits in a circuit QED processor efficiently prepares variational ansatz states
in the single-excitation subspace respecting the parity symmetry of the qubit-mapped Hamiltonian.
Symmetry verification improves the energy and state estimates by mitigating the effects of qubit
relaxation and residual qubit excitation, which violate the symmetry. A full-density-matrix simula-
tion matching the experiment dissects the contribution of these mechanisms from other calibrated
error sources. Enforcing positivity of the measured density matrix via scalable convex optimiza-
tion correlates the energy and state estimate improvements when using symmetry verification, with
interesting implications for determining system properties beyond the ground-state energy.

Noisy intermediate-scale quantum (NISQ) devices [1],
despite lacking layers of quantum error correction (QEC),
may already be able to demonstrate quantum advan-
tage over classical computers for select problems [2, 3].
In particular, the hybrid quantum-classical variational
quantum eigensolver (VQE) [4, 5] may have sufficiently
low experimental requirements to allow estimation of
ground-state energies of quantum systems that are dif-
ficult to simulate purely classically [6–9]. To date, VQEs
have been used to study small examples of the electronic
structure problem, such as H2 [10–15], HeH+ [4, 16],
LiH [13–15], and BeH2 [14], as well as exciton sys-
tems [17], strongly correlated magnetic models [15], and
the Schwinger model [18]. Although these experimen-
tal efforts have achieved impressive coherent control of
up to 20 qubits, the error in the resulting estimations
has remained relatively high due to performance limi-
tations in the NISQ hardware. Consequently, much fo-
cus has recently been placed on developing error mitiga-
tion techiques that offer order-of-magnitude accuracy im-
provement without the costly overhead of full QEC. This
may be achieved by using known properties of the tar-
get state, e.g., by checking known symmetries in a man-
ner inspired by QEC stabilizer measurements [19, 20], or
by expanding around the experimentally-obtained state
via a linear (or higher-order) response framework [21].
The former, termed symmetry verification (SV), is of
particular interest because it is comparatively low-cost
in terms of required hardware and additional measure-
ments. Other mitigation techniques require understand-
ing the underlying error models of the quantum device,

allowing for an extrapolation of the calculation to the
zero-error limit [22–24], or the summing of multiple cal-
culations to probabilistically cancel errors [23, 25, 26].

In this Rapid Communication, we experimentally
demonstrate the use of SV to reduce the error of a VQE
estimating the ground-state energy and the ground state
of the H2 molecule by one order of magnitude on average
across the bond-dissociation curve. Using two qubits in
a circuit QED processor, we prepare a variational ansatz
state via an exchange gate that finely controls the trans-
fer of population within the single-excitation subspace
while respecting the underlying symmetry of the prob-
lem (odd two-qubit parity). We show that SV improves
the energy and state estimates by mitigating the effect of
processes changing total excitation number, specifically
qubit relaxation and residual qubit excitation. We do this
through a full density-matrix simulation that matches the
experimental energy and state errors with and without
SV, and then using this simulation to dissect the contri-
bution of each error source. Finally, we explore the limi-
tations of SV arising from statistical measurement noise,
and find that enforcing the positivity of the fermionic 2-
reduced density matrix ties the improvement in energy
estimation from SV to the improvement in ground-state
fidelity (which was previously not the case).

A VQE algorithm [4, 5] approximates the ground state

ρ(0) of a Hamiltonian Ĥ by a variational state ρ(raw)(~θ),

with ~θ a set of parameters that control the operation
of a quantum device. These parameters are tuned by a
classical optimization routine to minimize the variational
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energy E(~θ) = Tr[ρ(raw)(~θ)Ĥ]. In practice, this is calcu-

lated by expanding ρ(raw)(~θ) and Ĥ over the N -qubit
Pauli basis PN := {I,X, Y, Z}⊗N ,

ρ(raw)(~θ) =
1

2N

∑
P̂∈PN

ρ
(raw)

P̂
(~θ)P̂ , Ĥ =

∑
P̂∈PN

hP̂ P̂ ,

(1)

where the Pauli coefficients are given by ρ
(raw)

P̂
(~θ) =

Tr[P̂ ρ(raw)]. The variational energy may then be calcu-
lated as

E(raw)(~θ) =
∑
P̂∈PN

ρ
(raw)

P̂
(~θ)hP̂ . (2)

