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Abstract
We investigate detailed balance for a quantum system interacting with thermal radiation within

mixed quantum–classical theory. For a two-level system coupled to classical radiation fields, three

semiclassical methods are benchmarked: (1) Ehrenfest dynamics over-estimate the excited state

population at equilibrium due to the failure of capturing vacuum fluctuations. (2) The coupled

Maxwell–Bloch equations, which supplement Ehrenfest dynamics by damping at the full golden

rule rate, under-estimate the excited state population due to double-counting of the self-interaction

effect. (3) Ehrenfest+R dynamics recover detailed balance and the correct thermal equilibrium

by enforcing the correct balance between the optical excitation and spontaneous emission of the

quantum system. These results highlight the fact that, when properly designed, mixed quan-

tum–classical electrodynamics can simulate thermal equilibrium in the field of nanoplasmonics.
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I. INTRODUCTION

For a quantum system in contact with a thermal bath at temperature T , detailed bal-

ance implies that the equilibrium population of quantum state i with energy Ei should

satisfy the Boltzmann distribution: Pi ∝ e−βEi where β = 1/kBT and kB is the Boltzmann

constant. This principle of detailed balance is one of the most fundamental aspects underly-

ing chemical kinetics and absorption/emission of radiation[1–3]. For example, the Onsager

reciprocal relations in thermodynamics and Einstein’s famous A and B coefficients in his

theory of radiation are both based on detailed balance. Thus, maintaining detailed balance

is considered an important measure of validity for any theoretical model of coupled sys-

tem–bath equilibrium. For decades, achieving the correct equilibrium populations has been

a long-standing challenge for semiclassical simulations of electronic–nuclear dynamics[4–7]

and electron–radiation interactions[8–10].

Within the field of electronic–nuclear dynamics, semiclassical simulations rely on a mixed

quantum–classical framework that treats the electronic/molecular system with quantum me-

chanics and the bath degrees of freedom with classical mechanics. Within this framework,

recovering detailed balance requires both energy conservation of the entire system and the

correct energy exchange rates between the quantum and classical subsystems. Already a

decade ago, Tully showed that the equilibrium populations of a coupled electron–nuclei

problem as attained by Ehrenfest dynamics deviates from the correct Boltzmann distribu-

tion when the nuclear bath temperature decreases[4]. This deviation can be attributed to

the deficiency of Ehrenfest mean-field theory to properly account for non-adiabatic elec-

tronic transitions (even though the total energy is conserved)[5]. To capture non-adiabatic

effects within a mixed quantum–classical framework, the most common solution is either

to design a stochastic mechanism to simulate electronic transitions, such as surface hop-

ping algorithms[6, 11–15], or to introduce binning as in the symmetrical quasi-classical

(SQC) approach[16, 17], both of which can almost recover detailed balance for coupled

electron–nuclei equilibrium.

If we now turn to electron–radiation dynamics, the equations of motion within a mixed

quantum–classical framework are formally similar to those for electronic–nuclear dynamics.

And yet, because thermal radiation fields cannot be properly modeled by classical electro-

dynamics (due to the notorious blackbody radiation problem), the applicability of Tully’s
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argument to electron–radiation equilibrium is unclear. And more generally, the feasibility

of semiclassical techniques to model electrodynamics and to reach detailed balance quanti-

tatively remains an open question. While many semiclassical schemes for electrodynamics

have been introduced[8, 18], including the coupled Maxwell–Bloch equations[9, 19, 20], mean-

field Ehrenfest dynamics[21–24], and the Ehrenfest+R method (recently developed by our

group[25–27]), the capacity of these semiclassical approaches to recover detailed balance has

never been fully benchmarked. It is a common presumption that mixed quantum–classical

electrodynamics cannot satisfy detailed balance due to the failure of classical electrody-

namics to describe the blackbody radiation spectrum—modeling thermal radiation fields

classically should inevitably lead to the incorrect Rayleigh–Jeans spectrum[3, 8, 28].

Nevertheless, Boyer recently showed that detailed balance can be achieved by considering

a fully classical model composed of a classical charged harmonic oscillator coupled to a set

of classical electromagnetic (EM) fields[29]. Boyer’s analysis is based on relativistic classical

mechanics and random electrodynamics theory that characterizes the fluctuations of thermal

radiation using an ensemble of classical EM fields with a random phase[28, 30]. As shown

by Boyer, this classical model of thermal radiation fields can overcome the failure of classical

electrodynamics and recover the correct Planck spectrum and zero-point energy[28, 30–32]

. As such, there is at least one example for how classical electrodynamics can recover the

quantum blackbody radiation without invoking the quantization of light as photons.

