• Open Access

Spontaneous formation of thermodynamically stable Al-Cu-Fe icosahedral quasicrystal from realistic atomistic simulations

Marek Mihalkovič and Michael Widom
Phys. Rev. Research 2, 013196 – Published 24 February 2020
PDFHTMLExport Citation

Abstract

Icosahedral quasicrystals spontaneously form from the melt in simulations of Al-Cu-Fe alloys. We model the interatomic interactions using oscillating pair potentials tuned to the specific alloy system based on a database of density functional theory (DFT)-derived energies and forces. Favored interatomic separations align with the geometry of icosahedral motifs that overlap to create face-centered icosahedral order on a hierarchy of length scales. Molecular dynamics simulations, supplemented with Monte Carlo steps to swap chemical species, efficiently sample the configuration space of our models, which reach up to 9846 atoms. Exchanging temperatures of independent trajectories (replica exchange) allows us to achieve thermal equilibrium at low temperatures. By optimizing structure and composition we create structures whose DFT energies reach to within 2 meV/atom of the energies of competing crystal phases. Free energies obtained by adding contributions due to harmonic and anharmonic vibrations, chemical substitution disorder, phasons, and electronic excitations, show that the quasicrystal becomes stable against competing phases at temperatures above 600 K. The average structure can be described succinctly as a cut through atomic surfaces in six-dimensional space that reveal specific patterns of preferred chemical occupancy. Atomic surface regions of mixed chemical occupation demonstrate the proliferation of phason fluctuations, which can be observed in real space through the formation, dissolution and reformation of large-scale icosahedral motifs—a picture that is hidden from diffraction refinements due to averaging over the disorder and consequent loss of information concerning occupancy correlations.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
3 More
  • Received 13 August 2019
  • Accepted 20 January 2020

DOI:https://doi.org/10.1103/PhysRevResearch.2.013196

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Marek Mihalkovič1,* and Michael Widom2,†

  • 1Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia
  • 2Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

  • *mihalkovic@savba.sk
  • widom@cmu.edu

Article Text

Click to Expand

Supplemental Material

Click to Expand

References

Click to Expand
Issue

Vol. 2, Iss. 1 — February - April 2020

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×