For example, consider the H2 molecule studied in this
work. Mapping the Hamiltonian of this system (in the
STO-3G basis) onto four qubits via the Bravyi-Kitaev
transformation [27] and then further reducing dimensions
by projecting out two non-interacting qubits [10] gives

ĤH2 =hIIII + hZIZI + hIZIZ

+ hXXXX + hY Y Y Y + hZZZZ, (3)

where coefficients hP̂ depend on the interatomic distance
R. These coefficients may be determined classically us-
ing the OpenFermion [28] and psi4 [29] packages. The

Pauli coefficients ρ
(raw)

P̂
of the density matrix ρ(raw) are

extracted by repeated preparation and (partial) tomo-
graphic measurements of the ansatz state. As one only

needs those Pauli coefficients ρ
(raw)

P̂
with non-zero corre-

sponding Hamiltonian coefficients hP̂ , one need not per-

form full tomography of ρ(raw). However, in a small-
scale experiment, full state tomography of ρ(raw) may
still be feasible, and may provide useful information for
the purposes of benchmarking. In particular, the fidelity
of ρ(raw) to ρ(0),

F (raw) = Tr[ρ(raw)ρ(0)], (4)

is a more rigorous measure of the ability to prepare the
ground state than the energy error,

∆E(raw) = Tr
[(
ρ(raw) − ρ(0)

)
Ĥ
]
. (5)

Error mechanisms such as decoherence pull ρ(raw) away
from ρ(0), decreasing F and increasing ∆E.

These errors may be mitigated by using internal sym-
metries Ŝ ∈ PN [30] of the target problem, such as parity
checks [19, 20]. These checks project ρ(raw) to a symme-

try verified matrix ρ(SV) that lies in the 〈Ŝ〉 = s subspace
of the symmetry. This projection could be performed via
direct measurement of Ŝ on the quantum device, but one
may instead extract the relevant terms of the density ma-
trix ρ(SV) in post-processing:

ρ
(SV)

P̂
=
ρ
(raw)

P̂
+ sρ

(raw)

ŜP̂

1 + sρ
(raw)

Ŝ

, (6)

The right-hand side may be obtained by partial tomo-
graphic measurement of the ansatz state, with at most
twice the number of Pauli coefficients that need to be
measured. This upper bound is not always achieved. For
example, the ĤH2 Hamiltonian has a Ŝ = ZZ symmetry,
which maps the non-zero Pauli terms in ĤH2 to other
non-zero Pauli terms in ĤH2. Symmetry verification in
this problem then does not require any additional mea-
surements to estimate E(SV) beyond those already re-
quired to estimate E(raw). Even when it does require ad-
ditional measurements, SV remains attractive because it
does not require additional quantum hardware or knowl-
edge of the underlying error model. One can show that
the SV state ρ(SV) may be equivalently obtained via a
variant of the quantum subspace expansion (QSE) [21],
suggesting an alternative name of S-QSE [19].

One may further minimize the error in a quantum al-
gorithm by tailoring the quantum circuit or the gates
within. In a VQE, one wishes to choose a variational
ansatz motivated by the problem itself [10, 31] while min-
imizing the required quantum hardware [14]. To balance
these considerations, we suggest constructing an ansatz
from an initial gate-set that is relevant to the problem
at hand. For example, in the electronic structure prob-
lem, the quantum state is generally an eigenstate of the
fermion number. When mapped onto qubits, this often
corresponds to a conservation of the total qubit excita-
tion number. Gates such as single-qubit Z rotations,
two-qubit C-Phase [32], and two-qubit iSWAP [33] gates
preserve this number, making these gates a good univer-
sal gate set (within the target subspace [34]) for quantum
simulation of electronic structure. In the example of H2,
the total two-qubit parity (ZZ) is indeed conserved and
the ground state at any R may be generated by applying
to |01〉 or |10〉 an exchange gate

Uθ =

1 0 0 0
0 cos θ i sin θ 0
0 i sin θ cos θ 0
0 0 0 1

 (7)

with R-dependent optimal exchange angle θ and a follow-
up phase correction on one qubit.