In this paper, our goal is to employ Boyer’s framework for classically modeling thermal

radiation fields and then evaluate the capacity of various mixed quantum–classical methods

to recover detailed balance for the electron–radiation equilibrium; note that, unlike Boyer,

we will not invoke relativity but rather treat the electronic subsystem with quantum me-

chanics. Our approach will be to model an electronic two-level system (TLS) coupled to a

bath of incoming radiation EM fields at temperature T and then to compare the equilibrium

population with the Boltzmann distribution. This paper is organized as follows. In Sec. II,

we set up the model Hamiltonian and formulate the boundary conditions for thermal radia-

tion fields. In Sec. III, we briefly review three semiclassical approaches for electron–radiation

dynamics. In Sec. IV, we compare the mixed quantum–classical equilibrium as attained by

these three different semiclassical models against the correct Boltzmann distribution. We

conclude with an outlook for the future in Sec. V.

For notation, we use a bold symbol to denote a space vector r = xεx + yεy + zεz where ε
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denotes a unit vector in Cartesian coordinate. We use
∫
dv =

∫
dxdydz for integration over

3D space. We work below in SI units.

II. THE HAMILTONIAN AND BOUNDARY CONDITIONS

For a model of electron–radiation equilibrium, we consider an electronic TLS coupled

to thermal radiation fields in a 3D space. The TLS Hamiltonian is Ĥs = ~ω0 |e〉 〈e| where

the ground state |g〉 and the excited state |e〉 are separated by an energy difference ~ω0.

For a quantum electrodynamics (QED) description, the TLS is coupled to a set of photon

fields that describe thermal radiation fields. Such a model should reach thermal equilibrium

when the optical excitation by thermal radiation fields are balanced against the spontaneous

emission of the TLS. In the end, the equilibrium populations should follow the Boltzmann

distribution (obeying the principle of detailed balance)

Pe/Pg = e−β~ω0 . (1)

In general, recovering detailed balance requires an accurate treatment of spontaneous

emission. It is well-known that, in QED, spontaneous emission includes two subprocesses:

self-interaction and the vacuum fluctuations[33, 34]. Self-interaction is the subprocess in-

duced by the emitted field interacting back with the TLS. The vacuum fluctuations are

purely quantum effects that arise from the zero-point energy of the quantum EM fields

inducing decay of the TLS. Within QED, one often accounts for quantum fluctuations by

adding random Langevin forces on top of the optical Bloch equation[35, 36]. Such a treat-

ment can be ideal for a single quantum emitter—one can extrapolate the emission field

observables by electronic correlation functions. However, for large systems with multiple

quantum emitters and/or inhomogeneous environments, the complexity of this calculation

increases dramatically. Therefore, for large electronic systems, semiclassical approaches are

oftern applied with explicit propagation of the emission EM fields and our goal in this paper

is to benchmark such mixed quantum–classical approaches.

A. Semiclassical Electronic Hamiltonian

For mixed quantum–classical electrodynamics, the TLS is described by an electronic re-

duced density matrix ρ (t) while the EM fields, E (r, t) and B (r, t), are classical. The electric
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dipole coupling is V̂ (t) = −
∫

dvP̂ (r)·E (r, t), which couple the TLS to the total electric field.

The polarization density operator of the TLS is defined as P̂ (r) = d (r) (|e〉 〈g|+ |g〉 〈e|).

We assume that the polarization density takes the form d (r) = µ2e−r2/2σ2

(2πσ2)3/2 εz where |r| = r.

Here, µ is the magnitude of the transition dipole moment and σ represents the length scale

of the TLS. Note that, for simplicity, we set the polarization to be along the z direction. In

practice, we usually make the long-wavelength approximation, assuming that the wavelength

of the dominant absorption/emission mode (2πc/ω0) is much larger than the size of the TLS

(usually on the order of a Bohr radius). With this assumption, we can approximate the

polarization density as a point dipole, i.e. d (r) → µδ3 (r) εz. For the TLS in vacuum, the

spontaneous emission rate is given by the Fermi’s golden rule (FGR) rate, κ = µ2ω3
0/3π~ε0c

3.