We now experimentally investigate the benefits of SV
in the VQE of H2 using two of three transmon qubits in a
circuit QED quantum processor (see details in [35]). The
two qubits (Q0 and Q1) are coupled by a common bus
resonator, and have dedicated microwave lines for single-
qubit gating, flux bias lines for local and ns-scale control
of their frequency, and dedicated readout resonators cou-
pling to a common feedline for independent readout by
frequency multiplexing. We prepare the ansatz state with
an efficient circuit [Fig. 1(a)] that first excites Q1 with
a π pulse to produce the state |10〉, and then applies a
square flux pulse of fixed duration and amplitude to Q0,
bringing it into or near resonance with Q1 to coherently
exchange the excitation population. A plot of popula-
tion exchange as a function of flux-pulse amplitude and
duration [Fig. 1(b)] reveals the expected chevron pattern
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FIG. 1. Quantum circuit and energy landscape of the vari-
ational eigensolver. (a) Quantum circuit for generating and
measuring the variational ansatz state. (b) Coherent excita-
tion exchange, produced as Q0 is fluxed into resonance with
Q1 by a square flux pulse of fixed amplitude (x axis) and
duration (y axis). The amplitude controls the frequency to
which Q0 is pulsed (∼ 1.428 V bringing it on resonance with
Q1). (c) Zoom-in of (b) into the region used in the experi-
ment to control the exchange of population between Q0 and
Q1. Colored lines illustrate the combinations of square-pulse
amplitudes and duration used to achieve fine adjustment of
θ̃. (d) Excitation of Q0 for the combinations of pulse ampli-
tudes and duration marked by colored lines in (c), showing

the matching of the experimentally-defined θ̃ to the target
θ defined in Eq. (7) (black dashed curve). Colors [matching
(c)] correspond to pulse duration. (e) Landscape of energies

E(raw)(θ̃, R) as a function of the experimentally-defined θ̃ an-
gle and the interatomic distance R.

that is the hallmark of coherent population exchange be-
tween the two qubits, albeit with some asymmetry aris-
ing from the bandwidth limitation of the flux-control
line. We make use of the square-pulse duration (1 ns
resolution) and amplitude (0.5 mV resolution) as coarse
and fine knobs, respectively, to control population ex-
change. We choose 1500 combinations of pulse duration
and amplitude settings to parametrize an experimental
knob θ̃ [Fig. 1(d)] capable of finely controlling popula-

FIG. 2. Convergence of the VQE algorithm. (a) Experimen-
tal VQE estimate of H2 ground-state energy as a function
of interatomic distance R. At each chosen R, we minimize
the raw energy E(raw) (blue data points) over the variational

parameter θ̃ using the CMA-ES evolutionary algorithm [36].
Applying SV to the converged solution (orange data points)
lowers the energy estimate towards the exact solution (dashed
curve). Inset: A typical optimization trace for the conver-
gence of the energy estimate. (b-d) The reconstructed den-
sity matrices of the converged states at (b) R = 0.25 Å, (c)
R = 0.80 Å, and (d) R = 2.00 Å, showing that the converged
states lie mostly in the single-excitation subspace, and that
entanglement increases with the interatomic distance R.

tion exchange like θ in Eq. (7) over the range [0, π/4]
[Fig. 1(c)]. The circuit concludes with simultaneous pre-
rotation gates on both qubits followed by simultaneous
measurement of both qubits, in order to perform tomog-
raphy of the prepared ansatz state. To fully reconstruct
the state, we use an overcomplete set of 36 pre-rotation
pairs and extract estimates of the average measurement
for each qubit as well as their shot-to-shot correlation
using Nmeas measurements per pre-rotation. Note while
the flux pulse implements the exchange gate of Eq. (7)
with additional single-qubit phase rotations, the correc-
tion for these phase rotations can be performed virtually
from the fully-reconstructed state.

We now optimize the VQE to approximate the ground-
state energy and ground state of H2. At each chosen R,
we employ the covariance matrix adaptation evolution
strategy (CMA-ES) optimization algorithm [36], using

E(raw) as cost function and θ̃ as single variational pa-
rameter. The evolutionary strategy optimizes θ̃ over re-
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peated generations of Npop = 10 samples of E(raw)(θ̃),

each calculated from a raw density matrix ρ(raw) using
linear inversion of Nmeas = 103 [37]. Optimizations have
a hard-stop criterium of [Fig. 2(a) inset] 20 generations
(∼ 2 hours). The converged state is finally reconstructed
with greater precision, using Nmeas = 105. Figure 2
shows the resulting energy estimate for twelve values of
R and the reconstructed optimized state at three such
distances. These tomographs show that the optimal so-
lutions are concentrated in the single-excitation subspace
of the two qubits, with two-qubit entanglement increas-
ing as a function of R.

Performing the described symmetry verification proce-
dure on the converged states shows improvement across
the entire bond-dissociation curve. To quantify the im-
provement, we focus on the energy error ∆E and the infi-
delity 1−F to the true ground state, with and without SV
(Fig. 3). SV reduces the energy error by an average factor
∼ 10 and reduces the infidelity by an average factor ∼ 9.
In order to quantitatively understand the limits of the
VQE optimization, and to clearly pinpoint the origin of
the SV improvement, we simulate the experiment via the
density-matrix simulator quantumsim [38], using an error
model built from independently measured experimental
parameters [35]. We build the error model incremen-
tally, progressively adding: optimization inaccuracy (the
difference between the state ideally produced by the con-
verged θ and the true ground state); dephasing on both
qubits (quantified by the measured Ramsey dephasing
times T ∗2 ); relaxation on both qubits (quantified by the
measured relaxation times T1); residual qubit excitations
(measured from single-shot histograms with each qubit
prepared in |0〉); and increased dephasing of Q0 during
the exchange gate (quantified by its reduced T ∗2 when
tuned into the exchange interaction zone). By plotting
the errors from each increment of the model, we are able
to dissect the observed experimental error into its sepa-
rate components without [Fig. 3(c)] and with [Fig. 3(b)]
SV. Measured temporal fluctuations of dephasing, relax-
ation and residual excitation are used to obtain simula-
tion error bars.

The simulation using the full error model shows fairly
good matching with experiment for both the ground-
state energy error [Figs. 3(a,b)] and the state infidelity
[Fig. 3(c)], without and with SV. The error model dis-
section shows that the energy error when not using SV is
dominated by residual qubit excitations. This is remark-
able as the calibrated residual excitations are only 0.25%
for Q0 and 1.34% for Q1 [35]. The improvement from SV
results from the mitigation of errors arising from these
residual excitations and from qubit relaxation. This is
precisely as expected: these error mechanisms change
total qubit excitation number and violate the under-
lying ZZ symmetry. Using SV changes the dominant
error mechanism from residual qubitexcitation to opti-
mization inaccuracy, which is bounded by the sampling-
noise during the optimization itself (where Nmeas = 103),
rather thanthe sampling noise from the final step (where
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FIG. 3. Impact of SV in ground-state energy and state fi-
delity, and dissected error budget. (a) Experimental (solid
circles) energy error ∆E without and with SV compared to
the result (empty circles and dashed line) of a full density-
matrix simulation using the full error model. The contribu-
tions from optimizer inaccuracy, qubit dephasing, qubit relax-
ation, residual qubit excitations and increased Q0 dephasing
during the exchange gate are shown as shaded regions for the
case of no SV applied. Without SV, ∆E is clearly dominated
by residual qubit excitation. (b) Zoom-in on experimental
and simulated ∆E with SV and corresponding error budget.
With SV, the effects of residual excitation and qubit relax-
ation are successfully mitigated, as predicted in Ref. 19. The
remaining energy error is dominated by optimizer inaccuracy.
Simulation error bars are obtained by modelling measured
fluctuations of T1, T ∗

2 , and residual excitation. (c) Exper-
imental (solid circles with error bars) infidelity to the true
ground state without and with SV compared to simulation
using the full error model (empty circles and dashed line).
Error bars are propagated through the linear inversion pro-
cedure for experiment and calculated from sampling noise for
simulations. For simulations, error bars are smaller than the
markers.

Nmeas = 105). This errorcould be reduced experimentally
by increasing Nmeas during theoptimization, at the cost
of increased convergence time. The improvement in state
infidelity by SV can be explained along similar lines. We
observe some increased deviations between the observed
and simulated state infidelity at large R. We attribute
these to limitations in our modeling of error during the
exchange gate (whose duration increases with R).