Explicitly, the semiclassical electronic Hamiltonian in matrix form reads

Ĥel = Ĥs + V̂ (t) =

 0 v (t)

v (t) ~ω0

 , (2)

where the electric dipole coupling is v (t) = −µεz · E (0, t). Here, we can decompose the

total electric field as E = Ein + Escatt in terms of the incoming thermal radiation fields

(Ein) and the scattered field (Escatt) generated by the stimulated and spontaneous emission

processes. In the end, the electric dipole coupling includes two terms: (i) the self-interaction

term µεz · Escatt (0, t) and (ii) the optical excitation term µεz · Ein (0, t). As is common, we

will assume that the effects of these two processes are essentially independent[36].

B. Boundary Conditions: Thermal Radiation as Random Electromagnetic Fields

The optical excitation term µεz · Ein (0, t) represents the coupling between the TLS and

the incoming classical EM fields. As discussed in the introduction, we will employ Boyer’s

random electrodynamical model to simulate thermal radiation fields.

As it was originally formulated[28], random electrodynamics constitute a classical model

of thermal radiation fields in terms of a sum over transverse plane waves with a random

phase in 3D space (see Eq. (A1)). These transverse plane waves follow homogeneous Maxwell

equations: ∂
∂t

Bin = −∇×Ein, ∂
∂t

Ein = c2∇×Bin. With this random electrodynamical model

of thermal radiation fields, the optical excitation term for the electric dipole coupling can be

written as a sum over harmonic oscillators with discrete frequency modes (see Appendix A)
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µεz · Ein (0, t) =
∑
ω

µA (ω, β) cos [ωt+ θω] . (3)

The random phase θω ∈ [0, 2π) is chosen independently for each frequency ω. Here, the

coupling strength for frequency mode ω is determined by the spectrum

|A (ω, β)|2 = 2~
3π2ε0c3

ω3

eβ~ω − 1dω, (4)

which corresponds to the true QM energy density within the frequency range (ω, ω + dω),

though ignoring zero-point energy.

Finally, we emphasize that random electrodynamics theory exploits an ensemble of clas-

sical EM fields to simulate the statistical variations of a quantum electrodynamical field.

We denote 〈·〉θ as an average with respect to the random phase {θω}. For example, the

radiation energy density can be evaluated by ε0
2 〈E

2
in〉θ + 1

2µ0
〈B2

in〉θ = ∑
ω U (ω, β) /V and the

total electric field is 〈Ein〉θ = 0 due to the random phase cancellation. In what follows, we

will run multiple trajectories with {θω} chosen randomly and average over those trajectories

to evaluate physical observables, such as the average density matrix 〈ρ〉θ.

III. MIXED QUANTUM–CLASSICAL ELECTRODYNAMICS

In this section, we briefly review three semiclassical methods for simulating electron–radiation

dynamics: (1) Ehrenfest dynamics, (2) the coupled Maxwell–Bloch equations, and (3) the

Ehrenfest+R approach. While these methods treat the optical excitation by the incoming

thermal radiation fields in the same manner, the incorporation of spontaneous emission

effects for the TLS is considered at different levels of accuracy[22]. Since we are interested

in the equilibrium population, we focus on the equation of motion for the TLS below.

A. Ehrenfest dynamics

Ehrenfest dynamics is the most straightforward, mean–field semiclassical ansatz for

electrodynamics[21]. The density matrix of the TLS evolves according to the Liouville

equation: ρ̇ = − i
~ [Ĥel, ρ]. The scattered EM fields follow the inhomogeneous Maxwell’s

equations: ∂
∂t

Bscatt = −∇×Escatt, ∂
∂t

Escatt = c2∇×Bscatt − J/ε0. Here, the current source

J = ∂
∂t
Tr{ρP̂} is generated by the average polarization of the electronic system. Within
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Ehrenfest dynamics, the total energy of the TLS and the scatted EM fields is conserved.

However, as shown in Refs. 21 and 25, Ehrenfest dynamics completely ignore the effects of

vacuum fluctuations and fail to capture spontaneous emission quantitatively. More specif-

ically, for a TLS in vacuum, the population decay rate is kEh(t) = κρgg(t), i.e. Ehrenfest

dynamics tend to be more accurate in the weak excitation limit (ρgg → 1, ρee → 0) than in

the strong excitation limit (ρgg → 0, ρee → 1).

B. Coupled Maxwell–Bloch equations

The most common scheme to improve Ehrenfest dynamics is to add some phenomeno-

logical dissipation to the Liouville equation: ρ̇ = − i
~ [Ĥel, ρ] + LSE[ρ] (forming the so-called

the coupled Maxwell–Bloch equations[19, 20]) while the scattered EM fields follow the same

equations of motion as Ehrenfest dynamics. The dissipation term takes the form of a Lind-

blad operator: LSE[ρ] = κ
(
âρâ† − 1

2 â
†âρ− 1

2ρâ
†â
)
where â = |g〉 〈e|. Note that the full FGR

rate κ is used in this phenomenological dissipation. The Lindblad operator can be derived

from a QED calculation to describe the overall effects of spontaneous emission.

Unfortunately, naively supplementing Ehrenfest dynamics by this phenomenological

damping at the full FGR rate causes many disadvantages for the coupled Maxwell–Bloch

equations. First, the total energy of the TLS and the radiation fields is not conserved: there

is no EM field emission corresponding to the additional dissipation of the TLS. Second,

the effect of the self-interaction is double-counted: the phenomenological Lindblad operator

with the FGR rate (κ) ignores the fact that self-interaction has already been included in

Ehrenfest dynamics and only the vacuum fluctuations must be addressed. As has been

shown recently[22], this naive implementation of the coupled Maxwell–Bloch equations

almost always over-estimates the population decay rate of the TLS[37].

C. Ehrenfest+R approach

In contract to the coupled Maxwell–Bloch equations, the Ehrenfest+R approach cor-

rectly adds only the effect of vacuum fluctuations on top of the Ehrenfest dynamics[25].

From our perspective, the key insight from electronic–nuclear non–adiabatic dynamics is

that when semiclassical trajectories obey conservation of energy, the algorithms are usually

7



more stable and tend to capture many physical features automatically. For example, by

rescaling velocities upon hopping, Tully’s surface hopping algorithm automatically enforces

detailed balance. With this insight in mind, the +R correction was designed to conserve

the total energy by rescaling the electromagnetic field (which is inspired by the momen-

tum adjustment of surface hopping). Explicitly, the +R correction enforces three effects:

(1) population relaxation, which adjusts the electronic population to recover spontaneous

emission, (2) stochastic dephasing, which introduces a stochastic random phase to the elec-

tronic wavefunction, (3) EM field rescaling, which enforces total energy conservation. A

detailed implementation of the Ehrenfest+R method is presented in Ref. 22 and 25. Note

that Ref. 26 has demonstrated that Ehrenfest+R dynamics can go beyond two levels and

capture Raman scattering quantitatively using a three-level system; extending the same

analysis to investigate detailed balance for more than two levels should be straightforward.

Now, we emphasize that, within Ehrenfest+R dynamics, the scattered EM fields are

described on the same footing as the incoming thermal radiation within random electro-

dynamics. Since the stochastic random phase φ is introduced by the +R correction, the

scattered EM fields in Ehrenfest+R dynamics constitute an ensemble of classical EM fields.

Thus, in the end, when evaluating physical observables, we must average over both θ (from

thermal radiation) and φ (from the +R correction). For example, if we use an electronic

wavefunction to describe the TLS |ψ (t)〉 = cg (t) |g〉+ ce (t) |e〉, the excited state population

of the TLS is Pe (t) = 〈|ce (t)|2〉φ〉θ.

IV. RESULTS AND DISCUSSION

To reach thermal equilibrium between the TLS and the incoming radiation fields, we

simulate the dynamics of the TLS for long time (κt = 200) as shown in Fig. 1(a). We

vary the temperature of the thermal radiation (kBT = 1/β) and compare the excited state

populations at equilibrium with the Boltzmann distribution: Pe = 1/(1 + eβ~ω0). Here,

we choose κ � ω0 so as to operate in the FGR regime. The coupling strength A (ω, β) is

discretized by 51 modes with dω = κ/300 near ω0. For each β, we run 2000 trajectories for

convergence. We assume the initial condition for the electronic TLS is |ψ (0)〉 = |g〉, but

this ansatz does not affect the final equilibrium result.

Fig. 1(b) shows that Ehrenfest dynamics can recover the Boltzmann distribution for a
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Figure 1. Equilibrium populations of the excited state of the TLS as a function of inverse tem-

perature parameter β~ω0. The dashed black lines are the correct Boltzmann distribution. The

solid black lines correspond to the saturated population at infinite temperature (Pe = Pg = 0.5).