VQEs rely on variational bounding to ensure that the
obtained approximation to the ground-state energy is ac-
curate, but this is only guaranteed when the experimen-
tal results correspond to a physical state. Our method



5

FIG. 4. Constraining positivity with symmetry verification to
mitigate the effect of sampling noise. The experimental data
from Fig. 3 is split into 100 sample simulations for each R,
increasing the sampling noise by a factor of 10 and making it
comparable to other sources of experimental error. For each
sample, we plot (red) the relative energy error and infidelity
[Eq. (9)]. Values below 1 (dashed lines) indicate that SV
has not provided an improvement, as may be the case when
the density matrix has negative eigenvalues. We restore the
improvement from SV by constraining the positivity of the
2-reduced density matrix [39] (green). Histograms on the top
and right axes show the marginal distribution of the two scat-
ter plots. When the density matrices are constrained to be
positive, we observe the points fall along the line y = x (blue
dashed line), indicating that SV improves both metrics by the
same amount.

for calculating the ground-state energy [Eq. (1)] indepen-
dently estimates each Pauli coefficient of the density ma-

trix with error ∝ N
−1/2
meas . Such estimation cannot guar-

antee a set of Pauli coefficients that could have come
from a positive density matrix. This in turn breaks the
variational lower bound on the energy estimate, and in-
creases the error in estimates of other properties of the
true ground state [39, 40]. As experimental error is re-
duced, ρ(raw) tends towards a rank-1 density matrix, in-
creasing its chance of being unphysical [40]. Moreover,
ρ(SV) is a lower-rank density matrix than ρ(raw) (being
projected onto a subspace of the Hilbert space), which
implies that unphysicality may be enhanced by SV. The
variance in a given term ρP̂ post-SV can be calculated as

Var[ρ
(SV)

P̂
] ≈ 3Nmeas

Nmeas(1 + Tr[ρ(raw)Ŝ])
. (8)

SV has maximal impact on the quantum state precisely
when this denominator is small, so this represents a nat-
ural bound for the power of SV as an error mitigation
strategy.

The effect of sampling noise may be mitigated some-
what by restricting the fermionic 2-reduced density ma-
trix to be positive (which may be completed in polyno-
mial time) [39]. To investigate the effect of such mit-
igation, we bin the data used for final tomography of

converged states to construct 100 density matrices with
Nmeas = 103 at each R, thus increasing the sampling
noise by a factor of 10. We wish to study the relative
improvement of SV in the two figures of merit, which we
quantify as

ηE =
|∆E(raw)|
|∆E(SV)|

and ηF =
|1− F (raw)|
|1− F (SV)|

, (9)

when physicality of the raw density matrices is enforced
and not. To enforce physicality, we employ a convex opti-
mization routine to find the closest positive semidefinite
matrix to the experimentally measured ρ(raw) (closest in
the L2 norm sense on the space induced by the the Pauli
basis). We then apply symmetry verification to the post-
processed density matrix. Figure 4 shows a scatter plot of
ηE and ηF, and relative histograms of each. Without en-
forcing physicality, SV makes no significant improvement
to the state fidelity, although it almost always improves
the energy error. However, when positivity is enforced,
SV greatly improves the overlap with the true ground
state. We also find that the improvement in the energy
from SV is equal to the improvement in fidelity when the
starting state is physical, but is relatively uncorrelated
when the starting state is not. This makes sense, as the
energy gain from SV given a physical matrix comes di-
rectly from substituting higher energy states with density
on the ground state. It is unclear whether such a strong
trend will continue in larger systems without requiring
too stringent a positivity constraint. As this is a four-
orbital two-electron system, enforcing the positivity of
the 2-reduced density matrix enforces positivity on the
entire density matrix (which is exponentially difficult in
the system size [41]). Testing this scalability is a clear
direction for future research [42].

In summary, we have experimentally demonstrated the
use of SV to mitigate errors in the VQE of H2 with
two transmon qubits. We implemented an efficient varia-
tional ansatz based on an exchange gate producing finely
adjustable population transfer in the single-excitation
subspace, respecting the ZZ symmetry of the H2 Hamil-
tonian. Verification of this symmetry reduced the error of
the estimated ground-state energy and the ground state
by one order of magnitude on average over the full disso-
ciation curve. A full density-matrix simulation of our sys-
tem allowed us to budget the contributions from known
experimental error mechanisms. We observe that SV mit-
igates the effect of processes that affect total qubit exci-
tation number, specifically qubit relaxation and residual
excitation. Finally, we have investigated the effect of
reconstructing density matrices via linear tomographic
inversion in the presence of sampling, which voids the
guarantee of positivity and in turn the guarantee that
SV improves estimation of the ground state. Intrigu-
ingly, we observe that when physicality is enforced, the
reduction in energy error from SV is directly linked to
the increase in fidelity to the ground state. If this obser-
vation extends to larger systems, a user can be confident
that symmetry-verified Pauli coefficients are accurate for
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calculations beyond the ground-state energy.
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