The solid circles are the average data obtained by Ehrenfest dynamics (colored red), the coupled

Maxwell–Bloch equations (colored orange), and the Ehrenfest+R approach (colored blue). (a)

The excited state population as a function of time obtained by different semiclassical methods

for β~ω0 = 1.5. The shaded area indicates the standard deviation of the data. Note that only

Ehrenfest+R dynamics recovers the correct long time result. (b) For a large range of temperature,

Ehrenfest+R dynamics recover the correct Boltzmann distribution. The coupled Maxwell–Bloch

equations almost always under-estimate equilibrium population due to the double-counting of the

self-interaction. Surprisingly, Ehrenfest dynamics results agree with the correct Boltzmann distri-

bution at low temperature. (c) In the high temperature regime, Ehrenfest dynamics over-estimate

the excited state population due to the failure to fully recover spontaneous emission. For all

regimes, Ehrenfest+R dynamics can achieve detailed balance.
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large range of temperature. Surprisingly, Ehrenfest dynamics results turn out to be more

accurate when β become larger (low temperature). This observation is the opposite of

Tully’s analysis for electron–nuclei equilibriums: compare Fig. 1(b) with Fig. 1 of Ref. 4.

To rationalize this unexpected temperature dependence, we note that, within the regime

of electron–nuclei interactions, one can separate the system–bath coupling strength from

the temperature of the bath. By contrast, for electron–radiation interactions, the coupling

strength A (ω, β) itself depends on the temperature of the radiation fields and low temper-

ature generally leads to weak excitation. Now, if we recall that Ehrenfest dynamics can

almost recover spontaneous emission for a weakly excited TLS[21, 22] (because the overall

effect of spontaneous emission is dominated by the effect of self-interaction), we must con-

clude that, at low temperature, excitation of the TLS by thermal radiation will be balanced

by the Ehrenfest decay rate (that is almost the correct spontaneous emission rate).

Next, as shown in Fig. 1(c), at high temperature, the equilibrium population obtained

by Ehrenfest dynamics is larger than the Boltzmann distribution. At high temperature,

the TLS is strongly excited by the incoming thermal radiation and the effects of vacuum

fluctuations become more important for spontaneous emission. And thus, due to the failure

of Ehrenfest dynamics to include vacuum fluctuations, the Ehrenfest decay rate will be

insufficient to balance with the incoming thermal radiation. As a result, Ehrenfest dynamics

predict equilibrium populations that are too large and do not satisfy detailed balance.

Now, we turn our attention to the results of the coupled Maxwell–Bloch equations. Due to

the double-counting of self-interaction, the coupled Maxwell–Bloch equations almost always

produce a smaller equilibrium population than the Boltzmann distribution. Following a

similar analysis as for Ehrenfest dynamics, we find that, at high temperatures (β~ω0 < 0.5),

the TLS will be strongly excited eventually reaching the correct, saturated excited state

population (Pe = 0.5), just like Ehrenfest dynamics. In this limit, the effects of vacuum

fluctuations should dominate the overall spontaneous emission, and the results of the coupled

Maxwell–Bloch equations become closer to the Boltzmann distribution[38].

Finally, the equilibrium populations as attained by the Ehrenfest+R approach agrees

with the Boltzmann distribution for the whole range of temperature. The success of the

Ehrenfest+R approach demonstrates that the “+R” correction provides a subtle patch for

mean-field Ehrenfest dynamics to achieve detailed balance by recovering spontaneous emis-

sion. In contrast to the coupled Maxwell–Bloch equation, Ehrenfest+R dynamics incor-
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porate the correct dissipation rate that only account for vacuum fluctuations. Note that

we require only a quantum system and an ensemble of classical EM fields to fully satisfy

detailed balance, and we never have a quantized EM field or any other QED calculation.

V. CONCLUSION

In conclusion, we have shown that mixed quantum–classical electrodynamics can recover

detailed balance when satisfying the requirements of: (a) an appropriate classical model for

thermal radiation fields and (b) an accurate treatment of spontaneous emission. For (a), we

employ random electrodynamics to classically model thermal radiation fields as boundary

conditions. For (b), the Ehrenfest+R approach can capture spontaneous emission quantita-

tively, including the self-interaction and vacuum fluctuations. With this framework, unlike

standard Ehrenfest dynamics and the Maxwell–Bloch equations, Ehrenfest+R dynamics

can achieve the correct Boltzmann distribution by balancing the optical excitation of the

incoming thermal radiation and the overall effect of spontaneous emission.

Given these promising results, we can envisage many exciting developments. First, it will

be interesting to evaluate the capability of the semiclassical scheme to capture thermal equi-

librium for a set of spatially separated quantum emitters or a N -level quantum system[5, 39].

Such models can be employed for studying superradiant thermal emitter assemblies[40, 41].

Second, with mixed quantum–classical electrodynamics, one will soon be able to simulate

exciting phenomena in the field of nanoplasmonics, including thermal excitation of surface

plasmon[42, 43] and thermalization of plasmon–exciton polaritons[44]. Third, given that

recent advances of quantum electrodynamical density functional theory (QEDFT) provide

(in principle) an exact framework to account for electron–photon interactions[10, 45, 46], it

will be useful to integrate semiclassical electrodynamics with DFT calculations for modeling

light–matter interactions in realistic systems. This work should pave the way to many new

applications of mixed quantum–classical electrodynamics.
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Appendix A: Derivation of the discrete spectral density for thermal radiation

Within the theory of random electrodynamics[8, 29, 30, 32], thermal radiation can be

described as a sum over transverse plane waves with a characteristic thermal spectrum

corresponding to the blackbbody radiation spectrum. We consider a large space of volume

V with an incoming-wave boundary condition[32]. The electric field can be written as a sum

over all wave vectors k and polarizations λ = 1, 2:

Ein (r, t) =
∑
k,λ

εk,λ

√
2U (ω, β)
ε0V

cos[k · r− ωt+ θk,λ], (A1)

where θk,λ is a random phase chosen for each k, λ. The magnetic field is obtained from
∂
∂t

Bin (r, t) = −∇×Ein (r, t). Here, εk,λ denotes the polarization unit vectors of the classical

EM fields such that εk,1⊥εk,2 and k⊥εk,λ for λ = 1, 2. As is common, we assume that the

radiation fields are isotropic. U (ω, β) is the energy per mode of random electromagnetic

radiation (ω = c |k| = ck). Following Ref. 32, we use the Planck radiation spectrum given

by

U (ω, β) = ~ω
eβ~ω − 1 . (A2)

Note that we do not include the zero-point energy term (1
2~ω) in Eq. (A2). For random

electrodynamics, as shown by Boyer[28], the zero-point energy can be derived from the

effects of the walls. In this paper, however, the effect of zero-point energy is ignored in the

boundary conditions, but spontaneous emission is included heuristically in our semiclassical

treatments.

From Eq. A1, we can show that the statistical properties of the random electrodynamic

fields agree with QED when averaged over the random phase θ. First, the average electric

field of the incoming thermal radiation is zero, 〈Ein〉θ = 0. Second, the average intensity is

associated with the energy density

〈
|Ein|2

〉
θ

=
∑
k,λ

U (ω, β)
ε0V

. (A3)

Here, we use the random phase correlation 〈cos [k · r− ωt+ θk,λ] cos [k′ · r′ − ω′t+ θk′,λ′ ]〉θ =
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1
2δ

3 (k− k′) δλλ′ . For a very large V and isotropic fields, we can replace the summation using

∑
k,λ
→ 2 V

(2π)3

∫
k2dkdΩ =

N∑
j=1

V

π2c3ω
2
jdω, (A4)

where we discretize the integral by ωj = jdω with small enough dω. Thus, the average

intensity can be written as a summation of the energy density within the frequency range

(ωj, ωj + dω) 〈
|Ein|2

〉
θ

=
∑
j

ω2
j

π2ε0c3U (ωj, β) dω. (A5)

Note that both 〈Ein〉θ and 〈|Ein|2〉θ are independent of position and time for thermal radia-

tion fields.

For a TLS emitter at r = 0 and d (r)→ µδ3 (r) εz, we can write the electric coupling as

µεz · Ein (0, t) = µ
∑
ω

A (ω, β) cos [ωt+ θω] (A6)

To find the coupling strength A (ω, β), we utilize the isotropic property of the EM field, such

that the z-component of the random electric field should satisfy

〈
|εz · Ein|2

〉
θ

= 1
3
〈
|Ein|2

〉
θ
. (A7)

Next, we use the random phase correlation 〈cos [ωt+ θω] cos [ω′t+ θω′ ]〉θ = 1
2δ (ω − ω′) to

express 〈
|εz · Ein|2

〉
θ

=
∑
ω

1
2 |A (ω, β)|2 . (A8)

Therefore, from Eq. (A2) and (A5), we can conclude

|A (ω, β)|2 = 2~
3π2ε0c3

ω3

eβ~ω − 1dω. (A9)
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